EP0496181B1 - Verfahren zur Herstellung von metallischen Werkstücken mit einer Schweissvorrichtung und Vorrichtung zur Ausführung desselben - Google Patents

Verfahren zur Herstellung von metallischen Werkstücken mit einer Schweissvorrichtung und Vorrichtung zur Ausführung desselben Download PDF

Info

Publication number
EP0496181B1
EP0496181B1 EP91810999A EP91810999A EP0496181B1 EP 0496181 B1 EP0496181 B1 EP 0496181B1 EP 91810999 A EP91810999 A EP 91810999A EP 91810999 A EP91810999 A EP 91810999A EP 0496181 B1 EP0496181 B1 EP 0496181B1
Authority
EP
European Patent Office
Prior art keywords
welding
workpiece
equipment
weld material
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91810999A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0496181A1 (de
Inventor
Fritz Schneebeli
Bruno Tanner
Olivier Braun
Roger Dekumbis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Hydro AG
Original Assignee
Andritz Hydro AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Hydro AG filed Critical Andritz Hydro AG
Publication of EP0496181A1 publication Critical patent/EP0496181A1/de
Application granted granted Critical
Publication of EP0496181B1 publication Critical patent/EP0496181B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/02Buckets; Bucket-carrying rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a method for producing metallic Workpieces with a welding device, in particular of workpieces made from highly tempered materials, an apparatus for performing the method and a Pelton wheel thus obtainable.
  • a metallic, prefabricated support body to which the first layer of welding material is applied, is usually used to support the liquid, molten welding material.
  • a cylinder is used as a support body for a cylindrical workpiece. The support body thus determines the general shape of the cross section of a workpiece to be produced. It has the disadvantage that a correspondingly geometrically prefabricated support body is necessary for each workpiece, which, since the support body has a metallic connection with the applied welding material layers, may have to be removed again.
  • EP 0 170 780 describes a process for the production of Rotational bodies made of weld metal are known as spatial curved components are designed. There is a component clamped on a turntable with clamping devices. That on a turntable spanned component rotates around it Rotation axis, the application area of the component is kept continuously in a horizontal welding position, so that weld metal is applied in layers and a Rotating body-shaped component is created.
  • a crucial one The disadvantage of this method is that exclusively rotationally shaped, spatially curved Components can be produced.
  • the object of the present invention is therefore to Welding material webs of any kind, also three-dimensional Curve shapes and largely constant quality to be deposited in such a way that workpieces with practically any Shapes emerge, with no support body or more special Manipulator to support the melted Welding material is necessary.
  • the object is achieved according to the invention with a method comprising the features of independent claim 1, solved.
  • the dependent claims relate to advantageous forms of the method.
  • An inventive one Device is characterized by the features of the independent Claim 8 marked.
  • the dependent claims relate to advantageous embodiments of the Contraption.
  • An inventive product of the process is a Pelton wheel, comprising the features of independent claim 12.
  • the depend Claim 13 relates to an advantageous embodiment of the product.
  • the inventive method for shaping Build-up welding of workpieces hereinafter also called Free-form method or free-form welding is called possible thanks to a combination of contract welding technology, Computer technology and robotics.
  • the applied Welding process as well as the metallic used Materials are known.
  • Powerful CAD computer programs allow the design of complex, two or three dimensional models of Workpieces made directly using the free-form method can be produced as metallic workpieces.
  • the workpiece is usually divided into a base body and a Large number of welded material strips disassembled on the Base body are applied beginning and thus the shape of the workpiece.
  • the base body serves as a carrier a first layer of welding material.
  • the entire Workpiece is deposited on the base body by Welding material webs built up, the base body a prefabricated sub-component of the final workpiece, e.g. can be a hub or a component, e.g. a The plate, which is removed from the surface in a subsequent operation Workpiece is separated.
  • the base body and / or the Are welding torches that deposit welding material preferably with the help of robots, two or three-dimensionally movable in space.
  • the default values of Computer system for the control and welding data become one System control supplied to the robot (s) and Welding device during the manufacture of the metallic Controls, monitors and continuously controls the workpiece Corrects deviations.
  • Free-form welding is done without the liquid Supporting body supporting welding material carried out, such that a newly applied, liquid welding material web is liable on the underlying track and under none Under certain circumstances.
  • a preferably vertical one Welding material application on a little bit compared to the The horizontal inclined track element reduces the Risk of drainage of the welding material.
  • the system control therefore continuously regulates the geometric position of the Underlay of a welding material web to be applied and / or the position of the welding torch and the position to be applied Welding material application rate and / or the Welding track speed.
  • Sheet-like layers can e.g. with a large welding material application rate and e.g. meandering welding tracks are created, e.g. Edges of a workpiece, due to the risk of runoff, created with a reduced welding material application rate will.
  • the welding material application rate is also such regulated that irregularities existing Welding material webs in terms of width and / or height detected and with the newly applied Welding material web can be compensated.
