EP0483537B1 - Circuit de source de courant - Google Patents

Circuit de source de courant Download PDF

Info

Publication number
EP0483537B1
EP0483537B1 EP91116900A EP91116900A EP0483537B1 EP 0483537 B1 EP0483537 B1 EP 0483537B1 EP 91116900 A EP91116900 A EP 91116900A EP 91116900 A EP91116900 A EP 91116900A EP 0483537 B1 EP0483537 B1 EP 0483537B1
Authority
EP
European Patent Office
Prior art keywords
current
field effect
current source
circuit
effect transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91116900A
Other languages
German (de)
English (en)
Other versions
EP0483537A2 (fr
EP0483537A3 (en
Inventor
Ernst Lingstaedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Temic Telefunken Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temic Telefunken Microelectronic GmbH filed Critical Temic Telefunken Microelectronic GmbH
Publication of EP0483537A2 publication Critical patent/EP0483537A2/fr
Publication of EP0483537A3 publication Critical patent/EP0483537A3/de
Application granted granted Critical
Publication of EP0483537B1 publication Critical patent/EP0483537B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the invention relates to a current source circuit with a first, second, third and fourth field effect transistor according to the preamble of claim 1.
  • Such a current source circuit is known from the journal "IEEE Journal of Solid States Circuits", June 1977, pages 224 to 231, in particular FIG. 8 on page 228.
  • This circuit is shown in FIG. 1, according to which the field effect transistors T1 to T4 together with the resistor R1 form a reference current source.
  • the two n-channel transistors T1 and T2 represent a first current mirror.
  • the two p-channel transistors T3 and T4 additionally form a second current mirror.
  • i2 i1 • W / L [T2] W / L [T1] where W / L [.] indicate the channel width / channel length ratios of the transistors T1 and T2. From the same transistor sizes the same currents i2 and i1 also result for T1 and T2.
  • a current i3 is removed from the reference current source via an n-channel field effect transistor T5 depending on the selected size ratio of the first current mirror (W / L [T5] / W / L [T1]) is a fraction or a multiple of the current i1, the current i3 naturally having the same temperature dependency as the current i1.
  • the current i1 for the specified circuit dimensioning is 54 nA; however, since the currents i2 and i1 are the same, this reference current source according to FIG. 1 itself already consumes a current of approximately 0.1 ⁇ A. However, this current draw is too large for many applications.
  • Another possibility is to increase the resistance value from R1 to, for example, 10 M ⁇ , as a result of which the current consumption of the reference current source drops to approximately 10 nA, which can thus also be tolerated in the case of "low power" circuits.
  • this resistor R1 is usually - as already explained above - formed by a p-well resistor and its sheet resistance is technology-related is only approx. 2 k ⁇ /, a disproportionately large chip area (approx. 1 mm 2 ) would be required for such a resistor, which is of course also undesirable.
  • the invention is therefore based on the object of providing a current source circuit of the type mentioned at the outset which allows current to be drawn, the current of which is largely constant with a low overall power consumption by the current source circuit.
  • the essence of the invention is to simulate the resistor R1 according to FIG. 1 by a switched capacitance.
  • a stable crystal frequency of, for example, 32.768 kHz is available, a resistance of approx. 10 M ⁇ can easily be realized here with a small capacitance of a few pF.
  • a capacitive resistance of 10.1 M ⁇ results.
  • a thin silicon dioxide layer (gate oxide) is usually used as a dielectric for such a capacitance, which layer is generated in any case during the production of an integrated CMOS circuit.
  • the layer thickness of this oxide is typically a few 100 ⁇ and is manufactured within narrow tolerance limits of less than +/- 5%. Capacities with very small variations in the absolute value can thus be produced without additional process steps, so that under the stipulation of a constant clock frequency, a reference current source with small variations in the current i3 drawn by the transistor T5 with a low current consumption of the circuit itself, e.g. B. less than 10 nA and small chip area requirements.
  • a current source circuit is specified by the characterizing features of patent claim 2, which has an output current with a preset temperature coefficient delivers.
  • the temperature coefficient of this output current is determined by the capacitors provided in the circuit arrangement controlled by the second current mirror, the sign of which is predetermined by the phase position of the clock signals supplied to this circuit arrangement.
  • the basic structure of the current source circuit according to FIG. 2 corresponds to that according to FIG. 1 with 5 field effect transistors T1 to T5.
