EP0524144B1 - Verfahren zum Fixieren von Farbstoffen - Google Patents

Verfahren zum Fixieren von Farbstoffen Download PDF

Info

Publication number
EP0524144B1
EP0524144B1 EP92810523A EP92810523A EP0524144B1 EP 0524144 B1 EP0524144 B1 EP 0524144B1 EP 92810523 A EP92810523 A EP 92810523A EP 92810523 A EP92810523 A EP 92810523A EP 0524144 B1 EP0524144 B1 EP 0524144B1
Authority
EP
European Patent Office
Prior art keywords
process according
acrylate
dye
polymerisable
diacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810523A
Other languages
English (en)
French (fr)
Other versions
EP0524144A1 (de
Inventor
Katharina Dr. Fritzsche
Martin Dr. Trottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Schweiz AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0524144A1 publication Critical patent/EP0524144A1/de
Application granted granted Critical
Publication of EP0524144B1 publication Critical patent/EP0524144B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5207Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • D06P1/525Polymers of unsaturated carboxylic acids or functional derivatives thereof
    • D06P1/5257(Meth)acrylic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/38General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2005Treatments with alpha, beta, gamma or other rays, e.g. stimulated rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/916Natural fiber dyeing
    • Y10S8/917Wool or silk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/926Polyurethane fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/927Polyacrylonitrile fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/928Polyolefin fiber

