EP0466717B1 - Source de tension de reference de precision - Google Patents
Source de tension de reference de precision Download PDFInfo
- Publication number
- EP0466717B1 EP0466717B1 EP90904754A EP90904754A EP0466717B1 EP 0466717 B1 EP0466717 B1 EP 0466717B1 EP 90904754 A EP90904754 A EP 90904754A EP 90904754 A EP90904754 A EP 90904754A EP 0466717 B1 EP0466717 B1 EP 0466717B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistor
- reference voltage
- voltage source
- component
- source according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 230000010354 integration Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 229910018487 Ni—Cr Inorganic materials 0.000 description 4
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/30—Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
Definitions
- the invention relates to a precision reference voltage source according to the preamble of independent claim 1.
- US Pat. No. 4,490,670 also discloses a monolithically integrated reference voltage source which operates on the bandgap principle and in which the temperature dependence of the reference voltage is linearized.
- a monolithically integrated reference voltage source which operates on the bandgap principle and in which the temperature dependence of the reference voltage is linearized.
- three current paths, each with an associated reference transistor, are required for linearization, and a resistor that is also required for linearization lies outside of these current paths parallel to the emitter-collector path of one of the three reference transistors.
- a reference voltage source according to the preamble of the main claim is also known.
- this requires a further reference transistor and two further resistors which cooperate with the further reference transistor.
- the precision reference voltage source according to the invention with the characterizing features of independent claim 1 has the advantage that the piezo sensitivity is reduced. Further advantages result from the dependent claims 2 to 15.
- the temperature coefficient of the bandgap voltage of silicon contains higher-order terms (Tsividis, YP: "Accurate Analysis of Temperature Effects in I C - V BE Characteristics with Application to Bandgap Reference Sources", IEEE Journal of Solid-State Circuits, Vol. SC- 15, No. 6, Dec. 1980).
- the following zones are available for the monolithically integrated circuit: substrate (P ⁇ ), insulation diffusion (PP+), epitaxy (N ⁇ ), buried layer diffusion (N+), deep collector diffusion (N+) , Base diffusion (P), emitter diffusion (N+), metallization and possibly other zones such as doped polysilicon or Cr / Ni resistors (for "fused links"); other zones may also be present depending on the process, such as an upper and a lower insulation diffusion or a base connection diffusion.
- FIG. 1 shows the basic circuit of a band gap reference according to Brokaw, supplemented by a starter circuit.
- FIGS. 2 to 4 show the temperature responses of the reference voltages of an exemplary circuit for resistors with three different temperature coefficients in the temperature range from -40 ° C ⁇ Tj ⁇ + 160 ° C.
- Figures 5 and 6 represent modifications of the circuit of Figure 1
- Figure 7 shows the temperature response of the reference voltage generated.
- FIG. 8 the circuit and in FIG. 9 the layout of cross-coupled lateral transistors to reduce their piezo sensitivity are shown, likewise in FIGS. 10 and 11 the arrangement in the layout for the critical NPN reference transistors.
- the two reference transistors 23, 24 operate on the current mirror with the two lateral PNP transistors 25, 26, the common base of which lies on the collector 24 via the PNP emitter follower 27.
- the PNP emitter follower 6 is coupled out from the collector of the transistor 23, the emitter of which is connected to the base of the NPN emitter follower 7.
- the emitter of transistor 7 is not connected directly at point 17, but via resistor 8 at point 17.
- the reference voltage to be tapped at terminal 18 is thus higher in accordance with the transformation ratio of resistors 8, 9.
- the transistors 25, 26, 27, 6, 7 form an operational amplifier which is dynamically stabilized by means of the capacitor 10.
- the transistor 4 with resistor 5, which also works as a current mirror, delivers a sufficiently small “starting current” into the circuit.
- the positive pole of the operating voltage is connected to terminal 16, the negative to terminal 15.
- the temperature curve of the reference voltage of an example in the circuit according to FIG. 1 is shown in FIG. 2.