  • the two n-channel transistors T1 and T2 and the two p-channel transistors T3 and T4 form a first and a second current mirror, for which purpose the control electrode of the transistor T1 with its drain electrode and the control electrode of the transistor T3 also with the latter Drain electrode are connected. Furthermore, the control electrodes of the transistors T1 and T2 or T3 and T4 forming a current mirror are connected to one another.
  • the two transistors T2 and T3 are connected in series via their channel paths and connect the reference potential of the circuit to an operating voltage source V DD , in that the transistor T2 has its source electrode at the reference potential and the source electrode of the transistor T3 is at the operating potential.
  • these two transistors T2 and T3 form a main current branch 2 which connects the reference potential to the operating voltage potential V DD .
  • a further main current branch 1 which is parallel to this is connected by a series connection of the transistor T1, the transistor T4, a resistor R2 and two p -Channel transistors T6 and T7, starting from the reference potential of the circuit in the order given, the source of transistor T6 being at the operating potential of the operating voltage source V DD .
  • an n-channel transistor T5 is provided, the gate electrode of which is connected to the first current mirror via the gate electrode of the transistor T1 and the source electrode of which is also at the reference potential of the circuit.
  • a current i3 can be taken from the drain electrode of this transistor T5, the magnitude of which corresponds to the current i1 flowing in the main circuit 1 with the same dimensions of the transistors T1 and T5. In the equilibrium state of the circuit, the current i1 corresponds to the current i2 flowing in the main circuit 2.
  • a first and second capacitor C1 and C2 are provided, the first capacitor C1 being arranged parallel to the channel path of the transistor T6 and the second capacitor C2 having its first connection at the reference potential of the circuit and with its second connection to the Control electrode of the first and second transistor T1 and T2 is connected.
  • the two control electrodes of the transistors T6 and T7 are supplied with clock signals Cl1 and Cl2, respectively, which are in phase opposition to one another, that is to say if the gate electrode of the transistor T7 receives a low signal (L level), it is simultaneously applied to the gate electrode of the other transistor T6 High signal (H level) on.
  • the capacitor C1 is discharged by the transistor T6 at the L level during the clock phase, since the transistor T6 is turned on and at the same time the transistor T7 is in the blocked state.
  • the control electrode of transistor T6 is at an H level and at the same time the gate electrode of transistor T7 is at an L level, as a result of which capacitor C1 now charges up to a voltage value V C , which is derived from the size relationships of the Transistors T1 to T4 results.
  • the resistor R2 in the main current branch 1 only has the function of a current limitation in this circuit and is intended to prevent the transistors from changing from H to L level when the clock signal Cl1 changes T1 to T4 briefly an excessive current flow occurs.
  • the value of this resistor R2 is not critical and can therefore z. B. be formed by a correspondingly dimensioned p-channel transistor T7 itself, which has the desired resistance value in the conductive state. Since in this circuit the current i1 is not constant over time compared to that according to FIG.
  • the capacitor C2 already mentioned is of the common type Gate connection of the transistors T1, T2 and T5 connected as smoothing capacitance to the reference potential, the value of which is also on the order of a few pF.
  • an output current i3 can be generated with minimal space requirement and low power consumption, which has only small manufacturing-related tolerances and whose absolute value is almost exclusively dependent on the selected transistor dimensions of the transistors T1 to T5, the capacitance value of the capacitor C1 and the Frequency of the applied clock signal Cl1 and Cl2 depends.
  • the achievable temperature coefficient of the output current i3 is fixed and is approximately +3000 ppm / K, since the capacitor C1 used itself has only a very low temperature coefficient.
  • the exemplary embodiment according to FIG. 3 contains, with the switching elements T1 to T7, C1 and C2 and R2, a circuit part which corresponds to the circuit arrangement according to FIG. 2. Therefore, this circuit part in following are no longer explained.
  • this circuit arrangement contains a current source transistor T8 controlled by the first current mirror T1 and T2, which is designed as an n-channel field effect transistor.
  • This transistor T8 which has its source electrode at the reference potential of the circuit, supplies an emitter current i4 for an npn bipolar transistor Q1, which serves as a reference voltage source Q ref .
  • its base and collector electrodes are at the potential of the operating voltage source V DD , in order to thereby generate the base-emitter voltage V BE of the transistor Q1 at the circuit node K1, which is required as a temperature-dependent reference voltage.