Definitions

  • the invention relates to a method for fixing dyes on organic material, characterized in that dyes which contain at least one polymerizable double bond or at least one polymerizable ring system, with the exception of water-soluble dyes with acrylamide or methacrylamide groups, together with at least one practically colorless compound , which contains at least one polymerizable double bond, is fixed with ionizing radiation on the organic material, which has a residual moisture content of less than 20% based on the treated material.
  • dyes which contain activated unsaturated groups can be fixed on organic material, in particular fiber material, by the action of ionizing radiation.
  • radiation fixation is characterized by the fact that e.g. Fixing baths and fixatives can be completely avoided.
  • Another advantage was the simultaneous application and fixing of dye and textile finishing agents, e.g. viewed to improve antistatic properties, crease resistance and reduce dirt retention.
  • the object of the present invention is to find an improved method for fixing, which also has the advantages of a fixing carried out by radiation.
  • the present invention relates to a method for fixing dyes on organic material, in particular fiber material, which is characterized in that dyes which contain at least one polymerizable double bond or at least one polymerizable ring system, with the exception of water-soluble dyes with acrylamide or methacrylamide groups, together with at least one practically colorless compound which has at least one contains polymerizable double bond, fixed with ionizing radiation on the organic material, which is dried before irradiation to a residual moisture content of less than 20%, based on the treated material.
  • the process according to the invention is distinguished by the fact that dye and colorless compound can be applied together, so that only a single dye bath or only a single dye liquor is necessary, a significantly higher degree of fixation being achieved than in the known processes without colorless polymerisable Connection. It is also advantageous that, in contrast to radiation in the wet state, less dye is destroyed, which leads to a high brilliance of the coloring. Another advantage of dry radiation is the possibility of fixing water-insoluble or very sparingly water-soluble dyes with the process according to the invention.
  • the dry organic material is to be understood in particular as fiber material which has a residual moisture content of less than 20%, preferably 5-10%, based on the treated fiber material before the irradiation.
  • the method according to the invention largely avoids a high outlay on auxiliaries and apparatus, since after the fixing process according to the invention fixing alkali need not be washed out, but only rinsing and drying of the dyed or printed fiber material is required.
  • fixing alkali need not be washed out, but only rinsing and drying of the dyed or printed fiber material is required.
  • the method of fixing consists in that an organic material to be colored, for example textile fiber material, after treatment with a dye which contains at least one polymerizable double bond or at least one polymerizable ring system, and in the presence of at least one colorless compound which has at least one polymerizable double bond contains, is irradiated with ionizing radiation in the dry state for a short time.
  • the treatment of the fiber material to be dyed with a dye according to the definition can be done in one of the usual ways, e.g. if it is a textile fabric, by soaking in a dye solution in a pull-out bath or by spraying or by padding a block solution, or by printing e.g. on a rouleaux printing machine.
  • the dye can be used in a e.g. Apply vinyl or acrylate binder dissolved by padding, spraying etc.
  • There is also the possibility of such dyes in e.g. Apply vinyl or acrylate emulsion with water to the organic material by padding, spraying or printing. After application, the organic material is dried to a residual moisture of less than 20%.
  • Ionizing radiation is to be understood as meaning radiation that can be detected with an ionization chamber. It consists either of electrically charged, directly ionizing particles, which generate ions in gases along their path through impact, or of uncharged, indirectly ionizing particles or photons, which generate charged secondary particles in matter, such as the secondary electrons of X-rays or ⁇ -rays, in matter or the recoil nuclei (especially protons) of fast neutrons; Indirectly ionizing particles are also slow neutrons, which can generate charged particles with high energy through nuclear reactions, partly directly, partly via photons from ( ⁇ , ⁇ ) processes. Protons, atomic nuclei or ionized atoms can be considered as heavily charged particles. Of particular importance for the process according to the invention are lightly charged particles, e.g. Electrons. Both brake radiation and characteristic radiation come into consideration as X-ray radiation. The ⁇ radiation is an important particle radiation of heavily charged particles.
  • the ionizing radiation can be generated by one of the customary methods. For example, spontaneous nuclear transformations as well as nuclear reactions (forced nuclear transformations) are used for generation.
  • spontaneous nuclear transformations as well as nuclear reactions (forced nuclear transformations) are used for generation.
  • natural or artificial radioactive substances and especially nuclear reactors come into consideration as radiation sources.
  • the radioactive fission products produced by nuclear fission in such reactors represent another important source of radiation.
  • Another possible method of generating radiation is by means of an X-ray tube.
  • Vacuum UV light with a wavelength of less than 200 nm and vacuum UV laser light are also to be mentioned under ionizing radiation.
  • Rays consisting of particles accelerated in electrical fields are of particular importance.
  • Thermal, electron impact, low-voltage arc, cold cathode and high-frequency ion sources come into consideration here as radiation sources.
  • Electron beams are of particular importance for the method of the present invention. These are generated by the acceleration and bundling of electrons, which are triggered by glow, field or photoemission and by electron or ion bombardment from a cathode.
  • Radiation sources are conventional electron guns and accelerators. Examples of radiation sources are known from the literature, for example the International Journal of Electron Beam & Gamma Radiation Processing, in particular 1/89 pages 11-15; Optik, 77 (1987), pages 99-104.
  • ⁇ -emitters e.g. the strontium-90 into consideration.
  • the ⁇ -rays which can be easily produced, in particular with cesium-137 or cobalt-60 isotope sources, may also be mentioned as technically advantageous ionizing rays.
  • Suitable dyes for this fixing process are those which have an activated unsaturated group, in particular an unsaturated aliphatic group, such as the vinyl, halovinyl, styryl, acrylic or methacrylic group.
  • unsaturated groups such as the vinyl, halovinyl, styryl, acrylic or methacrylic group.
  • unsaturated groups containing halogen atoms such as halomaleic acid and halogenpropiolic acid residues, the ⁇ - or ⁇ -bromine or chloroacrylic groups, halogenated vinyl acetyl groups, halogen crotonyl or halogen methacrylic groups.
  • halogen atoms such as halomaleic acid and halogenpropiolic acid residues
  • chloroacrylic groups such as halomaleic acid and halogenpropiolic acid residues
  • halogenated vinyl acetyl groups such as halogen crotonyl or halogen methacryl
  • Halogen atoms here are understood to mean fluorine, chlorine, bromine and iodine atoms as well as pseudohalogen atoms, such as, for example, the cyano group. Good results are achieved by the processes according to the invention with dyes which contain an ⁇ -bromoacrylic group.
  • Suitable dyes which contain a polymerizable double bond are preferably those which contain at least one acryloyl, ⁇ -bromoacryloyl, ⁇ -chloroacryloyl or vinylsulfonyl radical; very particularly preferably those which contain at least one acryloyl, ⁇ -bromoacryloyl or vinylsulfonyl radical.
  • Suitable dyes which contain a polymerizable ring system are preferably those which contain at least one epoxy radical.
  • the chromophoric systems used can belong to a wide variety of dye classes.
  • a preferred embodiment of the process according to the invention is characterized in that the dyes are those of the formula D- (X) m (1), wherein D is the residue of an organic dye of monoazo or polyazo, metal complex azo, anthraquinone, phthalocyanine, formazane, azomethine, nitroaryl, dioxazine, phenazine, stilbene, triphenylmethane, xanthene, thioxanthone, Naphthoquinone, pyrenequinone or perylene tetracarbimide series, X is a polymerizable double bond or a polymerizable ring system, and m is the number 1, 2, 3, 4, 5 or 6.
  • Dyes of the formula (1) are likewise particularly preferably used, in which D is the residue of an azo dye, in particular a residue of the formulas 6 to 17: wherein (R7) 1 ⁇ 3 represents 1 to 3 substituents from the group C1 ⁇ 4 alkyl, C1 ⁇ 4 alkoxy, halogen, carboxy and sulfo; wherein (R9) 1 ⁇ 3 represents 1 to 3 substituents from the group C1 ⁇ 4 alkyl, C1 ⁇ 4 alkoxy, halogen, carboxy and sulfo; wherein (R10) 1 ⁇ 3 represents 1 to 3 substituents from the group C1 ⁇ 4 alkyl, C1 ⁇ 4 alkoxy, halogen, carboxy and sulfo; wherein R11 is C2 ⁇ 4 alkanoyl or benzoyl; wherein R12 is C2 ⁇ 4 alkanoyl or benzoyl; wherein (R13) 0 ⁇ 3 represents 0 to 3 substituents from the group C1 ⁇ 4 alkyl, C1 ⁇ 4 al
  • a further preferred embodiment of the process according to the invention is characterized in that the dyes are those of the formula wherein D1 is the balance of a carbocyclic or heterocyclic diazo component free from water-solubilizing substituents; Y1 chlorine, methyl, methoxy, methoxyethyl, methoxyethoxy or hydrogen; R20 and R21 independently of one another are C1-C6-alkyl, C3-C Al-alkenyl, phenyl or the rest -B1-X1; R22 is hydrogen, methyl, methoxy, chlorine, bromine or the radical X1; X1 is a residue with a polymerizable double bond; B1 is an optionally substituted radical of the formula - (CH2) m - (C6H4) n - (CH2) o -; where m is an integer from 1 to 6 n 0 or 1 and o represents an integer from 0 to 6; mean and at least one of the radicals R20, R21 or R
  • D1 is preferably the residue of a homo- or heterocyclic diazo component, for example from the series thienyl, phenylazothienyl, thiazolyl, isothiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, benzothiazolyl, benzisothiazolyl, pyrazolyl, 1,2, 3-triazolyl, 1,2,4-triazolyl, imidazolyl, or phenyl.
  • a homo- or heterocyclic diazo component for example from the series thienyl, phenylazothienyl, thiazolyl, isothiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, benzothiazolyl, benzisothiazolyl, pyrazolyl, 1,2, 3-triazolyl, 1,2,4-triazolyl, imidazolyl, or phenyl.
  • Each of these systems can carry further substituents such as alkyl, alkoxy or alkylthio, each with 1 to 4 carbon atoms, phenyl, electronegative groups such as halogen, especially chlorine or bromine, trifluoromethyl, cyano, nitro, acyl, such as acetyl or benzoyl, carboalkoxy, especially carbomethoxy or carboethoxy, alkyl sulfone having 1 to 4 carbon atoms, phenyl sulfone, phenoxysulfone, sulfonamido or arylazo, especially phenylazo.
  • Two adjacent substituents of the ring systems mentioned can also together form further fused rings, for example phenyl rings or cyclic imides.
  • D 1 particularly preferably denotes a benzothiazolyl, benzisothiazolyl or phenyl radical which is unsubstituted or substituted once or twice by one of the abovementioned radicals.
  • alkyl radicals can be substituted, e.g. by hydroxy, alkoxy with 1 to 4 carbon atoms, especially methoxy, cyano or phenyl.
  • Halogen such as fluorine, chlorine or bromine, or -CO-U or -O-CO-U, where U is alkyl having 1 to 6 carbon atoms or phenyl, are suitable as further substituents.
  • Suitable alkenyl radicals are those radicals which are derived from the alkyl radicals listed above by replacing at least one single bond with a double bond.
  • Suitable residues are e.g. Ethenyl or propenyl.
  • Phenyl radicals are to be understood as meaning unsubstituted or substituted phenyl radicals.
  • substituents are C1-C4-alkyl, C1-C4-alkoxy, bromine, chlorine, nitro or C1-C4-alkylcarbonylamino into consideration.
  • residues derived from acrylic, methacrylic or cinnamic acid are suitable.
  • dyes of the formulas are dyes of the formulas:
  • the dyes mentioned are known or can be prepared by known methods. For example, about a mole equivalent of an acrylic acid chloride is added to a solution of the substance to be acylated in anhydrous acetone. About 1 mole equivalent of pyridine is then added at room temperature and the product is separated off by adding water.
  • colorless organic compounds which contain at least one polymerizable double bond are those which are free from coloring residues. They are monomeric, oligomeric or polymeric organic compounds or a mixture thereof, which can be polymerized or crosslinked when exposed to ionizing radiation.
  • Acrylates, diacrylates, acrylic acid or acrylamides are preferably used as colorless compounds in the process according to the invention.
  • Mixtures of monomeric and oligomeric colorless organic compounds are particularly preferably used in the processes according to the invention.
  • Possible monomeric colorless compounds are those with a molecular weight of up to approximately 1000 and which contain at least one polymerizable group.
  • the monomeric colorless compound can be used both directly and as a mixture with other monomers, oligomers and / or polymers.
  • Suitable oligomeric colorless compounds are those having a molecular weight between 1000 and 10000 and containing one or more polymerizable groups. If liquid, the oligomeric colorless compound can itself be used directly or as a solution in water or organic solvents or as a mixture with other monomers, oligomers and / or polymers.
  • Suitable polymeric colorless compounds are those having a molecular weight> 10,000 which contain one or more polymerizable groups.
  • the polymeric colorless compound can, if liquid, itself directly or as a solution in water or organic solvents or as a mixture with other monomers. Oligomers and / or polymers are used.
  • Colorless compounds which can be used are ethylenically unsaturated monomeric, oligomeric and polymeric compounds.
  • Esters of ethylenically unsaturated carboxylic acids and polyols or polyepoxides, and polymers with ethylenically unsaturated groups in the chain or in side groups e.g. unsaturated polyesters, polyamides and polyurethanes and copolymers thereof, polybutadiene and butadiene copolymers, polyisoprene and isoprene copolymers, polymers and copolymers with (meth) acrylic groups in side chains, and also mixtures of one or more such polymers.
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, crotonic acid, itaconic acid, cinnamic acid and unsaturated fatty acids such as linolenic acid or oleic acid.
  • Acrylic and methacrylic acid are preferred.
  • Aliphatic and cycloaliphatic polyols are suitable as polyols.
  • polyepoxides are those based on the polyols and epichlorohydrin.
  • polymers or copolymers containing hydroxyl groups in the polymer chain or in side groups e.g. Polyvinyl alcohol and copolymers thereof or polymethacrylic acid hydroxyalkyl esters or copolymers thereof, are suitable as polyols.
  • Other suitable polyols are oligoesters with hydroxyl end groups.
  • Examples of aliphatic and cycloaliphatic polyols are alkylene diols preferred 2 to 12 carbon atoms, such as ethylene glycol, 1,2- or 1,3-propanediol, 1,2-, 1,3- or 1,4-butanediol, pentanediol, hexanediol, octanediol, dodecanediol, diethylene glycol, triethylene glycol, polyethylene glycols with molecular weights of preferably 200 to 1500, 1,3-cyclopentanediol, 1,2-1,3- or 1,4-cyclohexanediol, 1,4-dihydroxymethylcyclohexane, glycerol, tris ( ⁇ -hydroxyethyl) amine, trimethylolethane, trimethylolpropane, Pentaerythritol, dipentaerythritol and sorbitol.
  • the polyols can be partially or completely esterified with one or different unsaturated carboxylic acids, the free hydroxyl groups in partial esters being modified, e.g. can be esterified or esterified with other carboxylic acids.
  • esters are: Trimethylolpropane triacrylate, trimethylolethane triacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol diacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, Tripentaerythritoctaacrylat, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, dipentaerythritol
  • amides of identical or different unsaturated carboxylic acids of aromatic, cycloaliphatic and aliphatic polyamines with preferably 2 to 6, particularly 2 to 4, amino groups are ethylenediamine, 1,2- or 1,3-propylenediamine, 1,2-, 1,3- or 1,4-butylenediamine, 1,5-pentylenediamine, 1,6-hexylenediamine, octylenediamine, dodecylenediamine, 1,4-diaminocyclohexane, isophoronediamine, phenylenediamine, bisphenylenediamine, di- ⁇ -aminoethyl ether, diethylenetriamine, triethylenetetramine, di- ( ⁇ -aminoethoxy) - or di- ( ⁇ -aminopropoxy) ethane.
  • Other suitable polyamines are polymers and copolymers with amino groups in the side chain and oligoamide
  • Examples of such unsaturated amides are: methylene-bis-acrylamide, 1,6-hexamethylene-bis-acrylamide, diethylenetriamine-tris-methacrylamide, bis (methacrylamidopropoxy) ethane, ⁇ -methacrylamidoethyl methacrylate, N [( ⁇ -hydroxyethoxy) ethyl] - acrylamide.
  • Suitable unsaturated polyesters and polyamides are derived e.g. on maleic acid and diols or diamines.
  • Maleic acid can be partially replaced by other dicarboxylic acids. They can be used together with ethylenically unsaturated comonomers, e.g. Styrene.
  • the polyesters and polyamides can also be derived from dicarboxylic acids and ethylenically unsaturated diols or diamines, especially from long-chain ones with e.g. 6 to 20 carbon atoms.
  • polyurethanes are those which are composed of saturated or unsaturated diisocyanates and unsaturated or saturated diols.
  • Polybutadiene and polyisoprene and copolymers thereof are known.
  • Suitable comonomers are e.g. Olefins such as ethylene, propene, butene, hexene, (meth) acrylates, acrylonitrile, styrene or vinyl chloride.
  • Polymers with (meth) acrylate groups in the side chain are also known.
  • the colorless compounds can be used alone or in any mixtures.
  • a preferred embodiment of the process according to the invention is characterized in that the colorless compounds used are those with the acrylic radical as a polymerizable group, oligomeric polyether, polyurethane and polyester acrylates being particularly preferred.
  • the colorless monomeric compound used is, in particular, N-vinylpyrrolidine, acrylic acid, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, butanediol monoacrylate, 2-ethoxyethylacrylate, ethylene glycol acrylate, butanediol acrylate, tetraethylene glycol, methylene glycol diacrylate diacrylate acrylate, , tripropylene glycol diacrylate, trimethylolpropane triacrylate, Pentaerythritriacrylat, bromoacrylamide, Methylenbisdi (bromoacrylamide), methylenebis bisdiacrylamid, N-Alkoxyacrylamide, tetraethylene glycol diacrylate, soybean oil acrylate, polybutadiene acrylate, diethylene glycol dimethacrylate, 1,6-hexanedi