- the band gap voltage is shown as a function of the temperature between -40 ° C. and + 160 ° C. for an embodiment in which the horizontal tangent is in the middle of the Temperature range is set and the resistors 21 and 22, as usual with simple references, are shown by means of the base diffusion.
- the reference voltage has a fairly parabolic temperature profile, which is known to depend on the manufacturing process, that is to say on doping and doping profiles, and can therefore also contain higher-order terms in other embodiments.
- the storage at the two corner temperatures is slightly more than - 5 mV, corresponding to an average temperature coefficient of - 4%.
- the temperature response can already be significantly improved by using emitter diffusion instead of basic diffusion for resistors 21, 22, as can be seen in FIG. If, in our example, the resistors 21 and 22 are also given the temperature coefficient "0" in a purely theoretical manner, the calculation shown in FIG. 4 still shows a deviation of approx. -2.3 mV with higher-order components.
- Figure 5 shows a modification of the circuit for an execution of the resistors with a zone of the process, which contains a larger square term ⁇ 21. Since ⁇ 22 must always be smaller than ⁇ 21, in this case the resistor 22 is split into at least two partial resistors 32, 42 and a zone with a smaller ⁇ is to be used for the compensation resistor 42. A sufficiently good compensation for this example results if the difference between the coefficients of the quadratic terms ⁇ 21 and ⁇ 22 is 0.74 ⁇ 10 ⁇ 6. If the resistors 21, 32 are implemented by means of the base diffusion and the resistor 42 by means of the emitter diffusion, the temperature profile according to FIG. 7 is 3 435 ⁇ for the resistor 21, 393 ⁇ for the resistor 32 and 60 ⁇ for the resistor 42.
- the resistors should be formed with zones that have the smallest possible piezo effect, such as emitter diffusion or other heavily n-doped zones.
- the temperature coefficient of the square resistance contains practically no higher order terms.
- the solution to this is shown in FIG. 6. So that the resistor 21 with a higher square portion than the resistor 22, it is split into the partial resistors 31 and 41 and the compensation resistor 41 by means of a zone with a larger square term.
- the difference ⁇ 21 - ⁇ 22 should now be 0.49 ⁇ 10 ⁇ 6.
- the resistor 31 receives the value 3 135 ⁇ and the resistor 22 the value 453 ⁇ , the correction in base diffusion 41 receives the value 300 ⁇ .
- the course of the temperature response also corresponds to that of FIG. 7.
- the difference between the resulting quadratic terms in the case of compensation in resistor 22 by means of resistor 42 is in the range 0.3 ⁇ 10 ⁇ 6 ⁇ ⁇ 21 - ⁇ 22 ⁇ 1.2 ⁇ 10 ⁇ 6. If, however, is compensated in the resistor 21 by means of the resistor 41, the range is to be set at 0.2 ⁇ 10 ⁇ 6 ⁇ ⁇ 21 ⁇ 0.8 ⁇ 10 ⁇ 6.
- ⁇ 21 and ⁇ 22 can be calculated from the known terms of the zones used for the resistors.
- ⁇ 21 ( ⁇ 31.R31 + ⁇ 41.R41).
- R31 + R41 (R31 + R41) ⁇ 1
- R32 + R42 (R32 + R42) ⁇ 1.
- Resistors with differing temperature coefficients can also be represented by modulating the width of the resistors in the design due to the different amount of lateral underdiffusion in the overall resistance, especially since only minor differences can be generated in the quadratic term or a third order term has to be generated . Observations according to third-order terms appear to occur with particularly narrow resistances. Due to the general dependence of the temperature coefficients on the manufacturing process, no specific information can be given.
- the specified compensations can only be adhered to to a certain extent if the actual value of the maximum of the band gap tension is also at the temperature on which the calculation is based. It is therefore advantageous to adjust to this maximum.
- the resistors 21 and 22 are represented by more than one zone. This means that different process variations, i.e. resistance variations, are to be expected, which lead to a variation in the division ratio. In the case of a precision reference voltage source, the division ratio is to be adjusted to its setpoint by changing the compensation resistor 41 or 42.