  • Arc welding processes can cause irregularities relatively easy by monitoring welding parameters how welding current and welding voltage are determined.
  • For laser welding processes are more demanding mechanical ones or optical sensors necessary to detect irregularities to detect existing welding material tracks. Therefore can also be very different from the laser welding process Horizontal inclined welding tracks without risk of runoff be applied when the weld pool is small, and thus is held by the surface tension.
  • workpieces of any size can be manufactured using the free-form method.
  • workpieces produced by build-up welding have better mechanical properties, since the cooling rate of the metal is easier to control and thus more homogeneous microstructures can be achieved. For this reason, workpieces with large wall thickness differences, for example, can be manufactured more easily than with the casting process.
  • Free-form welding can replace known methods for producing metallic workpieces such as casting or forging, or can be used in combination with known methods.
  • a workpiece can be constructed from one or more weldable metals and / or metal alloys, in which, for example, a high-quality, metallic cover layer is applied after the production of a metallic filler.
  • Workpieces with customer-specific mechanical, physical and corrosion-related properties can be produced.
  • the method according to the invention for free-form welding is suitable, for example, for the rapid production of individual, high-tempered workpieces as are required in prototype construction, for the repair of workpieces such as Pelton blades as well as for the production of complex workpieces such as entire Pelton wheels.
  • a device for shaping build-up welding becomes welding material in sheet-like layers on which Starting surface of a base body, applied, and thus a workpiece is manufactured, the base body being a Can be part of the workpiece.
  • the history sheet-like layers as well as the approximate Welding material application rate are from a computer system, starting from a software, two or three-dimensional data model of the workpiece, calculated and the system control, which is the welding torch with the help of the robot as well as that on one Positioning device, a turntable with a Clamping device, workpiece fixed to each other positioned and the applied Regulates welding material application rate on the welding machine in such a way that the liquid welding material on the underlying one Layer adheres without draining and irregularities web-like layers can be compensated.
  • metallic workpieces with a wide variety of body shapes, theoretically of any size and with any wall thickness, also consisting of different metallic Materials, without auxiliary cores or other the liquid Devices supporting welding material through shaping Surfacing.
  • Fig. 1 shows the build-up welding device for the production of metallic workpieces.
  • the workpiece 1 is applied to an electrically conductive base body 2 by means of shaping welding.
  • the base body 2 is either a component of the final workpiece 1, for example a holder made of metallic material, or an auxiliary body which is separated from the workpiece in a subsequent machining step.
  • a clamping device 3 which can also be cooled and / or heated, fixes the base body 2.
  • the workpiece can also be cooled or heated by other devices, not shown, preferably by an air nozzle for cooling or a gas burner for heating.
  • a three-dimensionally movable clamping device 3, which is controlled by a system controller 10, may be required for the production of complex workpieces 1.
  • a rotary table that is rotatable about two axes is used as the positioning device 4.
  • the welding torch 7 is supplied with energy, welding wire 6 and protective gas 9 by the welding device 8.
  • the system controller 10 positions the welding torch 7 with the aid of the robot 5 and the workpiece 1 with the aid of the turntable in such a way that the tangent of the web-shaped layer element to be applied is preferably approximately horizontal and with the welding torch perpendicular or in an angular range of approximately ⁇ 10 ° to the vertical is easily butted or pulled.
  • the system controller 10 regulates the applied welding material application rate according to a concept described in FIG. 4. Starting from a three-dimensional model of the workpiece 1, the computer system 11 calculates the path of the welding material layers, if necessary the dimension of the base body 2, and an approximate welding material application rate and / or welding path speed, and transmits the values to the system controller 10.
  • the base body 22 is preferably, continuously, Welding material applied in web-shaped layers, so that the body of the workpiece 21 is formed.
  • the Surface waviness of the untreated workpiece surfaces lies below ⁇ 1 mm.
  • FIG. 3 shows a cross section 31 through the workpiece 21.
  • Workpieces also consisting of levels, inclined layers, Solid bodies, hollow bodies and / or closed cavities can be manufactured, which almost means of free-form welding bodies of any shape can be produced.
  • the minimal Realizable wall thickness of the workpiece cross section 31 is 4 mm for the used Arc welding device, and 0.8 mm at the Use of a laser beam welding device. Any larger wall thicknesses can be achieved by applying additional Welding material layers can be achieved.
  • FIG. 4 illustrates the control concept of the system controller 10, which allows irregularities in sheet-like layers to be compensated for with the next covering layer of welding material.
  • a section of two superimposed, web-shaped welding material layers of the workpiece 21 (FIG. 2) is shown, with the web length l of the superimposed layers being plotted as the abscissa and the total height h of the layers as the ordinate.
  • FIG. 2 It can be seen from FIG. 2 that the shape of the workpiece 21 requires a wedge-shaped course of the layer thickness increasing to the right.
  • the web-shaped layers are preferably applied in such a way that the new layer runs approximately horizontally. In order to apply the layer 42 horizontally, the existing layer 41 was therefore brought into a correspondingly wedge-shaped position.