  • Oligoethylene glycol diacrylates (MW ⁇ 500) are particularly preferred for the preparation of dye solutions of sparingly or not water-soluble dyes N-vinylpyrrolidone, 2-ethyl- (2-hydroxymethyl) -1,3-propanediol triacrylate, alkoxylated oligoether polyol tetraacrylate, oligoether triacrylate, N-butoxyacrylamide, N-iso-butoxyacrylamide, their mixtures with one another, and their mixtures with methylenebisacrylamide, oligo - / polyurethane acrylate, oligo / polyester acrylate or oligo / polyether acrylate.
  • Alkoxylated oligoether polyol tetraacrylate, 2-ethyl- (2-hydroxymethyl) -1,3-propanediol triacrylate, oligo- / polyurethane-acrylate, oligo are particularly preferred for the production of emulsions with water, into which sparingly or not water-soluble dyes can be introduced - / polyester acrylate, oligo- / polyether acrylate, their mixtures with one another, and their mixtures with methylene bisacrylamide, oligoethylene glycol diacrylates (MW ⁇ 500), N-vinylpyrrolidone, oligoether triacrylate, N-butoxyacrylamide or N-iso-butoxyacrylamide
  • the method according to the invention is applicable to a wide variety of organic materials, such as textile material, paper, wood, leather and plastics.
  • fiber materials such as fibers of animal origin such as wool, silk, hair (e.g. as felt) or semisynthetic synthetic fibers such as protein synthetic fibers or alginate fibers, fully synthetic fibers such as polyvinyl, polyacrylonitrile, polyester, polyamide or polyurethane fibers, polypropylene and above all cellulose-containing materials, such as bast fibers, for example linen, hemp, jute, ramie and in particular cotton, and cellulose synthetic fibers, such as viscose or modal fibers, copper, nitrate or saponified acetate fibers or fibers made of cellulose acetate, such as acetate fibers, or fibers made of cellulose triacetate, such as Arnel®, Trilan®, Courpleta® or Tricel®.
  • the method can also be used for mixtures of the fibers mentioned.
  • the method is very particularly preferably used for cellulosic fibers, such as cotton or rayon wool, and their mixtures with polyester, polyacrylonit
  • the fibers mentioned can be in a wide variety of processing states, as are used in particular in the textile industry, e.g. as threads, yarns, fabrics, knitted fabrics or nonwovens, e.g. Felts.
  • the dye and colorless compound can be applied together as a homogeneous solution, suspension, emulsion or foam by the customary processes.
  • dye and colorless compound or parts of the colorless compound can also be applied separately.
  • an aqueous solution of the dye can first be padded and - after the dye has dried - the colorless compound can be sprayed on, for example.
  • the method according to the invention is carried out in such a way that e.g. the dyed textile fabric treated with a solution of a colorless compound is passed through the fanned beam of an electron accelerator at room temperature in the dry state. This happens at such a speed that a certain radiation dose is reached.
  • the radiation doses normally to be used are between 0.1 and 15 Mrad, the radiation dose advantageously being between 0.1 and 4 Mrad. With a dose of less than 0.1 Mrad, the degree of fixation is generally too low; with a dose of more than 15 Mrad, damage to the fiber material and the dye often occurs.
  • the dye concentrations of the dye solutions or printing pastes used can be selected as in conventional dyeing or printing processes, e.g.
  • the special embodiment depends primarily on the type of ionizing radiation to be used and its mode of production. If, for example, a spool of yarn soaked with dye solution and the solution of the colorless compound is to be irradiated with ⁇ -rays, then this is enclosed in a cell and exposed to the radiation. If higher radiation doses are desired with low radiation intensity, the material to be irradiated can be exposed to the radiation in several passes.
  • an inert protective gas e.g. under nitrogen.
  • a preferred embodiment of the method according to the invention is characterized in that both the fixing of the fiber material with appropriate Dyes and dyeing or printing are carried out continuously.
  • the radiation doses are usually expressed in Mrad (megarad), where 1 rad corresponds to an absorption of 10 ⁇ 2 J / kg (Joule / kg).
  • the fabric specified in the examples below is printed on one side or dyed in a pad-batch process and irradiated with accelerated electrons (acceleration voltage ⁇ 165 kV) in a protective gas atmosphere. Prints are irradiated on one side, dyeings are irradiated on both sides in two runs. After the irradiation, the dyeings or prints are washed out as usual for reactive dyes.
  • accelerated electrons acceleration voltage ⁇ 165 kV
  • the degrees of fixation are determined by detaching the dye from an irradiated, unwashed and an unirradiated sample.
  • the samples are treated once with 50 ml of a solution of 600 ml / l phosphate buffer (pH 7) and 40 ml / l tetramethyl urea in deionized water at 40 ° C and then with 50 ml of this solution for 30 minutes at 100 ° C.
  • the two extracts are combined and the degrees of fixation are determined via the extinction (at ⁇ max ). In Examples 6 and 7, the extraction is carried out in the same way with dimethylformamide.
  • Example A The isomer mixture of 5,6- and 6,7-dichloro-2-aminobenzothiazole is diazotized in the usual way and coupled to N-ethyl-N-hydroxyethylaniline.
  • the dye of the formula is obtained 4 g of this dye are dissolved in 50 ml of anhydrous acetone. After adding 1 g of acrylic chloride, 0.8 g of anhydrous pyridine is added dropwise at room temperature. The mixture is stirred for one hour and then 500 ml of water are added to the solution. After filtering off, a black, slightly sticky product of the formula is obtained
  • Example 1 A cotton satin fabric is washed with an aqueous solution containing 30 g / l of the dye of the formula Contains 100 g / l of an oligoethylene glycol diacrylate and 100 g / l urea, padded (liquor absorption approx. 70%). The tissue is dried at approx. 60-80 ° C and then irradiated on both sides with accelerated electrons at a dose of 4 Mrad per side. A yellow color of high fastness is obtained with a degree of fixation of 71%.
  • Example 2 A cotton satin fabric is washed with an aqueous solution containing 30 g / l of the dye of the formula dyed, dried and irradiated as described in Example 1. A red dyeing of high fastness is obtained with a degree of fixation of 75%.
  • Example 3 A cotton satin fabric is washed with an aqueous solution containing 30 g / l of the dye described in Example 2, 50 g / l of an oligoethylene glycol diacrylate, 50 g / l of 2-ethyl- (2-hydroxymethyl) - 1,3- propanediol triacrylate and 100 g / l urea contains, as described in Example 1, colored, dried and irradiated. A red dyeing of high fastness is obtained with a degree of fixation of 64%.
  • Example 4 A cotton satin fabric is washed with an aqueous solution containing 30 g / l of the dye described in Example 2, 50 g / l of an oligoethylene glycol diacrylate, 50 g / l methylene bisacrylamide and 100 g / l urea, as described in Example 1 dyed, dried and irradiated. A red dyeing of high fastness is obtained with a degree of fixation of 67%.
  • Example 5 A cotton satin fabric is washed with an aqueous solution containing 30 g / l of the dye described in Example 2, 50 g / l of an oligoethylene glycol diacrylate, 50 g / l of an oligoether triacrylate and 100 g / l of urea, as in Example 1 described colored, dried and irradiated. A red dyeing of high fastness is obtained with a degree of fixation of 63%.
  • Example 6 A cotton satin fabric is padded with a mixture containing 30 g / l of the dye described in Example 2, 75 g / l of an oligourethane diacrylate, 50 g / l of methylene bisacrylamide and 100 g / l of urea (liquor absorption approx. 70 %). The tissue is dried and then irradiated on both sides with accelerated electrons at a dose of 4 Mrad / side. A red color is obtained with a degree of fixation of 73%.
  • Example 7 A cotton satin fabric is padded with a mixture which contains 30 g / l of the dye described in Example 2, 75 g / l of an oligourethane diacrylate, 100 g / l of an oligoethylene glycol diacrylate and 100 g / l of urea (liquor absorption approx. 70%). The tissue is dried and then irradiated on both sides with accelerated electrons at a dose of 4 Mrad / side each. A red color is obtained with a degree of fixation of 77%.
  • Example 8 A cotton satin fabric is padded with an aqueous solution which contains 30 g / l of the dye described in Example 2 and 100 g / l of urea (liquor absorption approx. 70%) and dried. Then padding with a solution in ethanol of 10 g / kg of 1,6-hexanediol diacrylate, 90 g / kg of an oligomeric aliphatic urethane diacrylate and 100 g / kg of an oligoethylene glycol diacrylate (liquor absorption approx. 40%). The tissue is dried and then irradiated on both sides with accelerated electrons at a dose of 4 Mrad / side each. A red color is obtained with a degree of fixation of 72%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Polymerisation Methods In General (AREA)
  • Dental Preparations (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Fixieren von Farbstoffen auf organischem Material, dadurch gekennzeichnet, dass man Farbstoffe, welche mindestens eine polymerisierbare Doppelbindung oder mindestens ein polymerisierbares Ringsystem enthalten, ausgenommen wasserlösliche Farbstoffe mit Acrylamid- oder Methacrylamid-Gruppen, zusammen mit mindestens einer praktisch farblosen Verbindung, welche mindestens eine polymerisierbare Doppelbindung enthält, mit ionisierender Strahlung auf dem organischen Material fixiert, welches eine Restfeuchte Kleiner 20 % bezogen auf das behandelte Material aufweist.
  • Es ist bekannt, dass man Farbstoffe, die aktivierte ungesättigte Gruppen enthalten, durch Einwirken ionisierender Strahlung auf organischem Material, insbesondere Fasermaterial, fixieren kann. Gegenüber den konventionellen Verfahren zur Fixierung von Farbstoffen, insbesondere von Reaktivfarbstoffen, zeichnet sich die durch Strahlung erfolgte Fixierung dadurch aus, dass z.B. Fixierbäder und Fixiermittel vollständig vermieden werden können. Als weiterer Vorteil wurde das gleichzeitige Aufbringen und Fixieren von Farbstoff und Textilausrüstmitteln, z.B. zur Verbesserung antistatischer Eigenschaften, der Knitterfestigkeit und zur Verringerung des Schmutzrückhaltevermögens angesehen.
  • Ein solches Verfahren ist aus der CH-A-527 962 bekannt.
  • Die Praxis des Färbens, insbesondere mit Reaktivfarbstoffen, aber auch mit Dispersionsfarbstoffen, hat in neuerer Zeit zu erhöhten Anforderungen an die Qualität der Färbung und die Wirtschaftlichkeit des Färbeprozesses geführt. Die alleine mit ionisierender Strahlung erfolgende Fixierung von Reaktivfarbstoffen genügt den heutigen Anforderungen hinsichtlich des zu erreichenden Fixiergrads nicht mehr. Infolgedessen besteht die Aufgabe der vorliegenden Erfindung ein verbessertes Verfahren zum Fixieren zu finden, welches zudem die Vorteile einer durch Strahlung erfolgten Fixierung aufweist.
  • Es hat sich gezeigt, dass das neue Verfahren die gestellte Aufgabe erfüllt.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Fixieren von Farbstoffen auf organischem Material, insbesondere Fasermaterial, welches dadurch gekennzeichnet ist, dass man Farbstoffe, welche mindestens eine polymerisierbare Doppelbindung oder mindestens ein polymerisierbares Ringsystem enthalten, ausgenommen wasserlösliche Farbstoffe mit Acrylamid- oder Methacrylamid-Gruppen, zusammen mit mindestens einer praktisch farblosen Verbindung, welche mindestens eine polymerisierbare Doppelbindung enthält, mit ionisierender Strahlung auf dem organischen Material fixiert, welches vor der Bestrahlung auf einen Restfeuchtegehalt kleiner 20 %, bezogen auf das behandelte Material, getrocknet wird.
  • Das erfindungsgemässe Verfahren zeichnet sich dadurch aus, dass Farbstoff und farblose Verbindung zusammen appliziert werden können, so dass nur ein einziges Färbebad, bzw. nur eine einzige Farbeflotte, notwendig ist, wobei ein deutlich höherer Fixiergrad erreicht wird als in den bekannten Verfahren ohne farblose polymerisierbare Verbindung. Vorteilhaft ist ausserdem, dass im Gegensatz zu einer Bestrahlung in feuchtem Zustand weniger Farbstoff zerstört wird, was zu einer hohen Brillanz der Färbung führt. Ein weiterer Vorteil der trockenen Bestrahlung liegt in der Möglichkeit auch wasserunlösliche oder sehr schwer wasserlösliche Farbstoffe mit dem erfindungsgemässen Verfahren zu fixieren.
  • Unter dem trockenen organischen Material soll im Rahmen dieser Erfindung insbesondere Fasermaterial verstanden werden, welches eine Restfeuchte kleiner 20 %, vorzugsweise 5 - 10 %, bezogen auf das behandelte Fasermaterial vor der Bestrahlung, aufweist.
  • Das erfindungsgemässe Verfahren vermeidet einen hohen Aufwand an Hilfsmitteln und Apparaturen weitgehend, da nach dem erfindungsgemässen Fixiervorgang Fixieralkali nicht ausgewaschen zu werden braucht, sondern nur ein Spülen und Trocknen des gefärbten oder bedruckten Fasermaterials erforderlich ist. Durch den Verzicht auf Fixieralkali wird nicht nur die Abwassermenge gegenüber herkömmlichen Verfahren begrenzt, sondern auch die Aufbereitung der Restabwässer vereinfacht.
  • Das Verfahren der Fixierung besteht darin, dass ein zu färbendes organisches Material, z.B. textiles Fasermaterial, nach der Behandlung mit einem Farbstoff, welcher mindestens eine polymerisierbare Doppelbindung oder mindestens ein polymerisierbares Ringsystem enthält, und in Gegenwart mindestens einer farblosen Verbindung, welche mindestens eine polymerisierbare Doppelbindung enthält, im trockenen Zustand für kurze Zeit mit einer ionisierenden Strahlung bestrahlt wird.
  • Die Behandlung des zu färbenden Fasermaterials mit einem definitionsgemässen Farbstoff kann auf eine der üblichen Weisen geschehen, z.B. wenn es sich um Textilgewebe handelt, durch Tränken mit einer Farbstofflösung in einem Ausziehbad bzw. durch Aufsprühen oder durch Foulardieren einer Klotzlösung, oder durch Bedrucken z.B. auf einer Rouleauxdruckmaschine. Im Falle von wenig oder nicht wasserlöslichen Farbstoffen kann man den Farbstoff in einem z.B. Vinyl- oder Acrylat-Binder gelöst durch Foulardieren, Sprühen etc. aufbringen. Es besteht ausserdem die Möglichkeit solche Farbstoffe in einer z.B. Vinyl- oder Acrylat-Emulsion mit Wasser auf das organische Material durch Foulardieren, Sprühen oder Bedrucken aufzubringen. Das organische Material wird nach dem Auftrag auf eine Restfeuchte kleiner 20 % getrocknet.
  • Unter ionisierender Strahlung soll eine Strahlung verstanden werden, die mit einer Ionisationskammer nachgewiesen werden kann. Sie besteht entweder aus elektrisch geladenen, direkt ionisierenden Teilchen, die in Gasen längs ihrer Bahn durch Stoss Ionen erzeugen oder aus ungeladenen, indirekt ionisierenden Teilchen oder Photonen, die in Materie direkt ioniserende geladene Sekundärteilchen erzeugen, wie die Sekundärelektronen von Röntgen- oder γ-Strahlen oder die Rückstosskerne (insbesondere Protonen) von schnellen Neutronen; ebenfalls indirekt ionisierende Teilchen sind langsame Neutronen, die durch Kernreaktionen teils unmittelbar, teils über Photonen aus (β,γ)-Prozessen energiereiche geladene Teilchen erzeugen können. Als schwere geladene Teilchen kommen Protonen, Atomkerne oder ionisierte Atome in Betracht. Von besonderer Wichtigkeit für den erfindungsgemässen Prozess sind leichte geladene Teilchen, z.B. Elektronen. Als Röntgenstrahlung kommt sowohl die Bremsstrahlung als auch die charakteristische Strahlung in Betracht. Als wichtige Teilchenstrahlung schwerer geladener Teilchen sei die α-Strahlung genannt.
  • Die Erzeugung der ionisierenden Strahlung kann nach einer der üblichen Methoden erfolgen. So können z.B. spontane Kernumwandlungen als auch Kernreaktionen (erzwungene Kernumwandlungen) zur Erzeugung herangezogen werden. Als Strahlenquellen kommen entsprechend natürliche oder künstliche radioaktive Stoffe und vor allem Atomreaktoren in Betracht. Die in solchen Reaktoren durch Kernspaltung anfallenden radioaktiven Spaltprodukte stellen eine weitere wichtige Strahlenquelle dar.
  • Eine weitere in Betracht kommende Methode der Erzeugung von Strahlung ist die mittels einer Röntgenröhre.
  • Unter ionisierender Strahlung ist ausserdem Vakuum-UV-Licht mit einer Wellenlänge Kleiner 200 nm und Vakuum-UV-Laserlicht (z.B. 193 nm) zu nennen.
  • Von besonderer Bedeutung sind Strahlen, die aus in elektrischen Feldern beschleunigten Teilchen bestehen. Als Strahlenquellen kommen hier Thermo-, Elektronenstoss-, Niederspannungsbogen-, Kaltkathoden- und Hochfrequenzionenquellen in Betracht.
  • Von besonderer Bedeutung für das Verfahren der vorliegenden Erfindung sind Elektronenstrahlen. Diese werden durch Beschleunigung und Bündelung von Elektronen erzeugt, die durch Glüh-, Feld- oder Photoemission sowie durch Elektronen- oder Ionenbombardement aus einer Kathode ausgelöst werden. Strahlenquellen sind Elektronenkanonen und Beschleuniger üblicher Bauart. Beispiele für Strahlenquellen sind aus der Literatur bekannt, z.B. International Journal of Electron Beam & Gamma Radiation Processing, insbesondere 1/89 Seiten 11-15; Optik, 77 (1987), Seiten 99-104.
  • Als Strahlenquellen für Elektronenstrahlen kommen ferner β-Strahler, wie z.B. das Strontium-90 in Betracht.
  • Als technisch vorteilhaft anwendbare ionisierende Strahlen seien ausserdem die γ-Strahlen genannt, die insbesondere mit Cäsium-137- oder Kobalt-60-Isotopenquellen leicht herstellbar sind.
  • Als für dieses Fixierungsverfahren geeignete Farbstoffe kommen solche in Betracht, die eine aktivierte ungesättigte Gruppe, insbesondere eine ungesättigte aliphatische Gruppe aufweisen, wie z.B. die Vinyl-, Halogenvinyl-, Styryl-, Acryl- oder Methacryl-Gruppe. Als solche Gruppen seien z.B. die Halogenatome enthaltenden ungesättigten Gruppen genannt, wie Halogenmaleinsäure- und Halogenpropiolsäurereste, die α- oder β-Brom- oder Chloracrylgruppen, halogenierte Vinylacetylgruppen, Halogencrotonyl- oder Halogenmethacrylgruppen. Weiterhin kommen auch solche Gruppen in Betracht, die leicht, z.B. durch Abspaltung von Halogenwasserstoff, in halogenhaltige ungesättigte Gruppen übergehen, z.B. die Dichlor- oder Dibrompropionylgruppe. Unter Halogenatomen sind hier Fluor-, Chlor-, Brom und Jodatome als auch Pseudohalogenatome, wie z.B. die Cyangruppe zu verstehen. Gute Resultate werden nach den erfindungsgemässen Verfahren mit Farbstoffen erzielt, welche eine α-Bromacrylgruppe enthalten. Als Farbstoffe, die eine polymerisierbare Doppelbindung enthalten, kommen vorzugsweise solche in Betracht, die mindestens einen Acryloyl, α-Bromacryloyl-, α-Chloracryloyl- oder Vinylsulfonyl-Rest enthalten; ganz besonders bevorzugt jene, die mindestens einen Acryloyl-, α-Bromacryloyl- oder Vinylsulfonyl-Rest enthalten. Als Farbstoffe, die ein polymerisierbares Ringsystem enthalten, kommen vorzugsweise solche in Betracht, die mindestens einen Epoxid-Rest enthalten.
  • Die verwendeten chromophoren Systeme können den verschiedensten Farbstoff-Klassen angehören.
  • Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man als Farbstoffe solche der Formel