  • a series circuit comprising two field effect transistors T9 and T10 connects this circuit node K1 to the operating voltage source V DD , the transistor T9 connected to this potential being of the p-channel type and the transistor T10 connected to the circuit node K1 being the n-channel type.
  • the connection point of the two channel sections of these transistors T9 and T10 leads to a connection K3 of a circuit arrangement 3.
  • a current i5 can be taken from the circuit arrangement 3 and, as will be shown further below, a certain temperature coefficient can be impressed on it.
  • this circuit arrangement 3 contains one of the second current mirror T3 and T4 controlled current source transistor T13 of the p-channel type, whose drain electrode supplies said output current i5 and whose source electrode is connected to the operating voltage source V DD via a series circuit comprising two p-channel effect transistors.
  • the control electrode of the transistor T11 is supplied with the clock signal Cl1 and the control electrode of the transistor T12 with the clock signal Cl2 which is in phase opposition to the clock signal Cl1 or vice versa, the clock signal Cl2 and the transistor T12 with the clock signal Cl1.
  • the clock signal lines are connected to the connections K5 and K6 of the circuit arrangement 3.
  • the output current i5 is withdrawn at a connection K7.
  • a first capacitor C4 of this circuit arrangement 3 is located parallel to the channel path of the transistor T11, corresponding to the capacitor C1, while a second capacitor C3 connects the connection point K4 of the two channel paths of the transistors T11 and T12 to the node K3.
  • the mode of operation of the circuit arrangement according to FIG. 3 is as follows:
  • the field effect transistors T11, T12 and T13 and the capacitors C3 and C4, in cooperation with the circuit described in FIG. 2, provide an output current i5, the temperature profile of which is essentially determined by the dimensioning of the capacitors C3 and C4 and by the reference voltage V BE and their temperature dependence is.
  • the base-emitter voltage V BE of the vertical npn transistor Q1 produced in integrated CMOS technology is subject to only slight fluctuations in the given manufacturing process with the parameter scatter to be expected over a number of manufacturing lots.
  • the absolute value and temperature profile of this voltage are also only influenced by the current density, that is to say by the ratio of the emitter area of the transistor Q1 to the emitter current i4.
  • the current i4 the size of which corresponds to the size of the current i1 with the same dimensioning of the transistors T1 and T8, is only subject to slight production variations, the absolute value and temperature dependency of the reference voltage V BE of the reference voltage source Q ref can be determined very precisely with a given circuit dimensioning.
  • the capacitor C3 of the circuit arrangement 3 is initially disregarded, it is found that the arrangement of the switching elements T11, T12, T13 and C4 corresponds exactly to the circuit arrangement of the switching elements T4, T6, T7 and C1, that is, with the same dimensioning of the Capacitor C4 of transistors T11 to T13 like capacitor C1 and transistors T4, T6 and T7, the output current i5 and its temperature profile will correspond to the current i1.
  • Diagrams a, b according to FIG. 4 show the level curve of the clock signals Cl1 and Cl2 which are in phase opposition to one another.
  • the voltage diagram c shows the voltage curve V C4 of the capacitor C4. At time t 1 , this capacitor C4 - C3 would not be present - charged by a voltage amount -V C4 to a final voltage -V end at time t 2 .
  • this differential voltage - V C4 also follows the temperature profile of this reference voltage V BE , that is, with increasing temperature, the differential voltage - V C4 also becomes smaller.
  • this increases the charging voltage -V C4 that is, the charge of the capacitor C4 from the initial value - V C4 to the final value -V end takes place over a larger voltage range and thus the current i5 that can be drawn also increases.
  • a positive temperature coefficient thus results for the output current i5, the value of which, with the known temperature profile of the reference voltage V BE, being determined only by the ratio of the capacitance values of the capacitors C3 and C4.
  • the terminal K3 is connected to the reference voltage V BE via the transistor T10 which is switched on, while at the same time the capacitor C4 is discharged via the transistor T11 to the operating potential V DD since the clock signal Cl2 switches to L level, that is, capacitor C3 is simultaneously charged to the reference voltage V BE .
  • the transistor T11 is blocked when the clock signal CI2 changes from L to H level.
  • the clock signal Cl1 changes from H to L level, as a result of which the circuit node K3 is switched to the operating voltage potential V DD via the transistor T9.