  • the course of the welding material layers as well as the approximate welding material application rate and / or welding track speed are predefined by the computer system 11 in the sense of a control.
  • the course of the layer height of the underlying layer 41, expressed more differentially, the distance between the contact nozzle 501 (FIG. 5) of the welding torch and the closest metallic workpiece surface can be determined continuously by the system controller 10 by measuring welding parameters, preferably welding current and welding voltage, during the welding process .
  • the system controller 10 preferably regulates the welding material application rate and / or the welding web speed in such a way that the distance between the contact nozzle 501 and the newly applied welding material web is kept constant, so that irregularities are compensated for.
  • Welding material webs are preferably applied in a position around the horizontal, because the liquid welding material in this position has the most compensating effect with regard to irregularities.
  • the system controller 10 endeavors to maintain a constant distance between the contact nozzle 501 and the newly applied welding material web, for example during the next horizontal build-up welding process, represented by the layer height profile 42, and thus irregularities such as holes or a wedge shape of the existing layer 41 by varying the Compensate welding material application rate and / or the welding path speed so that the resulting layer height profile of the new layer 42 corresponds as far as possible to the predetermined, preferably horizontal profile.
  • This control concept ensures that the welding material web applied corresponds to the specified course or, in the event of deviations, the material overlay is automatically adjusted with the next overlapping welding material web in such a way that the superimposed welding material web corresponds as closely as possible to the specified course without feedback to the higher-level computer system ( 11) must be done.
  • Recesses or holes with a depth of up to 3 mm can be compensated for by an increased amount of welding material.
  • FIG. 5 shows a vertical section through a base body 52 and a workpiece 51 with overhanging, web-shaped layers of welding material. Also shown is the welding torch 57 with the outer sheath 500, the contact nozzle 501 supplying the welding wire 56 with electricity, the arc 502 with liquid welding material and indicated flow profiles of the protective gas 503.
  • An approximate welding material application rate is predefined in front of the computer system 11. The welding voltage lying between the contact nozzle 501 and the workpiece 51 and the welding current flowing over the welding wire 56 and the arc 502 enable a continuous determination of the distance of the contact nozzle 501 from the workpiece surface 51 during the welding process, which determines the effective welding material application rate and / or welding path speed serves.
  • welding material application rate of the welding torch 57 is metered in such a way that the liquid material does not flow away, which can be determined by appropriate experiments, then welding material layers with an angle ⁇ of to overhanging on a maximally horizontal, two-dimensionally movable base body 52 with respect to the vertical tangent of the workpiece 51 at 33 ° to the vertical without a support body. Any overhanging angles ⁇ can be achieved by appropriate three-dimensional positioning of the workpiece 51.
  • FIG. 6 shows an example of a possible filling strategy for the production of a workpiece.
  • the triangular Solid body is built up from layers 61.
  • a thin workpiece contour e.g. comprehensive welding material web 62 applied and the remaining inner surface with larger ones Welding material webs 63 filled.
  • Clarification drawn disproportionately large, in each Layer of depressions 64 without application of welding material arise.
  • the next one, preferably at endpoint 67 beginning, welding material web is therefore a previous layer different filling strategy exhibit.
  • the ability of the system controller 10 To compensate for irregularities in the course of the layer height, causes pits 64 to follow the next Layer to be filled with welding material and thus a Full body can be produced without holes.
  • Fig. 7 shows a with the inventive method manufactured Pelton wheel.
  • the base body can be in one following work step a highly metalized Intermediate layer 74 by free-form welding or another suitable build-up welding method such as of the Baumkuchen method can be applied.
  • surface 73 are the individual blades 71 according to the process Free-form welding applied.
  • the workpiece 81 is through Free-form welding in layers, the respective last layer 83 to be applied preferably horizontally lies in which the workpiece 81 is inclined accordingly becomes. Layers of welding material are applied until the shape of the Pelton blade 82 is reached.
  • the shaping job welding can be done by others Machining operations on the workpiece are interrupted, e.g.
  • FIG. 9 shows, with a cross section through a Pelton blade, an example of a possible course of a welding material web on a welding material layer.
  • tracks 92 delimiting the workpiece contour tracks 91, 93 of any shape can be applied.
  • the filling strategy defined by the computer system 11 for the software-based two- or three-dimensional data model of the workpiece allows a large number of possible filling strategies, so that the strategy of layer formation shown in FIG. 8 and the course of a welding material web shown in FIG. 9 are only examples of possible implementation are considered. Not only flat, but also three-dimensional layer and path courses can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Metal Extraction Processes (AREA)
  • Manufacture Of Switches (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Numerical Control (AREA)
  • Hydraulic Turbines (AREA)
  • Laser Beam Processing (AREA)
  • Lining And Supports For Tunnels (AREA)
EP91810999A 1991-01-21 1991-12-24 Verfahren zur Herstellung von metallischen Werkstücken mit einer Schweissvorrichtung und Vorrichtung zur Ausführung desselben Expired - Lifetime EP0496181B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH164/91 1991-01-21
CH16491 1991-01-21