            D-(X)m   (1),



    worin D der Rest eines organischen Farbstoffes der Monoazo- oder Polyazo-, Metallkomplexazo-, Anthrachinon-, Phthalocyanin-, Formazan-, Azomethin-, Nitroaryl-, Dioxazin-, Phenazin-, Stilben-, Triphenylmethan-, Xanthen-, Thioxanthon-, Naphthochinon-, Pyrenchinon- oder Perylentetracarbimid-Reihe, X eine polymerisierbare Doppelbindung oder ein polymerisierbares Ringsystem, und m die Zahl 1, 2, 3, 4, 5 oder 6 ist, verwendet.
  • Eine besonders bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man wasserlösliche Farbstoffe der Formel (1) verwendet; z.B. solche, worin
    • a) D der Rest eines Formazanfarbstoffes der Formel
      Figure imgb0001
      oder
      Figure imgb0002
      ist, worin die Benzolkerne weiterhin durch Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen, Alkylsulfonyl mit 1 bis 4 C-Atomen, Halogen oder Carboxy substituiert sein können.
    • b) D der Rest eines Anthrachinonfarbstoffes der Formel
      Figure imgb0003
      ist, worin G ein Phenylen-, Cyclohexylen- oder C₂-C₆-Alkylenrest ist; wobei der Anthrachinonkern durch eine weitere Sulfogruppe, und G als Phenylrest durch Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen, Halogen, Carboxy oder Sulfo substituiert sein kann.
    • c) D der Rest eines Phthalocyaninfarbstoffes der Formel
      Figure imgb0004
      worin Pc der Rest eines Kupfer- oder Nickelphthalocyanins; W -OH und/oder -NR₅R₆; R₅ und R₆ unabhängig voneinander Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen, das durch Hydroxy oder Sulfo substituiert sein kann; R₄ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen; E ein Phenylenrest, der durch Alkyl mit 1 bis 4 C-Atomen, Halogen, Carboxy oder Sulfo substituiert sein kann; oder ein Alkylenrest mit 2 bis 6 C-Atomen, vorzugsweise ein Sulfophenylen- oder Aethylenrest; und k = 1, 2 oder 3 ist.
    • d) D der Rest eines Dioxazinfarbstoffes der Formel
      Figure imgb0005
      ist, worin E ein Phenylenrest, der durch Alkyl mit 1 bis 4 C-Atomen, Halogen, Carboxy oder Sulfo substituiert sein kann; oder ein Alkylenrest mit 2 bis 6 C-Atomen ist; und die äusseren Benzolringe in den Formeln (5a) und (5b) durch Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen, Acetylamino, Nitro, Halogen, Carboxy oder Sulfo weitersubstituiert sein können.
  • Ebenfalls besonders bevorzugt werden Farbstoffe der Formel (1) verwendet, worin D der Rest eines Azofarbstoffes, insbesondere ein Rest der Formeln 6 bis 17 ist:
    Figure imgb0006

    worin (R₇)₁₋₃ für 1 bis 3 Substituenten aus der Gruppe C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Halogen, Carboxy und Sulfo steht;
    Figure imgb0007

    worin (R₉)₁₋₃ für 1 bis 3 Substituenten aus der Gruppe C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Halogen, Carboxy und Sulfo steht;
    Figure imgb0008

    worin (R₁₀)₁₋₃ für 1 bis 3 Substituenten aus der Gruppe C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Halogen, Carboxy und Sulfo steht;
    Figure imgb0009
    Figure imgb0010

    worin R₁₁ C₂₋₄-Alkanoyl oder Benzoyl ist;
    Figure imgb0011

    worin R₁₂ C₂₋₄-Alkanoyl oder Benzoyl ist;
    Figure imgb0012

    worin (R₁₃)₀₋₃ für 0 bis 3 Substituenten aus der Gruppe C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Halogen, Carboxy und Sulfo steht;
    Figure imgb0013

    worin R₁₄ und R₁₅ unabhängig voneinander Wasserstoff, C₁₋₄-Alkyl oder Phenyl, und R₁₆ Wasserstoff, Cyano, Carbamoyl oder Sulfomethyl ist;
    Figure imgb0014

    worin (R₁₇)₁₋₄ für 1 bis 4 Substituenten aus der Gruppe Wasserstoff, Halogen, Nitro, Cyan, Trifluormethyl, Sulfamoyl, Carbamoyl, C₁₋₄-Alkyl, C₁₋₄-Alkoxy, Amino, Acetylamino, Ureido, Hydroxy, Carboxy, Sulfomethyl und Sulfo, unabhängig voneinander, steht;
    Figure imgb0015