- the precision reference voltage source requires only a chip area of approximately 0.3 mm 2, despite resistors 31 and 22 including a four-stage matching network, which are shown by means of the relatively low-resistance emitter diffusion, measures for reducing the piezo sensitivity are advantageous.
- the collectors of the two PNP lateral transistors 25 and 26 are therefore split into two identical sub-collectors in accordance with the circuit according to FIG. 8 and cross-connected to one another.
- a further transistor 11 is inserted between the transistors 25 and 26 to derive any base currents in order to achieve higher operating temperatures.
- FIG. 9 A possible layout for this is shown in FIG. 9.
- the NPN reference transistors 23 and 24 are also arranged symmetrically to one another, specifically for an emitter ratio of 1: 2 and 1: 4 according to FIG. 10 and for an emitter ratio of 1: 4 and 1: 8 according to Figure 11. Only four sub-transistors 24 are shown in the latter.
- the approximately piezocompensated ratio 1: 8 can easily be established by filling up the free spaces with another four partial transistors. Wiring is not a problem even with eight sub-transistors 24 arranged around transistor 23, since the eight sub-transistors can be accommodated in a single collector trough.
- Precision reference voltage sources can hardly be produced specifically with the previous methods even with complex technologies and are therefore usually expensive selection types from a larger production lot. In contrast, according to the proposals of the invention, they can be produced specifically using standard technologies. Their area requirement is hardly larger than that of ordinary reference voltage sources.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Control Of Electrical Variables (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Claims (15)
- Source de tension de référence de précision intégrée monolithiquement selon le principe du bandgap avec un premier transistor de référence NPN (23) et un second transistor de référence NPN (24), qui sont branchés en parallèle l'un par rapport à l'autre, pour diviser un courant en deux trajets de courant, et dont chacun a une électrode d'émetteur, une électrode de collecteur et une électrode de base, tandis que les électrodes de base des deux transistors de référence (23, 24) sont reliées ensemble et avec une borne de sortie (18), sur laquelle est prélevée la tension de référence, et tandis qu'en outre, un branchement en série constitué d'une première résistance (21) et d'une seconde résistance (22) va d'un potentiel d'alimentation (15) vers l'électrode d'émetteur du second transistor de référence NPN (24) et que l'électrode d'émetteur du premier transistor de référence NPN (23) est raccordée au point de jonction entre la première résistance (21) et la seconde résistance (22), et avec un premier transistor à miroir de courant PNP (25) et un second transistor à miroir de courant PNP (26) pour appliquer les courants sur les trajets du courant des deux transistors de référence NPN (23, 24), source de tension de référence de précision caractérisée en ce que pour diminuer l'action de l'effet piézo-électrique sur les deux transistors à miroir de courant PNP (25, 26) revêtant la forme de transistors latéraux, leurs collecteurs sont partagés en deux sur leur périphérie et les moitiés sont respectivement reliées ensemble en croix (figure 8, figure 9).
- Source de tension de référence de précision selon la revendication 1, caractérisée en ce que pour diminuer l'action de l'effet piézo-électrique sur les transistors de référence NPN (23, 24) exploités avec des densités de courant différentes, au moins deux transistors partiels identiques du second transistor de référence (24) sont disposés, en ce qui concerne l'effet piézo-électrique, symétriquement par rapport au premier transistor de référence (23).
- Source de tension de référence de précision, selon la revendication 1 ou la revendication 2, caractérisée en ce que, pour la compensation du coefficient de température d'ordre plus élevé subsistant dans les deux transistors de référence (23, 24), les deux résistances (21, 22) sont constituées au moins partiellement par des zones avec des coefficients de température différents et en ce que le terme quadratique des coefficients de température de la première résistance (21) est supérieur au terme quadratique des coefficients de température de la seconde résistance (22).