  • the parallel connection of the two capacitors C3 and C4 is reloaded to the voltage difference + V C4 .
  • the charging of this capacitor C4 up to the final voltage value -V end thus takes place over a wider voltage range -V C4 than in the circuit without temperature compensation according to FIG. 4c, and the output current i5 which can be drawn is therefore initially greater.
  • the reference voltage V BE becomes smaller and the initial charging voltage + V C4 is also reduced, i.e. the charge on the capacitor C4 from the initial voltage value + V C4 to the final voltage value -V end takes place over a smaller voltage range with increasing temperature this means that the current i5 that can be drawn also becomes smaller with increasing temperature, that is to say that i5 has a negative temperature coefficient.
  • circuit arrangements 3 1 , 3 2 , 3 3 ,... are connected in parallel, output currents i5, i5 1 , i5 can be connected to one and the same integrated circuit 2 , i5 3 with different temperature behavior.
  • Such a current source circuit is shown in FIG. 5, the reference voltage source Q ref and the switching elements T1 to T7, C1 and C2 are not shown.
  • Each of these circuit arrangements 3 1 , 3 2 , 3 3 , ... correspond to the structure of the circuit arrangement 3 according to FIG. 3. They thus contain transistors T11 1 , T12 1 , T13 1 , T11 2 , T12 2 , T13 2 , ...
  • a current i5 1 , i5 2 , i5 3 , ... can be taken from terminals K7 1 , K7 2 , K7 3 , ... .
  • FIG. 6 now shows a circuit with which the current source circuit according to FIG. 3 can be supplemented to generate an output current with negative temperature coefficients. It is assumed here that the circuit according to FIG. 3 delivers an output current i5 with a positive temperature coefficient. Instead of the current source circuit according to FIG. 3, FIG. 6 shows only the circuit branches supplying the output current i3 and the output current i5.
  • the output current i3 represents the input current for a current mirror made up of two p-channel field effect transistors, while the output current i5 is fed as an input current into a further current mirror made up of two n-channel field effect transistors T14 and T15.
  • the first current mirror T16, T17 is connected to the operating voltage source V DD and supplies an output current i6 via the transistor T17.
  • the second current mirror T14, T15 is connected to the reference potential of the circuit and supplies an output current i7 via the transistor T15. These two output currents i6 and i7 are summed to an output current i8 at a circuit node K8.
  • the output current i3 and thus also the output current i6 has a very low positive temperature coefficient
  • the output current i5 can have a very large positive temperature coefficient depending on the dimensioning of the capacitors C3 and C4
  • the total output current i8 which can be seen in the circuit according to FIG Difference of the current i6 and the current i7 have a negative temperature coefficient, the value of this temperature coefficient is only specified by the dimensioning of the transistors T15 and T17.
  • FIG. 7 shows a circuit expanded according to FIG. 6, in which further transistors T15 1 , T15 2 , T15 3 , ... and T17 1 , T17 2 , T17 3 , ... are provided as current source transistors controlled by the current mirrors.
  • the paired current source transistors T15 1 , T17 1 and T15 2 , T17 2 and T15 3 , T17 3 each deliver an output current i7 1 , i6 1 and i7 2 , i6 2 and i7 3 , i6 3 , which are each added up in a circuit node K8 1 , K8 2 and K8 3 to produce an output current i8 1 , i8 2 and i8 3 , these output currents i8 1 , i8 2 and i8 3 having different negative temperature coefficients, the values of which also here Temperature coefficients are only specified by the dimensioning of transistors T15 1 to T15 3 and T17 1 to T17 3 .