    worin (R₁₈)₀₋₃, (R₁₈')₀₋₂ und (R₁₈'')₀₋₂ unabhängig voneinander 0 bis 3 bzw. 0 bis 2 Substituenten aus der Gruppe C₁₋₄-Alkyl, C₁₋₄-Alkoxy und Sulfo stehen.
  • Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man als Farbstoffe solche der Formel
    Figure imgb0016

    worin D₁ den Rest einer von wasserlöslichmachenden Substituenten freien, carbocyclischen oder heterocyclischen Diazokomponente;
    Y₁ Chlor, Methyl, Methoxy, Methoxyethyl, Methoxyethoxy oder Wasserstoff;
    R₂₀ und R₂₁ unabhängig voneinander C₁-C₆-Alkyl, C₃-C₆-Alkenyl, Phenyl oder den Rest -B₁-X₁;
    R₂₂ Wasserstoff, Methyl, Methoxy, Chlor, Brom oder den Rest X₁;
    X₁ einen Rest mit einer polymerisierbaren Doppelbindung;
    B₁ einen gegebenenfalls substituierten Rest der Formel -(CH₂)m-(C₆H₄)n-(CH₂)o-;
       worin m eine ganze Zahl von 1 bis 6
       n 0 oder 1 und
       o eine ganze Zahl von 0 bis 6 bedeutet;
    bedeuten und mindestens einer der Reste R₂₀, R₂₁ oder R₂₂ die Bedeutung X₁ hat bzw. durch einen Rest X₁ substituiert ist;
    verwendet.
  • D₁ bedeutet vorzugsweise den Rest einer homo- oder heterocyclischen Diazokomponente, z.B. aus der Reihe Thienyl, Phenylazothienyl, Thiazolyl, Isothiazolyl, 1,2,4-Thiadiazolyl, 1,3,4-Thiadiazolyl, Benzthiazolyl, Benzisothiazolyl, Pyrazolyl, 1,2,3-Triazolyl, 1,2,4-Triazolyl, Imidazolyl, oder Phenyl. Jedes dieser Systeme kann weitere Substituenten tragen wie Alkyl, Alkoxy oder Alkylthio mit je 1 bis 4 Kohlenstoffatomen, Phenyl, elektronegative Gruppen wie Halogen, besonders Chlor oder Brom, Trifluormethyl, Cyano, Nitro, Acyl, wie z.B. Acetyl oder Benzoyl, Carboalkoxy, besonders Carbomethoxy oder Carboethoxy, Alkylsulfon mit 1 bis 4 Kohlenstoffatomen, Phenylsulfon, Phenoxysulfon, Sulfonamido oder Arylazo, insbesondere Phenylazo. Je 2 benachbarte Substituenten der genannten Ringsysteme können auch zusammen weitere ankondensierte Ringe bilden, z.B. Phenylringe oder cyclische Imide.
  • Besonders bevorzugt bedeutet D₁ einen Benzthiazolyl-, Benzisothiazolyl- oder Phenylrest, welcher unsubstituiert oder ein- oder zweimal durch einen der obengenannten Reste substituiert ist.
  • Die Alkylreste können substituiert sein, z.B. durch Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen, insbesondere Methoxy, Cyano oder Phenyl. Als weitere Substituenten sind geeignet Halogen, wie Fluor, Chlor oder Brom, oder -CO-U oder -O-CO-U, worin U Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl ist.
  • Als Alkenylreste kommen solche Reste in Betracht, welche sich von den oben aufgeführten Alkylresten durch Ersatz mindestens einer Einfachbindung durch eine Doppelbindung ableiten. Geeignete Reste sind z.B. Ethenyl oder Propenyl.
  • Unter Phenylresten sind unsubstituierte oder substituierte Phenylreste zu verstehen. Als Substituenten kommen z.B. C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Brom, Chlor, Nitro oder C₁-C₄-Alkylcarbonylamino in Betracht.
  • Für den Rest X₁ kommen beispielsweise von der Acryl-, Methacryl- oder Zimtsäure abgeleitete Reste in Frage. Besonders hervorzuheben sind die Reste der Formeln -NH-CO-CH=CH₂, -NH-CO-C(CH₃)=CH₂, -NH-CO-CBr=CH₂, -NH-CO-CH=CH-C₆H₅, -O-CO-CH=CH₂, -O-CO-C(CH₃)=CH₂, -O-CO-CBr=CH₂, -O-CO-CH=CH-C₆H₅, -CH=CH₂, -CH=CH-C₆H₅ oder -C(CH₃)=CH₂.
  • Besonders bevorzugt sind Farbstoffe der Formeln:
    Figure imgb0017
    Figure imgb0018

    worin R₂₃ C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder Phenyl;
    R₂₅ Wasserstoff, Methyl, Methoxy, Chlor, Brom, -NH-CO-CH=CH₂, -NH-CO-C(CH₃)=CH₂, -NH-CO-CBr=CH₂, -NH-CO-CH=CH-C₆H₅, -O-CO-CH=CH₂, -O-CO-C(CH₃)=CH₂, -O-CO-CBr=CH₂, oder -O-CO-CH=CH-C₆H₅;
    R₂₆ -NH-CO-CH=CH₂, -NH-CO-C(CH₃)=CH₂, -NH-CO-CBr=CH₂, -NH-CO-CH=CH-C₆H₅, -O-CO-CH=CH₂, -O-CO-C(CH₃)=CH₂, -O-CO-CBr=CH₂ oder -O-CO-CH=CH-C₆H₅; und
    R₂₇ -NH-CO-CH=CH₂, -NH-CO-C(CH₃)=CH₂, -NH-CO-CBr=CH₂ oder -NH-CO-CH=CH-C₆H₅ bedeuten und worin B₁, D₁ und Y₁ die Bedeutungen wie unter Formel (20) angegeben haben.
  • Beispiele für obige Farbstoffe sind Farbstoffe der Formeln:
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021

    Die genannten Farbstoffe sind bekannt oder können nach bekannten Methoden hergestellt werden. Beispielsweise wird eine Lösung der zu acylierenden Substanz in wasserfreiem Aceton mit etwa einem Molequivalent eines Acrylsäurechlorids versetzt. Bei Raumtemperatur wird dann etwa 1 Molequivalent Pyridin zugegeben und das Produkt durch Zugabe von Wasser abgeschieden.
  • In dem erfindungsgemässen Verfahren werden als farblose organische Verbindungen, die mindestens eine polymerisierbare Doppelbindung enthalten, solche verwendet, die frei sind von farbgebenden Resten. Es handelt sich um monomere, oligomere oder polymere organische Verbindungen oder eine Mischung derselben, die bei Einwirkung ionisierender Strahlung polymerisiert bzw. vernetzt werden können.
  • Vorzugsweise werden in dem erfindungsgemässen Verfahren als farblose Verbindungen Acrylate, Diacrylate, Acrylsäure oder Acrylamide verwendet.
  • Besonders bevorzugt werden in den erfindungsgemässen Verfahren Mischungen monomerer und oligomerer farbloser organischer Verbindungen verwendet.
  • Als monomere farblose Verbindung kommt eine solche mit einem Molekulargewicht bis ca. 1000 in Betracht, die mindestens eine polymerisierbare Gruppe enthält.
  • Bi-, tri- und polyfunktionelle Monomere sind ebenfalls geeignet.
  • Die monomere farblose Verbindung kann sowohl selbst direkt als auch als Mischung mit anderen Monomeren, Oligomeren und/oder Polymeren eingesetzt werden.
  • Als oligomere farblose Verbindung kommt eine solche mit einem Molekulargewicht zwischen 1000 und 10000 in Betracht, die eine oder mehrere polymerisierbare Gruppen enthält. Die oligomere farblose Verbindung kann, sofern flüssig, selbst direkt oder als Lösung in Wasser oder organischen Lösungsmitteln oder als Gemisch mit anderen Monomeren, Oligomeren und/oder Polymeren eingesetzt werden.
  • Als polymere farblose Verbindung kommt eine solche mit einem Molekulargewicht >10000 in Betracht, die eine oder mehrere polymerisierbare Gruppen enthält.
  • Die polymere farblose Verbindung kann, sofern flüssig, selbst direkt oder als Lösung in Wasser oder organischen Lösungsmitteln oder als Gemisch mit anderen Monomeren,. Oligomeren und/oder Polymeren eingesetzt werden.
  • Als farblose Verbindungen kommen ethylenisch ungesättigte monomere, oligomere und polymere Verbindungen in Frage.
  • Besonders geeignet sind z.B. Ester von ethylenisch ungesättigten Carbonsäuren und Polyolen oder Polyepoxiden, und Polymere mit ethylenisch ungesättigten Gruppen in der Kette oder in Seitengruppen, wie z.B. ungesättigte Polyester, Polyamide und Polyurethane und Copolymere hiervon, Polybutadien und Butadien-Copolymere, Polyisopren und Isopren-Copolymere, Polymere und Copolymere mit (Meth)-Acrylgruppen in Seitenketten, sowie Mischungen von einem oder mehreren solcher Polymerer.
  • Beispiele für ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Crotonsäure, Itaconsäure, Zimtsäure und ungesättigte Fettsäuren wie Linolensäure oder Oelsäure. Bevorzugt sind Acryl- und Methacrylsäure.
  • Als Polyole sind aliphatische und cycloaliphatische Polyole geeignet. Beispiele für Polyepoxide sind solche auf der Basis der Polyole und Epichlorhydrin. Ferner sind auch Polymere oder Copolymere, die Hydroxylgruppen in der Polymerkette oder in Seitengruppen enthalten, wie z.B. Polyvinylalkohol und Copolymere davon oder Polymethacrylsäurehydroxyalkylester oder Copolymere davon, als Polyole geeignet. Weitere geeignete Polyole sind Oligoester mit Hydroxylendgruppen.
  • Beispiele für aliphatische und cycloaliphatische Polyole sind Alkylendiole mit bevorzugt 2 bis 12 C-Atomen, wie Ethylenglykol, 1,2- oder 1,3-Propandiol, 1,2-, 1,3- oder 1,4-Butandiol, Pentandiol, Hexandiol, Octandiol, Dodecandiol, Diethylenglykol, Triethylenglykol, Polyethylenglykole mit Molekulargewichten von bevorzugt 200 bis 1500, 1,3-Cyclopentandiol, 1,2-1,3- oder 1,4-Cyclohexandiol, 1,4-Dihydroxymethylcyclohexan, Glycerin, Tris-(β-hydroxyethyl)amin, Trimethylolethan, Trimethylolpropan, Pentaerytlrrit, Dipentaerythrit und Sorbit.
  • Die Polyole können teilweise oder vollständig mit einer oder verschiedenen ungesättigten Carbonsäuren verestert sein, wobei in Teilestern die freien Hydroxylgruppen modifiziert, z.B. verestert oder mit anderen Carbonsäuren verestert sein können.
  • Beispiele für Ester sind:
    Trimethylolpropantriacrylat, Trimethylolethantriacrylat, Trimethylolpropantrimethacrylat, Trimethylolethantrimethacrylat, Tetramethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetraethylenglykoldiacrylat, Pentaerythritdiacrylat, Pentaerythrittriacrylat, Pentaerythrittetraacrylat, Dipentaerythritdiacrylat, Dipentaerythrittriacrylat, Dipentaerythrittetraacrylat, Dipentaerythritpentaacrylat, Dipentaerythrithexaacrylat, Tripentaerythritoctaacrylat, Pentaerythritdimethacrylat, Pentaerythrittrimethacrylat, Dipentaerythritdimethacrylat, Dipentaerythrittetramethacrylat, Tripentaerythritoctamethacrylat, Pentaerythritdiitaconat, Dipentaerythrittrisitaconat, Dipentaerythritpentaitaconat, Dipentaerythrithexaitaconat, Ethylenglykoldimethacrylat, 1,3-Butandioldiacrylat, 1,3-Butandioldimethacrylat, 1,4-Butandioldiitaconat, Sorbittriacrylat, Sorbittetraacrylat, Pentaerythritmodifiziert-triacrylat, Sorbittetramethacrylat, Sorbitpentaacrylat, Sorbithexaacrylat, Oligoesteracrylate und -methacrylate, Glyzerindi- und -triacrylat, 1,4-Cyclohexandiacrylat, Bisacrylate und Bismethacrylate von Polyethylenglykol mit Molekulargewicht von 200-1500, oder Gemische davon.
  • Als farblose Verbindungen sind auch die Amide gleicher oder verschiedener ungesättigter Carbonsäuren von aromatischen, cycloaliphatischen und aliphatischen Polyaminen mit bevorzugt 2 bis 6, besonders 2 bis 4 Aminogruppen geeignet. Beispiele für solche Polyamine sind Ethylendiamin, 1,2- oder 1,3-Propylendiamin, 1,2-, 1,3- oder 1,4-Butylendiamin, 1,5-Pentylendiamin, 1,6-Hexylendiamin, Octylendiamin, Dodecylendiamin, 1,4-Diaminocyclohexan, Isophorondiamin, Phenylendiamin, Bisphenylendiamin, Di-β-aminoethylether, Diethylentriamin, Triethylentetramin, Di-(β-aminoethoxy)- oder Di-(β-aminopropoxy) ethan. Weitere geeignete Polyamine sind Polymere und Copolymere mit Aminogruppen in der Seitenkette und Oligoamide mit Aminoendgruppen.
  • Beispiele für solche ungesättigten Amide sind: Methylen-bis-acrylamid, 1,6-Hexamethylen-bis-acrylamid, Diethylentriamin-tris-methacrylamid, Bis(methacrylamidopropoxy)-ethan, β-Methacrylamidoethylmethacrylat, N[(β-Hydroxyethoxy)ethyl]-acrylamid.
  • Geeignete ungesättigte Polyester und Polyamide leiten sich z.B. von Maleinsäure und Diolen oder Diaminen ab. Die Maleinsäure kann teilweise durch andere Dicarbonsäuren ersetzt sein. Sie können zusammen mit ethylenisch ungesättigten Comonomeren, z.B. Styrol, eingesetzt werden. Die Polyester und Polyamide können sich auch von Dicarbonsäuren und ethylenisch ungesättigten Diolen oder Diaminen ableiten, besonders von längerkettigen mit z.B. 6 bis 20 C-Atomen. Beispiele für Polyurethane sind solche, die aus gesättigten oder ungesättigten Diisocyanaten und ungesättigten bzw. gesättigten Diolen aufgebaut sind.
  • Polybutadien und Polyisopren und Copolymere davon sind bekannt. Geeignete Comonomere sind z.B. Olefine wie Ethylen, Propen, Buten, Hexen, (Meth)Acrylate, Acrylnitril, Styrol oder Vinylchlorid. Polymere mit (Meth)Acrylatgruppen in der Seitenkette sind ebenfalls bekannt. Es kann sich z.B. um Umsetzungsprodukte von Epoxidharzen auf Novolakbasis mit (Meth)Acrylsäure handeln, um Homo- oder Copolymere des Polyvinylalkohols oder deren Hydroxyalkylderivaten, die mit (Meth)Acrylsäure verestert sind, oder um Homo- und Copolymere von (Meth)Acrylaten, die mit Hydroxyalkyl(meth)acrylaten verestert sind.
  • Die farblosen Verbindungen können allein oder in beliebigen Mischungen eingesetzt werden.
  • Als oligomere oder polymere farblose Verbindungen kommen bevorzugt z.B. verschiedene Polyesteracrylate, wie z.B. CH₂=CH-[CO-O(CH₂)n]-CO-O-CH=CH₂, Epoxyacrylate, wie z.B. (CH₂=CH-CO-O-CH₂-CHOH-CH₂-O-C₆H₆)₂C(CH₃)₂, Urethanacrylate, wie z.B.
    Figure imgb0022