- Source de tension de référence de précision, selon la revendication 3, caractérisée en ce que, lors d'une réalisation de la première résistance (21) au moyen d'une zone avec un plus grand terme quadratique du coefficient de température, la seconde résistance (22) est dédoublée en un circuit série constitué d'une première résistance partielle (32) et d'une seconde résistance partielle (42), tandis que la première résistance partielle (32) est réalisée au moyen de la même zone que la première résistance (21), tandis que la seconde résistance partielle (42), jouant le rôle de résistance de compensation, est réalisée au moyen d'une zone avec un terme quadratique plus petit (figure 5).
- Source de tension de référence de précision, selon la revendication 4, caractérisée en ce que la différence des termes quadratiques des coefficients de température β₂₁ de la première résistance (21) et β₂₂ de la seconde résistance (22) résultant de la somme des résistances partielles (32, 42) se situe dans le domaine de :
- Source de tension de référence de précision, selon la revendication 4, caractérisée en ce que la première résistance (21) et la première résistance partielle (32) sont réalisées au moyen de la zone de diffusion de base et la seconde résistance partielle (42) jouant le rôle de résistance de compensation, est réalisée au moyen de la zone de diffusion d'émetteur (figure 5).
- Source de tension de référence de précision, selon la revendication 3, caractérisée en ce que lors d'une réalisation de la seconde résistance (22) au moyen d'une zone avec un terme quadratique plus petit, la première résistance (21) est dédoublée en un branchement en série constitué d'une troisième résistance partielle (31) et d'une quatrième résistance partielle (41), tandis que la troisième résistance partielle (31) est réalisée au moyen de la même zone que la seconde résistance (22) et que la quatrième résistance partielle (41) jouant le rôle de résistance de compensation, est réalisée au moyen d'une zone avec une plus grand terme quadratique (figure 6).
- Source de tension de référence de précision, selon la revendication 7, caractérisée en ce que la différence des termes quadratiques du coefficient de température β₂₁ de la première résistance (21) résultant de la somme des résistances partielles (31, 41) et du coefficient de température β₂₂ de la seconde résistance (22) se situe dans le domaine de :
- Source de tension de référence de précision selon la revendication 7, caractérisée en ce que la seconde résistance (22) et la troisième résistance partielle (31) sont réalisées au moyen de la zone de diffusion d'émetteur, tandis que la quatrième résistance partielle (41) jouant le rôle de résistance de compensation est réalisée au moyen de la zone de diffusion de base (figure 6).
- Source de tension de référence de précision, selon une des revendications 3 à 9, caractérisée par une égalisation à la valeur de consigne de la valeur réelle de la tension de référence différant de la valeur de consigne du fait des inéluctables dispersions de fabrication.
- Source de tension de référence de précision, selon la revendication 10, caractérisée par une égalisation obtenue par modification d'au moins une des deux résistances partielles (41 ou bien 42) jouant le rôle de résistances de compensation.
- Source de tension de référence de précision, selon la revendication 2, caractérisée en ce que le second transistor de référence (24) est constitué par quatre ou bien huit transistors partiels identiques (figure 10, figure 11).
- Source de tension de référence de précision, selon une des revendications 3 à 12, caractérisée en ce que le terme de troisième ordre pour la correction du coefficient de température d'ordre plus élevé subsistant dans les deux transistors de référence (23, 24) exploité avec des densités de courant différentes, est également pris en compte.
- Source de tension de référence de précision, selon la revendication 13, caractérisé en ce que le coefficient de température d'au moins une résistance partielle des combinaisons de résistances (21 et 22; 31, 41 et 22; ou bien 21, 32 et 42) est susceptible d'être modifié en modifiant sa largeur sur le projet.
- Source de tension de référence de précision selon une des revendications 3 à 14, caractérisée en ce qu'un coefficient de température défini de la tension de référence différent du coefficient de température "0" est ajusté par modifications du rapport de vision des résistances [21, 22; 21, (32 + 42); ou bien 22, (31 + 41)], rapporté à la valeur du rapport de division pour obtenir le coefficient de température "0".