Publications (2)

Publication Number Publication Date
EP0496181A1 EP0496181A1 (de) 1992-07-29
EP0496181B1 true EP0496181B1 (de) 1998-08-19

Family

ID=4180722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810999A Expired - Lifetime EP0496181B1 (de) 1991-01-21 1991-12-24 Verfahren zur Herstellung von metallischen Werkstücken mit einer Schweissvorrichtung und Vorrichtung zur Ausführung desselben

Country Status (6)

Country Link
US (2) US5233150A (no)
EP (1) EP0496181B1 (no)
JP (1) JPH04336304A (no)
AT (1) ATE169850T1 (no)
ES (1) ES2120414T3 (no)
NO (1) NO311876B1 (no)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355815B2 (en) 2009-02-12 2013-01-15 Baker Hughes Incorporated Methods, systems, and devices for manipulating cutting elements for earth-boring drill bits and tools
US8450637B2 (en) 2008-10-23 2013-05-28 Baker Hughes Incorporated Apparatus for automated application of hardfacing material to drill bits
US8948917B2 (en) 2008-10-29 2015-02-03 Baker Hughes Incorporated Systems and methods for robotic welding of drill bits
US9439277B2 (en) 2008-10-23 2016-09-06 Baker Hughes Incorporated Robotically applied hardfacing with pre-heat
DE102016205562A1 (de) 2016-04-05 2017-10-05 Voith Patent Gmbh Verfahren zur Herstellung eines Laufrades
DE102018114635A1 (de) * 2018-06-19 2019-12-19 August Wenzler Maschinenbau GmbH Einrichtung und Verfahren zur Herstellung von Metallteilen
EP3853468B1 (de) * 2018-09-18 2022-04-20 Voith Patent GmbH Pelton-turbinen-düse und herstellungsverfahren