    Polyetheracrylate, sind z.B.
    Figure imgb0023

    und Silikonacrylate in Betracht, wie z.B. aus Textilpraxis International (1987) Seiten 848-852 bekannt.
  • Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man als farblose Verbindungen solche mit dem Acrylrest als polymerisierbare Gruppe verwendet, wobei oligomere Polyether-, Polyurethan- und Polyesteracrylate besonders bevorzugt werden.
  • In den erfindungsgemässen Verfahren werden als farblose monomere Verbindung insbesondere N-Vinylpyrrolidin, Acrylsäure, Butylacrylat 2-Ethylhexylacrylat, 2-Hydroxyethylacrylat, Hydroxypropylacrylat, Butandiolmonoacrylat, 2-Ethoxyethylacrylat, Ethylenglykolacrylat, Butandiolacrylat, Tetraethylenglykoldiacrylat, 1,6-Hexandioldiacrylat, Diethylenglykoldiacrylat, Dipropylenglykoldiacrylat, Triethylenglykoldiacrylat, Tripropylenglykoldiacrylat, Trimethylolpropantriacrylat, Pentaerythritriacrylat, Bromacrylamid, Methylenbisdi(bromacrylamid), Methylen-bisdiacrylamid, N-Alkoxyacrylamide, Tetraethylenglykol-diacrylat, Sojabohnenöl-acrylat, Polybutadien-acrylat, Diethylenglykol-dimethacrylat, 1,6-Hexandiol-dimethacrylat, 2-(2-Ethoxyethoxy)-ethylacrylat, Stearylacrylat, Tetrahydrofurfurylacrylat, Pentaerythritol-tetraacrylat, Laurylacrylat, 2-Phenoxyethylacrylat, ethoxyliertes Bisphenol-diacrylat, Ditrimethylolpropan-tetraacrylat, Tris-(2-Hydroxyethyl)-isocyanurat-triacrylat, Isodecyl Acrylat, Dipentaerythriol-pentaacrylat` ethoxyliertes Trimethylolpropan-triacrylat, Isobornylacrylat, ethoxyliertes Tetrabromobisphenol-diacrylat, propoxyliertes Neopentylglykol-diacrylat, propoxyliertes Glyceryltriacrylat verwendet.
  • Besonders bevorzugt zur Herstellung von Farbstofflösungen wenig oder nicht wasserlöslicher Farbstoffe sind Oligoethylenglykoldiacrylate (MG ∼ 500), N-Vinylpyrrolidon, 2-Ethyl-(2-hydroxymethyl)-1,3-propandioltriacrylat, alkoxyliertes Oligoether-polyol-tetraacrylat, Oligoethertriacrylat, N-Butoxyacrylamid, N-iso-Butoxyacrylamid, deren Mischungen untereinander, sowie deren Mischungen mit Methylenbisacrylamid, Oligo-/polyurethanacrylat, Oligo-/polyesteracrylat oder Oligo-/polyetheracrylat.
  • Besonders bevorzugt zur Herstellung von Emulsionen mit Wasser, in welche wenig oder nicht wasserlöslicher Farbstoffe eingebracht werden können, sind alkoxyliertes Oligoether-polyol-tetraacrylat, 2-Ethyl-(2-hydroxymethyl)-1,3-propandioltriacrylat, Oligo-/polyurethanacrylat, Oligo-/polyesteracrylat, Oligo-/polyetheracrylat, deren Mischungen untereinander, sowie deren Mischungen mit Methylenbisacrylamid, Oligoethylenglykoldiacrylate (MG ∼ 500), N-Vinylpyrrolidon, Oligoethertriacrylat, N-Butoxyacrylamid oder N-iso-Butoxyacrylamid
    Das erfindungsgemässe Verfahren ist auf die verschiedensten organischen Materialien anwendbar, wie z.B. textiles Material, Papier, Holz, Leder und Kunststoffe. Bevorzugt sind Fasermaterialien, wie z.B. Fasern tierischer Herkunft wie Wollen, Seiden, Haare (z.B. als Filz) oder halbsynthetische Chemiefasern, wie Eiweisskunstfasern oder Alginatfasern, vollsynthetische Fasern, wie Polyvinyl-, Polyacrylnitril-, Polyester-, Polyamid- oder Polyurethanfasern, Polypropylen und vor allem cellulosehaltige Materialien, wie Bastfasern, z.B. Leinen, Hanf, Jute, Ramie und insbesondere Baumwolle, sowie Cellulosekunstfasern, wie Viscose- oder Modalfasern, Kupfer-, Nitrat- oder verseifte Acetatfaser oder Fasern aus Celluloseacetat, wie Acetatfaser, oder Fasern aus Cellulosetriacetat, wie Arnel®, Trilan®, Courpleta® oder Tricel®. Auch ist das Verfahren anwendbar für Mischungen aus den genannten Fasern. Ganz besonders bevorzugt ist die Anwendung des Verfahrens für cellulosische Fasern, wie Baumwolle oder Zellwolle, und deren Mischungen mit Polyester-, Polyacrylnitril-, Polyamid- oder Polypropylen-Fasern.
  • Die genannten Fasern können in den verschiedensten Verarbeitungszuständen vorliegen, wie sie insbesondere in der Textilindustrie verwendet werden, z.B. als Fäden, Garne, Gewebe, Gewirke oder Vliese, wie z.B. Filze.
  • Das Aufbringen von Farbstoff und farbloser Verbindung kann zusammen als homogene Lösung, Suspension, Emulsion oder Schaum nach den üblichen Verfahren erfolgen. Farbstoff und farblose Verbindung oder Teile der farblosen Verbindung können jedoch auch getrennt aufgebracht werden. So kann beispielsweise eine wässrige Lösung des Farbstoffes zuerst auffoulardiert werden und - nach Trocknung der Färbung - die farblose Verbindung z.B. aufgesprüht werden.
  • Die Ausführung des erfindungsgemässen Verfahrens erfolgt in der Weise, dass z.B. die gefärbte und mit einer Lösung einer farblosen Verbindung behandelte Textilware in trockenem Zustand durch den aufgefächerten Strahl eines Elektronenbeschleunigers bei Raumtemperatur hindurchgeführt wird. Dies geschieht mit einer solchen Geschwindigkeit, dass eine bestimmte Bestrahlungsdosis erreicht wird. Die normalerweise anzuwendenden Bestrahlungsdosen liegen zwischen 0,1 und 15 Mrad, wobei die Bestrahlungsdosis vorteilhaft zwischen 0,1 und 4 Mrad liegt. Bei einer Dosis von weniger als 0,1 Mrad ist im allgemeinen der Fixiergrad zu gering, bei einer Dosis von mehr als 15 Mrad tritt häufig Schädigung des Fasermaterials und des Farbstoffes ein. Die Farbstoffkonzentrationen der verwendeten Farbstofflösungen oder Druckpasten können wie bei konventionellen Färbe- bzw. Druckverfahren gewählt werden, z.B. 0,001 bis 10 Gewichtsprozent bezogen auf das eingesetzte Fasermaterial. Nach der Einwirkung der ionisierenden Strahlung braucht das behandelte Material nur noch gewaschen und getrocknet zu werden. Die erreichbaren Fixiergrade sind hoch, z.B. mehr als 75 %. Man erhält nach dem erfindungsgemässen Verfahren Färbungen mit allgemein guten Eigenschaften, z.B. guten Wasch- und Lichtechtheiten.
  • Bei der Ausführung des erfindungsgemässen Verfahrens muss selbstverständlich auf die jeweiligen technischen Voraussetzungen Rücksicht genommen werden. So richtet sich die spezielle Ausführungsform vor allem nach der Art der zu verwendenden ionisierenden Strahlen und ihrer Erzeugungsweise. Soll zum Beispiel eine mit Farbstofflösung und der Lösung der farblosen Verbindung getränkte Garnrolle mit γ-Strahlen bestrahlt werden, so wird diese in eine Zelle eingeschlossen der Strahlung ausgesetzt. Werden bei geringer Strahlenintensität höhere Bestrahlungsdosen gewünscht, so kann das zu bestrahlende Material in mehreren Durchgängen der Strahlung ausgesetzt werden.
  • Um einer oxydativen Zerstörung des Farbstoffes vorzubeugen, ist es vorteilhaft, die Bestrahlung in der Atmosphäre eines inerten Schutzgases, z.B. unter Stickstoff vorzunehmen.
  • Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass sowohl die Fixierung des Fasermaterials mit entsprechenden Farbstoffen als auch das Färben oder Bedrucken kontinuierlich erfolgt.
  • In den folgenden Ausführungsbeispielen sind die Bestrahlungsdosen in üblicher Weise in Mrad (Megarad) ausgedrückt, wobei 1 rad einer Absorption von 10⁻² J/kg (Joule/kg) entspricht.
  • Das in den nachfolgenden Beispielen angegebene Gewebe wird einseitig bedruckt oder im pad-batch-Verfahren gefärbt und unter Schutzgasatmosphäre mit beschleunigten Elektronen (Beschleunigungsspannung ∼ 165 kV) bestrahlt. Drucke werden einseitig, Färbungen in zwei Durchläufen beidseitig bestrahlt Nach der Bestrahlung werden die Färbungen bzw. Drucke wie für Reaktivfarbstoffe üblich ausgewaschen.
  • Die Fixiergrade werden durch Ablösen des Farbstoffs von einer bestrahlten nicht ausgewaschenen und einer unbestrahlten Probe bestimmt. Die Proben werden einmal mit 50 ml einer Lösung von 600 ml/l Phosphatpuffer (pH 7) und 40 ml/l Tetramethylharnstoff in entsalztem Wasser bei 40°C und anschliessend mit 50 ml dieser Lösung 30 Minuten bei 100°C behandelt. Die beiden Extrakte werden vereinigt und die Fixiergrade über die Extinktion (bei λmax) ermittelt.Bei den Beispielen 6 und 7 erfolgt die Extraktion auf gleiche Weise mit Dimethylformamid.
  • Beispiel A: Das Isomerengemisch von 5,6- und 6,7-Dichlor-2-aminobenzthiazol wird auf übliche Weise diazotiert und auf N-Ethyl-N-hydroxyethylanilin gekuppelt. Man erhält den Farbstoff der Formel
    Figure imgb0024