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3910511 | 1989-04-01 | ||
DE3910511 | 1989-04-01 | ||
DE4005756A DE4005756A1 (de) | 1989-04-01 | 1990-02-23 | Praezisions-referenzspannungsquelle |
DE4005756 | 1990-02-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0466717A1 EP0466717A1 (fr) | 1992-01-22 |
EP0466717B1 true EP0466717B1 (fr) | 1993-08-11 |
Family
ID=25879416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90904754A Expired - Lifetime EP0466717B1 (fr) | 1989-04-01 | 1990-03-21 | Source de tension de reference de precision |
Country Status (6)
Country | Link |
---|---|
US (1) | US5258702A (fr) |
EP (1) | EP0466717B1 (fr) |
JP (1) | JP2818289B2 (fr) |
DE (2) | DE4005756A1 (fr) |
ES (1) | ES2042287T3 (fr) |
WO (1) | WO1990012353A1 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930001577A (ko) * | 1991-06-19 | 1993-01-16 | 김광호 | 기준전압 발생회로 |
DE4344447B4 (de) * | 1993-12-24 | 2009-04-02 | Atmel Germany Gmbh | Konstantstromquelle |
US5448158A (en) * | 1993-12-30 | 1995-09-05 | Sgs-Thomson Microelectronics, Inc. | PTAT current source |
US5701097A (en) * | 1995-08-15 | 1997-12-23 | Harris Corporation | Statistically based current generator circuit |
US5783973A (en) | 1997-02-24 | 1998-07-21 | The Charles Stark Draper Laboratory, Inc. | Temperature insensitive silicon oscillator and precision voltage reference formed therefrom |
US6150871A (en) * | 1999-05-21 | 2000-11-21 | Micrel Incorporated | Low power voltage reference with improved line regulation |
IT1313386B1 (it) * | 1999-06-09 | 2002-07-23 | St Microelectronics Srl | Metodo per ottenere un riferimento di tensione e di corrente costanteal variare della temperatura con un unico stadio band-gap. |
JP2005122277A (ja) * | 2003-10-14 | 2005-05-12 | Denso Corp | バンドギャップ定電圧回路 |
DE102004062357A1 (de) * | 2004-12-14 | 2006-07-06 | Atmel Germany Gmbh | Versorgungsschaltung zur Erzeugung eines Referenzstroms mit vorgebbarer Temperaturabhängigkeit |
US20060170487A1 (en) * | 2005-01-31 | 2006-08-03 | International Business Machines Corporation | A voltage reference circuit for ultra-thin oxide technology and low voltage applications |
US20130300395A1 (en) * | 2012-05-11 | 2013-11-14 | Gregory A. Maher | Accessory detection over temperature |
RU2580458C1 (ru) * | 2015-02-25 | 2016-04-10 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Донской Государственный Технический Университет" (Дгту) | Источник опорного напряжения |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4250445A (en) * | 1979-01-17 | 1981-02-10 | Analog Devices, Incorporated | Band-gap voltage reference with curvature correction |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242693A (en) * | 1978-12-26 | 1980-12-30 | Fairchild Camera & Instrument Corporation | Compensation of VBE non-linearities over temperature by using high base sheet resistivity devices |
US4362984A (en) * | 1981-03-16 | 1982-12-07 | Texas Instruments Incorporated | Circuit to correct non-linear terms in bandgap voltage references |
US4443753A (en) * | 1981-08-24 | 1984-04-17 | Advanced Micro Devices, Inc. | Second order temperature compensated band cap voltage reference |
US4490670A (en) * | 1982-10-25 | 1984-12-25 | Advanced Micro Devices, Inc. | Voltage generator |
GB8630980D0 (en) * | 1986-12-29 | 1987-02-04 | Motorola Inc | Bandgap reference circuit |
US4808908A (en) * | 1988-02-16 | 1989-02-28 | Analog Devices, Inc. | Curvature correction of bipolar bandgap references |
US4939442A (en) * | 1989-03-30 | 1990-07-03 | Texas Instruments Incorporated | Bandgap voltage reference and method with further temperature correction |
US5053640A (en) * | 1989-10-25 | 1991-10-01 | Silicon General, Inc. | Bandgap voltage reference circuit |
-
1990
- 1990-02-23 DE DE4005756A patent/DE4005756A1/de not_active Withdrawn