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344881A (ja) * 1991-05-21 1992-12-01 Kubota Corp 金属部品の形成方法
JPH0810949A (ja) * 1994-06-23 1996-01-16 Fanuc Ltd 多層盛り溶接における溶接ロボットシステムの制御方法
US5552575A (en) * 1994-07-15 1996-09-03 Tufts University Scan welding method and apparatus
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5578227A (en) * 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
AT409407B (de) 1997-06-06 2002-08-26 Va Tech Hydro Gmbh & Co Laufrad einer pelton-turbine
IT1293734B1 (it) 1997-07-18 1999-03-10 Voith Riva Hydro S P A Procedimento per la fabbricazione di ruote di turbine idrauliche e ruote cosi' ottenute
US6392190B1 (en) 1998-01-23 2002-05-21 Smith International Automated hardfacing system
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
GB9826728D0 (en) * 1998-12-04 1999-01-27 Rolls Royce Plc Method and apparatus for building up a workpiece by deposit welding
US6441338B1 (en) 1999-04-19 2002-08-27 Joshua E. Rabinovich Rapid manufacturing of steel rule dies and other 3-dimensional products, apparatus, process and products
GB0107562D0 (en) * 2001-03-27 2001-05-16 Rolls Royce Plc Method for forming a body
GB0107559D0 (en) * 2001-03-27 2001-05-16 Rolls Royce Plc Apparatus and method for forming a body
GB0118729D0 (en) * 2001-08-01 2001-09-26 Rolls Royce Plc Apparatus and method for forming a body
GB0124762D0 (en) * 2001-10-16 2001-12-05 Rolls Royce Plc Apparatus and method for forming a body
GB0208226D0 (en) * 2002-04-09 2002-05-22 Rolls Royce Plc Apparatus and method for forming a body
WO2004065052A1 (de) * 2003-01-17 2004-08-05 Softart Ag Produktionsverfahren für die herstellung von radiallaufrädern, insbesondere von kompressoren und laufrädern für hydraulische maschinen
DE10337866B4 (de) * 2003-08-18 2014-07-24 MTU Aero Engines AG Verfahren zur Herstellung von Bauteilen für Gasturbinen
US7194447B2 (en) * 2003-12-09 2007-03-20 Illinois Tool Works Inc. System and method for processing welding data
GB0329268D0 (en) * 2003-12-17 2004-01-21 Rolls Royce Plc Method and apparatus for heat-treating an article and a fixture for use in the same
JP4020099B2 (ja) * 2004-05-20 2007-12-12 株式会社デンソー レーザ加工方法
DE102004036066A1 (de) * 2004-07-24 2006-02-16 Mtu Aero Engines Gmbh Verfahren zum Reparieren bzw. Fertigen eines Bauteils
DE102004043746B4 (de) * 2004-09-10 2008-09-25 Mtu Aero Engines Gmbh Verfahren zur Herstellung eines mit Hohlschaufeln integral beschaufelten Gasturbinenrotors
US7231798B2 (en) * 2004-09-29 2007-06-19 General Electric Company System and method for tube bending
US7667157B2 (en) * 2004-09-29 2010-02-23 General Electric Company Portable plenum laser forming
ES2265736B1 (es) * 2004-11-19 2008-03-01 E-Cultura Net, S.A. Procedimiento de fabricacion de un objeto tridimensional a partir de un diseño realizado en ordenador.
US7281901B2 (en) * 2004-12-29 2007-10-16 Caterpillar Inc. Free-form welded power system component
US20070011873A1 (en) * 2005-07-14 2007-01-18 Teale David W Methods for producing even wall down-hole power sections
US7538296B2 (en) * 2005-09-06 2009-05-26 Pratt & Whitney Canada Corp. High speed laser drilling machine and method
CN1962155A (zh) * 2005-11-10 2007-05-16 鸿富锦精密工业(深圳)有限公司 一种二氧化碳激光焊接装置
DE102006026967A1 (de) * 2006-06-09 2007-12-13 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Zerspanwerkzeugs
US8171634B2 (en) 2007-07-09 2012-05-08 Pratt & Whitney Canada Corp. Method of producing effusion holes
US8367962B2 (en) * 2007-10-26 2013-02-05 Ariel Andre Waitzman Automated welding of moulds and stamping tools
US9292016B2 (en) * 2007-10-26 2016-03-22 Ariel Andre Waitzman Automated welding of moulds and stamping tools
US9776274B2 (en) 2007-10-26 2017-10-03 Ariel Andre Waitzman Automated welding of moulds and stamping tools
CA2629041A1 (en) * 2008-04-14 2009-10-14 Steven L. Pankhurst Weld-on-weld device
AT506217B1 (de) * 2008-05-28 2009-07-15 Fronius Int Gmbh Verfahren zur herstellung einer struktur an einer oberfläche eines metallischen werkstücks
FR2931714B1 (fr) * 2008-05-30 2010-06-25 Snecma Construction d'une partie d'une piece metallique par le procede mig avec courant et fil pulses
WO2010033742A2 (en) 2008-09-18 2010-03-25 Baker Hughes Incorporated Method and apparatus for the automated application of hardfacing material to rolling cutters of earth-boring bits
US8334475B2 (en) * 2008-11-04 2012-12-18 Rabinovich Joshua E Process for energy beam solid-state metallurgical bonding of wires having two or more flat surfaces
WO2010078131A2 (en) * 2008-12-31 2010-07-08 Baker Hughes Incorporated Method and apparatus for automated application of hardfacing material to rolling cutters of hybrid-type earth boring drill bits, hybrid drill bits comprising such hardfaced steel-toothed cutting elements, and methods of use thereof
US20100175926A1 (en) * 2009-01-15 2010-07-15 Baker Hughes Incorporated Roller cones having non-integral cutting structures, drill bits including such cones, and methods of forming same
ES2663554T5 (es) * 2009-04-28 2022-05-06 Bae Systems Plc Método de fabricación aditiva por capas