    4 g dieses Farbstoffs werden in 50 ml waserfreiem Aceton gelöst. Nach Zugabe von 1 g Acrylchlorid werden bei Raumtemperatur 0,8 g wasserfreies Pyridin zugetropft. Man rührt eine Stunde und gibt dann 500 ml Wasser zu der Lösung. Nach dem Abfiltrieren erhält man ein schwarzes, leicht klebriges Produkt der Formel
    Figure imgb0025
  • Beispiel 1: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des Farbstoffs der Formel
    Figure imgb0026

    100 g/l eines Oligoethylenglykoldiacrylats und 100 g/l Harnstoff enthält, foulardiert (Flottenaufnahme ca. 70%). Das Gewebe wird bei ca. 60-80° C getrocknet und anschliessend beidseitig mit beschleunigten Elektronen einer Dosis von 4 Mrad pro Seite bestrahlt. Man erhält eine gelbe Färbung von hoher Echtheit mit einem Fixiergrad von 71%.
  • Beispiel 2: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des Farbstoffs der Formel
    Figure imgb0027

    wie in Beispiel 1 beschrieben gefärbt, getrocknet und bestrahlt. Man erhält eine rote Färbung von hoher Echtheit mit einem Fixiergrad von 75%.
  • Beispiel 3: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des in Beispiel 2 beschriebenen Farbstoffs, 50 g/l eines Oligoethylenglykoldiacrylats, 50 g/l 2-Ethyl-(2-hydroxymethyl)- 1,3-propandioltriacrylat und 100 g/l Harnstoff enthält, wie in Beispiel 1 beschrieben gefärbt, getrocknet und bestrahlt. Man erhält eine rote Färbung von hoher Echtheit mit einem Fixiergrad von 64%.
  • Beispiel 4: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des in Beispiel 2 beschriebenen Farbstoffs, 50 g/l eines Oligoethylenglykoldiacrylats, 50 g/l Methylenbisacrylamid und 100 g/l Harnstoff enthält, wie in Beispiel 1 beschrieben gefärbt, getrocknet und bestrahlt. Man erhält eine rote Färbung von hoher Echtheit mit einem Fixiergrad von 67%.
  • Beispiel 5: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des in Beispiel 2 beschriebenen Farbstoffs, 50 g/l eines Oligoethylenglykoldiacrylats, 50 g/l eines Oligoethertriacrylats und 100 g/l Harnstoff enthält, wie in Beispiel 1 beschrieben gefärbt, getrocknet und bestrahlt. Man erhält eine rote Färbung von hoher Echtheit mit einem Fixiergrad von 63%.
  • Beispiel 6: Ein Baumwollsatin-Gewebe wird mit einer Mischung, die 30 g/l des im Beispiel 2 beschriebenen Farbstoffs, 75 g/l eines Oligourethandiacrylats, 50 g/l Methylenbisacrylamid und 100 g/l Harnstoff enthält, foulardiert (Flottenaufnahme ca. 70%). Das Gewebe wird getrocknet und anschliessend beidseitig mit beschleunigten Elektronrn einer Dosis von je 4 Mrad/Seite bestrahlt. Man erhält eine rote Färbung mit einem Fixiergrad von 73%.
  • Beispiel 7: Ein Baumwollsatin-Gewebe wird mit einer Mischung, die 30 g/l des im Beispiel 2 beschriebenen Farbstoffs, 75 g/l eines Oligourethandiacrylats, 100 g/l eines Oligoethylenglykoldiacrylats und 100 g/l Harnstoff enthält, foulardiert (Flottenaufnahme ca. 70%). Das Gewebe wird getrocknet und anschliessend beidseitig mit beschleunigten Elektronen einer Dosis von je 4 Mrad/Seite bestrahlt. Man erhält eine rote Färbung mit einem Fixiergrad von 77%.
  • Beispiel 8: Ein Baumwollsatin-Gewebe wird mit einer wässrigen Lösung, die 30 g/l des im Beispiel 2 beschriebenen Farbstoffs und 100 g/l Harnstoff enthält, foulardiert (Flottenaufnahme ca. 70%) und getrocknet. Dann wird mit einer Lösung in Ethanol von 10 g/kg 1,6-Hexandioldiacrylat, 90 g/kg eines oligomeren aliphatischen Urethan-diacrylats und 100 g/kg eines Oligoethylenglykoldiacrylats foulardiert (Flottenaufnahme ca. 40%). Das Gewebe wird getrocknet und anschliessend beidseitig mit beschleunigten Elektronen einer Dosis von je 4 Mrad/Seite bestrahlt. Man erhält eine rote Färbung mit einem Fixiergrad von 72%.

Claims (23)

  1. Verfahren zum Fixieren von Farbstoffen auf organischem Material, insbesondere Fasermaterial, dadurch gekennzeichnet, dass man Farbstoffe, welche mindestens eine polymerisierbare Doppelbindung und/oder mindestens ein polymerisierbares Ringsystem enthalten, ausgenommen wasserlösliche Farbstoffe mit Acrylamid- oder Methacrylamid-Gruppen, zusammen mit mindestens einer praktisch farblosen Verbindung, welche mindestens eine polymerisierbare Doppelbindung enthält, mit ionisierender Strahlung auf dem organischen Material fixiert, welches vor der Bestrahlung auf einen Restfeuchtegehalt kleiner 20 %, bezogen auf das behandelte Material, getrocknet wird.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als farblose Verbindungen monomere, oligomere oder polymere organische Verbindungen, welche mindestens eine polymerisierbare Doppelbindung enthalten, oder deren Mischungen verwendet.
  3. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man als farblose Verbindungen Acrylate, Diacrylate oder Acrylsäure verwendet.
  4. Verfahren gemäss einem der Ansprüche 1 und 3, dadurch gekennzeichnet, dass man Mischungen monomerer und oligomerer farbloser organischer Verbindungen verwendet.
  5. Verfahren gemäss einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass man als monomere farblose Verbindungen solche mit einem Molekulargewicht bis 1000 verwendet.
  6. Verfahren gemäss einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass man als oligomere farblose Verbindungen solche mit einem Molekulargewicht zwischen 1000 und 10000 verwendet.
  7. Verfahren gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man als farblose Verbindungen solche mit dem Acrylrest als polymerisierbare Gruppe verwendet.
  8. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass man oligomere Polyether-, Polyurethan- oder Polyesteracrylate verwendet.
  9. Verfahren gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man als farblose Verbindung N-Vinylpyrrolidon, Acrylsäure, Butylacrylat, 2-Ethylhexylacrylat, 2-Hydroxyethylacrylat, Hydroxypropylacrylat, Butandiolmonoacrylat, 2-Ethoxyethylacrylat, Ethylenglykolacrylat, Bisacrylate von Polyethylenglykol mit einem Molekulargewicht von 200 bis 1500, Butandioldiacrylat, Tetraethylenglykoldiacrylat, 1,6-Hexandioldiacrylat, Diethylenglykoldiacrylat, Dipropylenglykoldiacrylat, Triethylenglykoldiacrylat, Tripropylenglykoldiacrylat, Trimethylolpropantriacrylat, Pentaerythritriacrylat, Bromacrylamid, Methylenbisdi(bromacrylamid), Methylen-bisdiacrylamid, N-Alkoxyacrylamide, Tetraethylenglykol-diacrylat, Sojabohnenöl-acrylat, Polybutadien-acrylat, Diethylenglykol-dimethacrylat, 1,6-Hexandiol-dimethacrylat, 2-(2-Ethoxyethoxy)-ethylacrylat, Stearylacrylat, Tetrahydrofurfurylacrylat, Pentaerythritol-tetraacrylat, Laurylacrylat, 2-Phenoxyethylacrylat, ethoxyliertes Bisphenol-diacrylat, Ditrimethylolpropan-tetraacrylat, Tris-(2-Hydroxyethyl)-isocyanurat-triacrylat, Isodecyl Acrylat, Dipentaerythriolpentaacrylat, ethoxyliertes Trimethylolpropan-triacrylat, Isobornylacrylat, ethoxyliertes Tetrabromobisphenol-diacrylat, propoxyliertes Neopentylglykol-diacrylat, propoxyliertes Glyceryltriacrylat verwendet.
  10. Verfahren gemäss Anspruch 9, dadurch gekennzeichnet, dass man als farblose Verbindung N-Vinylpyrrolidon, Methylenbisacrylamid oder Bisacrylate von Polyethylenglykol mit einem Molekulargewicht von 200 bis 1500 verwendet.
  11. Verfahren gemäss einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Farbstoffe solche der Formel