- 1990-03-21 JP JP2504874A patent/JP2818289B2/ja not_active Expired - Fee Related
- 1990-03-21 US US07/768,283 patent/US5258702A/en not_active Expired - Lifetime
- 1990-03-21 ES ES199090904754T patent/ES2042287T3/es not_active Expired - Lifetime
- 1990-03-21 DE DE9090904754T patent/DE59002341D1/de not_active Expired - Lifetime
- 1990-03-21 WO PCT/DE1990/000212 patent/WO1990012353A1/fr active IP Right Grant
- 1990-03-21 EP EP90904754A patent/EP0466717B1/fr not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4250445A (en) * | 1979-01-17 | 1981-02-10 | Analog Devices, Incorporated | Band-gap voltage reference with curvature correction |
Non-Patent Citations (1)
Title |
---|
Handbook of Semiconductor Electronics, Lloyd P. Hunter.McGraw Hill Book Company, New York, U.S.A. Third Edition,1970 * |
Also Published As
Publication number | Publication date |
---|---|
JPH04504320A (ja) | 1992-07-30 |
DE59002341D1 (de) | 1993-09-16 |
EP0466717A1 (fr) | 1992-01-22 |
DE4005756A1 (de) | 1990-10-04 |
US5258702A (en) | 1993-11-02 |
ES2042287T3 (es) | 1993-12-01 |
WO1990012353A1 (fr) | 1990-10-18 |
JP2818289B2 (ja) | 1998-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69024619T2 (de) | Bandgapreferenzspannungsschaltung | |
DE2154904C3 (de) | Temperaturkompensierte Bezugsgleichspannungsquelle | |
DE69323239T2 (de) | Referenz Spannungsgenerator | |
DE2951835C2 (fr) | ||
DE2537564C2 (de) | Verfahren zur Herstellung einer integrierten Schaltung sowie Verwendung dieses Verfahrens | |
DE68926201T2 (de) | Operationsverstärkerschaltung | |
EP0466717B1 (fr) | Source de tension de reference de precision | |
DE69736827T2 (de) | Spannungsreferenz mit sperrschicht-feldeffekt und herstellungsverfahren | |
DE2854901A1 (de) | Konstantspannungsgenerator zum erzeugen einer konstantspannung mit vorgegebenem temperaturkoeffizienten | |
EP0483537B1 (fr) | Circuit de source de courant | |
DE2309154B2 (de) | Stromverstaerker | |
EP0508327A2 (fr) | Circuit de référence du type Bandgap | |
DE69000803T2 (de) | Stromquelle mit niedrigem temperaturkoeffizient. | |
DE2541352A1 (de) | Oszillator in c-mos-technologie | |
DE2935346A1 (de) | Integrierte bezugsspannungsquelle in mos-transistortechnik | |
DE3127839A1 (de) | Temperaturkompensierte bezugsspannungsquelle | |
DE68919764T2 (de) | Völlig differentielle Referenzspannungsquelle. | |
DE3447002C2 (fr) | ||
DE3047685A1 (de) | Temperaturstabile spannungsquelle | |
DE2520890A1 (de) | Transistorverstaerker der darlington- bauart mit interner vorspannung | |
DE69005649T2 (de) | Spannungsgeneratorschaltung. | |
DE1541488A1 (de) | Halbleiterkaskodenverstaerker in integrierter Schaltung | |
DE3002894C2 (de) | Monolithisch integrierte Halbleiterschaltung mit Transistoren | |
DE2541887C3 (de) | Monolithisch integrierte Halbleiterschaltung mit einer I2 L- Konfiguration | |
DE4129334A1 (de) | Praezisions-mos-widerstand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910905 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
17Q | First examination report despatched |
Effective date: 19920615 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930816 |
|
REF | Corresponds to: |
Ref document number: 59002341 Country of ref document: DE Date of ref document: 19930916 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2042287 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030227 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030319 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040321 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050321 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050413 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060322 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060322 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090526 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100321 |