AT508149B1 (de) * 2009-07-16 2010-11-15 Andritz Hydro Gmbh Turbinenlaufrad sowie verfahren zu dessen herstellung
US20110156304A1 (en) * 2009-12-31 2011-06-30 Bryant Walker Die Tool Production Methods Utilizing Additive Manufacturing Techniques
DE102010024083A1 (de) 2010-06-17 2011-12-22 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Reparatur von Rotorschaufeln
JP5459255B2 (ja) * 2011-04-08 2014-04-02 株式会社安川電機 ロボットシステム
CN102915001A (zh) * 2011-08-03 2013-02-06 重庆长安凌云汽车零部件有限公司 汽车儿童安全座椅固定器机器人焊接智能监控系统
FR2997646B1 (fr) * 2012-11-05 2015-03-27 Snecma Procede de rechargement d'au moins un bras de carter intermediaire d'une turbomachine
CN103801799B (zh) * 2012-11-12 2017-11-21 通用电气公司 制造回转件的方法及用该方法制造的回转件
US10682717B2 (en) 2013-10-22 2020-06-16 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
US11007594B2 (en) 2013-10-22 2021-05-18 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
US9815135B2 (en) 2013-10-22 2017-11-14 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
EP2875938A1 (en) * 2013-11-21 2015-05-27 Airbus Operations GmbH Manufacturing method and manufacturing tool for reinforced structural elements
DE102014101907A1 (de) * 2014-02-14 2015-08-20 Thyssenkrupp Ag Metallblech mit lokaler metallischer Verstärkung und Verfahren zu dessen Herstellung
JP6265376B2 (ja) * 2014-02-26 2018-01-24 国立大学法人東京農工大学 三次元造形装置、三次元造形物の造形方法、および三次元製造装置の制御プログラム
DE102014102974A1 (de) 2014-03-06 2015-09-10 Thyssenkrupp Steel Europe Ag Verfahren zur individualisierten Anpassung der Form von Bauteilen
DE102014205062A1 (de) * 2014-03-19 2015-03-12 Voith Patent Gmbh Vorrichtung und Verfahren zur Herstellung eines Pelton-Laufrades
JP6114718B2 (ja) 2014-06-17 2017-04-12 川崎重工業株式会社 軸対称体および軸対称製品の製造方法
SG10201505877SA (en) * 2014-07-28 2016-02-26 Beyon 3D Ltd Method and system for fabrication of custom-made molds and concrete - architectural components
US20160115799A1 (en) * 2014-10-24 2016-04-28 General Electric Company Method of forming turbulators on a turbomachine surface and apparatus
CN104625650B (zh) * 2015-01-21 2017-09-19 重庆科技学院 冲击式水轮机转轮的制造工艺
US20160221122A1 (en) * 2015-02-03 2016-08-04 Hamilton Sundstrand Corporation Hybrid additive manufacturing method for rotor
JP6539825B2 (ja) * 2015-02-25 2019-07-10 住友重機械ハイマテックス株式会社 工具材の製造方法及び工具
US20160339533A1 (en) * 2015-05-18 2016-11-24 Abb Technology Ag Robotically controlled gas tungsten arc welder and method for operating the same
US10974337B2 (en) * 2015-08-17 2021-04-13 Illinois Tool Works Inc. Additive manufacturing systems and methods
DE102015017026A1 (de) * 2015-12-31 2017-07-06 Hydac Technology Gmbh Verfahren zum Herstellen von Druckbehältern
JP6887755B2 (ja) 2016-02-16 2021-06-16 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム
WO2017196605A1 (en) * 2016-05-10 2017-11-16 Fisher Controls International Llc Method and apparatus for late-customization of valve body ends by adding flanges using algorithms for weld distortion prediction
JP6348149B2 (ja) * 2016-07-08 2018-06-27 ファナック株式会社 ロボットを用いてレーザ加工を行うレーザ加工ロボットシステム
US20180021890A1 (en) * 2016-07-22 2018-01-25 Caterpillar Inc. System and method to produce a structure for a weld joint using additive manufacturing
KR102190574B1 (ko) 2016-08-22 2020-12-14 스트래터시스,인코포레이티드 국부적 열 사이클을 이용한 3d 부품의 인쇄 방법
US11453054B2 (en) 2016-11-28 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JP6845686B2 (ja) * 2016-12-27 2021-03-24 川崎重工業株式会社 突起形成方法
JP6936580B2 (ja) * 2017-02-08 2021-09-15 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム
JP6464213B2 (ja) * 2017-02-09 2019-02-06 ファナック株式会社 レーザ加工ヘッドおよび撮影装置を備えるレーザ加工システム
DE102017103067A1 (de) * 2017-02-15 2018-08-16 Flottweg Se Vollmantelschneckenzentrifugen-Schnecke mit einer Schneckenwendel
DE102017103068B4 (de) * 2017-02-15 2022-12-22 Flottweg Se Herstellungsverfahren einer Vollmantelschneckenzentrifugen-Schnecke mit einer Schneckennabe
CN107202705A (zh) * 2017-06-02 2017-09-26 成都福莫斯智能系统集成服务有限公司 焊接机器人的可靠性测试方法
JP6595558B2 (ja) * 2017-10-30 2019-10-23 ファナック株式会社 レーザ加工システム
JP6737762B2 (ja) * 2017-11-15 2020-08-12 株式会社神戸製鋼所 造形物の製造方法及び製造装置
EP3517237A1 (en) * 2018-01-30 2019-07-31 General Electric Company Repair of gas turbine diaphragm
EP3560650B1 (en) * 2018-03-02 2020-05-13 Mitsubishi Electric Corporation Additive manufacturing apparatus and additive manufacturing method
JP6978350B2 (ja) * 2018-03-06 2021-12-08 株式会社神戸製鋼所 ワーク姿勢調整方法、造形物の製造方法及び製造装置
JP6964544B2 (ja) * 2018-03-16 2021-11-10 株式会社神戸製鋼所 造形物の製造方法及び造形物
US20210016381A1 (en) * 2018-04-14 2021-01-21 Aml3D Pty Limited Method and apparatus for manufacturing 3d metal parts
EP3563962B1 (en) 2018-05-01 2021-12-08 Hamilton Sundstrand Corporation Duct manufacturing method
CN108941858B (zh) * 2018-09-04 2020-08-07 中国人民解放军陆军装甲兵学院 一种断裂板件mig弧焊增材再制造方法
JP7249127B2 (ja) 2018-10-26 2023-03-30 川崎重工業株式会社 傾斜状構造体およびその製造方法
DE102018131162A1 (de) * 2018-12-06 2020-06-10 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zur Aufbringung einer Schweißraupe auf einem Untergrund, Computerprogramm und Schweißeinrichtung