            D-(X)m   (1),



    worin D der Rest eines organischen Farbstoffes der Monoazo- oder Polyazo-, Metallkomplexazo-, Anthrachinon-, Phthalocyanin-, Formazan-, Azomethin-, Nitroaryl-, Dioxazin-, Phenazin-, Stilben-, Triphenylmethan-, Xanthen-, Thioxanthon-, Naphthochinon-, Pyrenchinon- oder Perylentetracarbimid-Reihe, X eine polymerisierbare Doppelbindung oder ein polymerisierbares Ringsystem, und m die Zahl 1, 2, 3, 4, 5 oder 6 ist, verwendet.
  12. Verfahren gemäss einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man Farbstoffe verwendet, welche als polymerisierbare Doppelbindung oder als polymerisierbares Ringsystem einen Acryloyl-, α-Bromacryloyl-, α-Chloracryloyl-, Vinylsulfonyl- oder Epoxidyl-Rest enthalten.
  13. Verfahren gemäss Anspruch 12, dadurch gekennzeichnet, dass man Farbstoffe verwendet, welche als polymerisierbare Doppelbindung oder als polymerisierbares Ringsystem einen Acryloyl-, α-Bromacryloyl- oder Vinylsulfonyl-Rest enthalten.
  14. Verfahren gemäss einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man als ionisierende Strahlung in einem Teilchenbeschleuniger erzeugte Elektronenstrahlen, insbesondere β- oder γ-Strahlen verwendet.
  15. Verfahren gemäss einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Behandlung des Fasermaterials mit entsprechenden Farbstoffen durch Färben oder Bedrucken erfolgt.
  16. Verfahren gemäss einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass eine Bestrahlungsdosis von 0,1 bis 15 Mrad gewählt wird.
  17. Verfahren gemäss einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Bestrahlung unter Schutzgasatmosphäre, insbesondere unter Stickstoffgasatmosphäre durchgeführt wird.
  18. Verfahren gemäss einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Fixierung kontinuierlich erfolgt.
  19. Verfahren gemäss einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass sowohl die Fixierung des Fasermaterials mit entsprechenden Farbstoffen als auch das Färben oder Bedrucken kontinuierlich erfolgt.
  20. Verfahren gemäss einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass man als Fasermaterial Wolle, Seide, Haare, Alginatfasern, Polyvinyl-, Polyacrylnitril-, Polyester-, Polyamid-, Polypropylen- oder Polyurethanfasern, cellulosehaltige Fasern oder Glasfasern verwendet.
  21. Verfahren gemäss Anspruch 20, dadurch gekennzeichnet, dass man gefärbte oder bedruckte Cellulosefasern oder cellulosehaltige Fasern verwendet.
  22. Verfahren gemäss Anspruch 20, dadurch gekennzeichnet, dass man Polyester-Cellulose-Mischgewebe verwendet.
  23. Das nach dem Verfahren gemäss Anspruch 1 gefärbte oder bedruckte, fixierte Fasermaterial.
EP92810523A 1991-07-17 1992-07-08 Verfahren zum Fixieren von Farbstoffen Expired - Lifetime EP0524144B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH212091 1991-07-17
CH2120/91 1991-07-17

Publications (2)

Publication Number Publication Date
EP0524144A1 EP0524144A1 (de) 1993-01-20
EP0524144B1 true EP0524144B1 (de) 1995-11-22

Family

ID=4226341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810523A Expired - Lifetime EP0524144B1 (de) 1991-07-17 1992-07-08 Verfahren zum Fixieren von Farbstoffen

Country Status (6)

Country Link
US (1) US5389108A (de)
EP (1) EP0524144B1 (de)
JP (1) JPH05209382A (de)
AT (1) ATE130642T1 (de)
DE (1) DE59204404D1 (de)
ES (1) ES2081082T3 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE141969T1 (de) * 1992-06-04 1996-09-15 Ciba Geigy Ag Verfahren zum fixieren von farbstoffen mit einer polymersierbaren doppelbindung mit ionisierender strahlung
ATE154079T1 (de) * 1992-11-27 1997-06-15 Basf Ag Farbstoffe, ihre herstellung und ihre verwendung zum färben von substraten
US5735907A (en) * 1995-06-07 1998-04-07 Clairol, Inc. Method of coloring hair with sulfo-containing water dispersible colored polymers
CA2289233A1 (en) * 1997-05-29 1998-12-03 Peter Scheibli Process for fixing pigment prints and pigment dyeings with ionising radiation or uv radiation
US5897911A (en) * 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
KR100287366B1 (ko) * 1997-11-24 2001-04-16 윤순조 엠피이지 방식을 이용한 휴대용 음향 재생장치 및 방법
US6513924B1 (en) 2001-09-11 2003-02-04 Innovative Technology Licensing, Llc Apparatus and method for ink jet printing on textiles
EP1584371A1 (de) * 2004-04-07 2005-10-12 Urea Casale S.A. Verfahren und vorrichtung zur wirbelschichtsgranulierung
US8557758B2 (en) * 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
US8061269B2 (en) 2008-05-14 2011-11-22 S.C. Johnson & Son, Inc. Multilayer stencils for applying a design to a surface
US8846154B2 (en) 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
US7776108B2 (en) * 2005-06-07 2010-08-17 S.C. Johnson & Son, Inc. Composition for application to a surface
US7727289B2 (en) * 2005-06-07 2010-06-01 S.C. Johnson & Son, Inc. Composition for application to a surface
US20080282642A1 (en) * 2005-06-07 2008-11-20 Shah Ketan N Method of affixing a design to a surface
KR100910170B1 (ko) * 2007-11-01 2009-07-30 경북대학교 산학협력단 폴리프로필렌 섬유용 염료
US11607891B2 (en) 2019-09-27 2023-03-21 Hill-Rom Services, Inc. Method of roll-to-roll digital printing, cutting, and punching of medical device surfaces
CN113913028B (zh) * 2020-08-27 2023-12-01 青岛大学 一种一氯取代苯并噻唑类高耐碱高耐氧漂分散染料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897101A (en) * 1956-01-07 1959-07-28 Bayer Ag Printing and dyeing compositions and process of treating textiles
NL260571A (de) * 1960-01-30
CH1463869A4 (de) * 1969-09-29 1972-04-28
GB1341199A (en) * 1970-05-22 1973-12-19 Fagbule M O Reactive dyeing process
DE2632010C3 (de) * 1976-07-16 1983-12-22 Metallgesellschaft Ag, 6000 Frankfurt Strahlungshärtbare Druckfarbenzusammensetzung
EP0144093B1 (de) * 1983-12-08 1989-04-19 Ciba-Geigy Ag Lagerstabile Druckpasten und deren Verwendung
EP0337951A3 (de) * 1988-04-15 1991-04-24 Ciba-Geigy Ag Farbige Polymermikropartikel
EP0466648B1 (de) * 1990-07-12 1995-09-13 Ciba-Geigy Ag Verfahren zum Fixieren von Farbstoffen

Also Published As

Publication number Publication date
DE59204404D1 (de) 1996-01-04
ATE130642T1 (de) 1995-12-15
EP0524144A1 (de) 1993-01-20
US5389108A (en) 1995-02-14
JPH05209382A (ja) 1993-08-20
ES2081082T3 (es) 1996-02-16

Similar Documents

Publication Publication Date Title
EP0466648B1 (de) Verfahren zum Fixieren von Farbstoffen
EP0524144B1 (de) Verfahren zum Fixieren von Farbstoffen
EP0532467B1 (de) Verfahren zum Fixieren von Farbstoffen mit UV-Licht
DE69403319T2 (de) Strahlungsinduzierte fixierung von farbstoffen
CH408865A (de) Verfahren zum Trennen von Bestandteilen aus Flüssigkeiten, Gasen oder Festkörperteilchen
DE69304325T2 (de) Verfahren zum fixieren von farbstoffen mit einer polymersierbaren doppelbindung mit ionisierender strahlung
US5597388A (en) Process for fixation of dyes containing at least one polymerizable double bond by means of UV light
DE2947827A1 (de) Cellulosefasern mit verbesserter einfaerbungseigenschaft, verfahren zur herstellung einer solchen faser und verfahren zu aetzdruckbehandlung
EP0660894B1 (de) Verfahren zum färben und bedrucken von textilen materialien aus cellulosefasern in gegenwart von zyklischen alphahydroxyketonen
DE69407979T2 (de) Thermofixierung von farbstoffen in gegenwart einer polymerisierbaren verbindung und eines initiators
EP0509397B1 (de) Verfahren zum Färben von mit N-haltigen, basischen Polymeren modifiziertem Cellulosefasermaterial mit anionischen Reaktivfarbstoffen und das modifizierte Cellulosefasermaterial als solches
DE19625232A1 (de) Verfahren zum Fixieren von Farbstoffen mit ionisierender Strahlung
WO1994025665A1 (en) Radiation-induced fixation of dyes
DE4112228A1 (de) Verfahren zum faerben von cellulose mit schwefelfarbstoffen
EP0109029B1 (de) Verfahren zum Färben von Textilgut aus modifizierten Polyesterfasern
DE1619377B (de) Verfahren zur Verringerung der Schmutzadsorption an bindemittelhaltigen Pigmentfärbungen und -drucken auf Fasermaterialien
DE1139093B (de) Verfahren zum Färben von Fasermaterial
DE1290520B (de) Verfahren zum Faerben von Acrylfasern
DE4338489A1 (de) Verfahren zum Färben und Bedrucken von textilen Materialien aus Cellulosefasern
DE1139093A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930702

17Q First examination report despatched

Effective date: 19940531

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 130642

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59204404

Country of ref document: DE

Date of ref document: 19960104

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081082

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960712

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BECN Be: change of holder's name

Effective date: 19961129

NLS Nl: assignments of ep-patents

Owner name: CIBA SC HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: CIBA SPECIALTY CHEMICALS HOLDING INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19970709

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000627

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000731

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000918

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

EUG Se: european patent has lapsed

Ref document number: 92810523.8

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030624

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030703

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050708