US11305377B2 (en) * 2019-12-23 2022-04-19 Precitec Gmbh & Co. Kg Add-on module for interposing between a control device and a laser machining head of a laser machining system
JP6783964B1 (ja) * 2020-03-05 2020-11-11 株式会社神戸製鋼所 積層造形物の製造方法
DE112020006920T5 (de) * 2020-03-19 2022-12-29 Mitsubishi Electric Corporation Einrichtung zur erzeugung von pfaden für additive fertigung, verfahren zur erzeugung von pfaden für additive fertigung und einrichtung für maschinelles lernen
US20220117218A1 (en) * 2020-10-16 2022-04-21 Verdant Robotics, Inc. Autonomous system for light treatment of a plant
EP3984679A1 (de) * 2020-10-19 2022-04-20 Siemens Aktiengesellschaft Verfahren und vorrichtung zur herstellung eines werkstückes mittels eines additiven fertigungsprozesses
JP2022163944A (ja) * 2021-04-15 2022-10-27 国立大学法人京都大学 付加加工装置、付加加工装置の制御方法、および、付加加工装置の制御プログラム
WO2024013931A1 (ja) * 2022-07-14 2024-01-18 株式会社ニコン 造形システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111057A1 (de) * 1982-12-08 1984-06-20 Man Gutehoffnungshütte Gmbh Verfahren und Vorrichtung zur Herstellung eines Rohrkrümmers aus Stahl
US4621762A (en) * 1984-08-16 1986-11-11 J. M. Voith Gmbh Device for building up a workpiece by deposit welding
EP0233339A1 (de) * 1985-12-23 1987-08-26 GebràœDer Sulzer Aktiengesellschaft Werkstück mit Rippen und Verfahren zu seiner Herstellung
US4940390A (en) * 1988-05-05 1990-07-10 Westinghouse Electric Corp. Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29815A (en) * 1860-08-28 Oak-coupling
US3341686A (en) * 1966-12-09 1967-09-12 North American Aviation Inc Electrical welding arc gap control method and means
US3952180A (en) * 1974-12-04 1976-04-20 Avco Everett Research Laboratory, Inc. Cladding
JPS52102060A (en) * 1976-02-24 1977-08-26 Hitachi Ltd Method and device for detecting shapes of beveling and bead
DE2703113C3 (de) * 1977-01-26 1980-04-24 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Regelung der Leistung eines Lichtbogen-Schweißbrenners
DE3422638A1 (de) * 1984-06-19 1985-12-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren zur herstellung von rotationssymmetrisch raeumlich gekruemmten bauteilen aus schweissgut
JPH0647183B2 (ja) * 1985-12-10 1994-06-22 マツダ株式会社 ビ−ム溶接装置の制御装置
US5155324A (en) * 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US4775092A (en) * 1987-10-30 1988-10-04 The Babcock & Wilcox Company Method and apparatus for building a workpiece by deposit welding
US4903888A (en) * 1988-05-05 1990-02-27 Westinghouse Electric Corp. Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up
US4959523A (en) * 1988-11-18 1990-09-25 Hydro-Quebec Method and apparatus for automatically sensing the configuration of a surface area and effecting a work function thereon
US5038014A (en) * 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
US4998005A (en) * 1989-05-15 1991-03-05 General Electric Company Machine vision system
DE8909840U1 (no) * 1989-08-17 1990-12-20 Siemens Ag, 8000 Muenchen, De
US5160822A (en) * 1991-05-14 1992-11-03 General Electric Company Method for depositing material on the tip of a gas turbine engine airfoil using linear translational welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111057A1 (de) * 1982-12-08 1984-06-20 Man Gutehoffnungshütte Gmbh Verfahren und Vorrichtung zur Herstellung eines Rohrkrümmers aus Stahl
US4621762A (en) * 1984-08-16 1986-11-11 J. M. Voith Gmbh Device for building up a workpiece by deposit welding
EP0233339A1 (de) * 1985-12-23 1987-08-26 GebràœDer Sulzer Aktiengesellschaft Werkstück mit Rippen und Verfahren zu seiner Herstellung
US4940390A (en) * 1988-05-05 1990-07-10 Westinghouse Electric Corp. Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450637B2 (en) 2008-10-23 2013-05-28 Baker Hughes Incorporated Apparatus for automated application of hardfacing material to drill bits
US8969754B2 (en) 2008-10-23 2015-03-03 Baker Hughes Incorporated Methods for automated application of hardfacing material to drill bits
US9439277B2 (en) 2008-10-23 2016-09-06 Baker Hughes Incorporated Robotically applied hardfacing with pre-heat
US9580788B2 (en) 2008-10-23 2017-02-28 Baker Hughes Incorporated Methods for automated deposition of hardfacing material on earth-boring tools and related systems
US8948917B2 (en) 2008-10-29 2015-02-03 Baker Hughes Incorporated Systems and methods for robotic welding of drill bits
US8355815B2 (en) 2009-02-12 2013-01-15 Baker Hughes Incorporated Methods, systems, and devices for manipulating cutting elements for earth-boring drill bits and tools
DE102016205562A1 (de) 2016-04-05 2017-10-05 Voith Patent Gmbh Verfahren zur Herstellung eines Laufrades
WO2017174396A1 (de) 2016-04-05 2017-10-12 Voith Patent Gmbh Verfahren zur herstellung eines laufrades
DE102018114635A1 (de) * 2018-06-19 2019-12-19 August Wenzler Maschinenbau GmbH Einrichtung und Verfahren zur Herstellung von Metallteilen
DE102018114635B4 (de) 2018-06-19 2024-02-08 August Wenzler Maschinenbau GmbH Einrichtung und Verfahren zur Herstellung von Metallteilen
EP3853468B1 (de) * 2018-09-18 2022-04-20 Voith Patent GmbH Pelton-turbinen-düse und herstellungsverfahren

Also Published As

Publication number Publication date
NO920259L (no) 1992-07-22
USRE35756E (en) 1998-03-31
ES2120414T3 (es) 1998-11-01
US5233150A (en) 1993-08-03
JPH04336304A (ja) 1992-11-24
NO920259D0 (no) 1992-01-20
EP0496181A1 (de) 1992-07-29
NO311876B1 (no) 2002-02-11
ATE169850T1 (de) 1998-09-15

Similar Documents

Publication Publication Date Title
EP0496181B1 (de) Verfahren zur Herstellung von metallischen Werkstücken mit einer Schweissvorrichtung und Vorrichtung zur Ausführung desselben
DE3626799C2 (no)
DE3942051B4 (de) Verfahren zum Herstellen von Triebwerkschaufeln durch Aufbauschweißung
EP0790875B1 (de) Verfahren und vorrichtung zur herstellung von metallischen werkstücken
EP0233339B1 (de) Werkstück mit Rippen und Verfahren zu seiner Herstellung
EP1144146B1 (de) Vorrichtung für das selektive laser-schmelzen zur herstellung eines formkörpers
DE3150813C2 (de) Vollautomatisch arbeitende Schweißvorrichtung für das Lichtbogenschweißen
EP2027962A1 (de) Schweißgerät und -verfahren zum Orbitalschweißen von Rohren
CH654778A5 (de) Laser-werkzeugmaschine.
DE2925068A1 (de) Verfahren und vorrichtung zum steuern der schweissparameter beim automatischen bogenschweissen
WO2013020757A2 (de) Umformverfahren zum warmumformen eines stahlblechs eines herzustellenden rotorblattes einer windenergieanlage
EP0170780A1 (de) Verfahren zur Herstellung von rotationssymmetrisch räumlich gekrümmten Bauteilen aus Schweissgut
DE102020106822A1 (de) Vorrichtung und Verfahren zum Nachbearbeiten von Schichten aufgetragen durch Laserauftragschweißen
DE19608074C2 (de) Verfahren zum Schweißen von relativbewegten Werkstücken
DE3626808C2 (no)
DE1905770C3 (de) Vorrichtung zum Auftragschweißen auf metallische Werkstücke unter Verwendung eines Gleichstromlichtbogens
DE60200357T2 (de) Vorrichtung und Methode zur Herstellung eines Gegegenstands durch Freiformschweissen
EP0398457A1 (de) Verfahren und Vorrichtung zur zerspanenden Bearbeitung der Innenoberflächen von Hohlkörpern
DE69822902T2 (de) Verfahren und Vorrichtung zum einseitigen Schweissen von aus Stahl hergestellten gewölbten Werkstücken
DE4135971A1 (de) Verfahren zur herstellung dreidimensionaler werkstuecke
EP0767027B1 (de) Verfahren zum Schweissen
DE2736856B2 (de) Verfahren und Vorrichtung zum selbsttätigen elektrischen Verbindungsschweißen von dickwandigen, in der Schweißstoßebene gekrümmten metallischen Werkstücken
WO2004065052A1 (de) Produktionsverfahren für die herstellung von radiallaufrädern, insbesondere von kompressoren und laufrädern für hydraulische maschinen
EP0889769B1 (de) Verfahren zum fügen von werkstücken mit laserstrahlung
DE102018101522A1 (de) Verfahren und Vorrichtung zum Aufbringen einer dreidimensionalen Struktur auf einer Oberfläche eines Werkstücks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH ES FR IT LI

17P Request for examination filed

Effective date: 19921211

17Q First examination report despatched

Effective date: 19930408

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER HYDRO AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH ES FR IT LI

REF Corresponds to:

Ref document number: 169850

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120414

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101214

Year of fee payment: 20

Ref country code: FR

Payment date: 20110104

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101224

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101223

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 169850

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111225