  • circuits described above which are built in integrated CMOS technology, can, contrary to the conditions shown, also be operated with a different polarity of the operating voltage source V DD by swapping the p- and n-channel transistors and changing the reference point of the reference voltage V BE , the capacitors C1 and C4 from + V DD to -V DD .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Claims (7)

  1. Circuit de source de courant comprenant un premier, un deuxième, un troisième et un quatrième transistor à effet de champ (T1, T2, T3, T4) dont le premier et le deuxième (T1, T2) sont d'un premier type de canal, le troisième et le quatrième (T3, T4) sont d'un second type de canal et les trajets de canal connectés en série des premier et quatrième, respectivement des deuxième et troisième transistors à effet de champ (T1, T4; T2, T3) forment une première respectivement une seconde branche de courant principale (1, 2), circuit dans lequel, pour la formation d'un premier montage symétrique de courant, l'électrode de commande du premier transistor à effet de champ (T1) est reliée à la première branche principale (1) et à l'électrode de commande du deuxième tranistor à effet de champ (T2) ainsi que, pour la formation d'un deuxième montage symétrique de courant, l'électrode de commande du troisième transistor à effet de champ (T3) est reliée à la seconde branche principale (2) et à l'électrode de commande du quatrième transistor à effet de champ (T4), et dans lequel, pour le prélèvement d'un premier courant de source de courant (i3), on a prévu un cinquième transistor à effet de champ (T5) commandé par le premier montage symétrique de courant et dont l'électrode de commande est reliée à l'électrode de commande du premier transistor à effet de champ (T1), caractérisé en ce qu'une première paire de transistors à effet de champ (T6, T7) est prévue, dont les transistors (T6, T7) sont connectés comme un montage en série dans la première branche principale (1) entre le quatrième transistor (T4) du deuxième montage symétrique de courant (T3, T4) et une source de tension de service (VDD), qu'un premier condensateur (C1) est monté en parallèle avec le trajet de canal du transistor (T6) de la première paire de transistors à effet de champ (T6, T7) relié à la source de tension de service (VDD), qu'un deuxième condensateur (C2) relie les électrodes de commande interconnectées des premier et deuxième transistors à effet de champ (T1, T2) au potentiel de référence ou de base du circuit et que des signaux d'horloge (Cl1, Cl2) en opposition de phase sont appliqués aux électrodes de commande des transistors (T6, T7) de la première paire de transistors à effet de champ.
  2. Circuit de source de courant selon la revendication 1, caractérisé en ce qu'une source de tension de référence (Qréf) ainsi qu'une deuxième paire de transistors à effet de champ (T9, T10) sont prévues, les deux transistors de cette paire étant de types de canal opposés et formant un montage en série raccordé à la source de tension de référence (Qréf), un signal d'horloge commun (Cl1) étant appliqué aux électrodes de commande reliées entre elles de ces deux transistors à effet de champ (T9, T2) et que l'on a prévu une partie ou dispositif de circuit (3) ayant les caractéristiques suivantes:
    a) pour le prélèvement d'un deuxième courant de source de courant (i5), ce dispositif de circuit (3) comprend un transistor de source de courant (T13) commandé par le deuxième montage symétrique de courant (T3, T4), ainsi qu'une troisième paire de transistors à effet de champ (T11, T12) dont les deux transistors (T11, T12) forment un montage en série qui relie le transistor de source de courant (T13) à la source de tension de service (VDD),
    b) un premier et un deuxième condensateur (C3, C4) sont prévus en plus, dont une borne est reliée chaque fois au point de connexion (K4) des deux transistors de la troisième paire (T11, T12) et l'autre borne des premier et deuxième condensateurs (C3, C4) est reliée au point de connexion des deux transistors de la deuxième paire (T9, T10) ou se trouve au potentiel de la source de tension de service (VDD),
    c) la commande de la troisième paire de transistors à effet de champ (T11, T12) s'effectue par l'attaque des électrodes de commande par des signaux d'horloge (Cl1, Cl2) en opposition de phase.
  3. Circuit de source de courant selon la revendication 2, caractérisé en ce que, pour le prélèvement d'autres courants de source de courant (i51, i52, ...), on a prévu d'autres parties ou dispositifs de circuit (31, 32, ...) comprenant chacun un transistor de source de courant (T131, T132, ...), une troisième paire de transistors à effet de champ (T111, T121; T112, T122; ...), ainsi qu'un premier et un deuxièmle condensateur (C31, C41; C32, C42; ...), les dispositifs de circuit ayant chacun les caractéristiques a, b, c.
  4. Circuit de source de courant selon la revendication 2, caractérisé en ce qu'un troisième montage symétrique de courant (T16, T17) est prévu, auquel est appliqué, en tant que courant d'entrée, le premier courant de source de courant (i3), qu'un quatrième montage symétrique de courant (T14, T15) est prévu, auquel est appliqué, en tant que courant d'entrée, le deuxième courant de source de courant (i5), et que, pour le prélèvement d'un troisième courant de source de courant (i8), les courants de sortie de ces deux montages symétriques de courant sont amenés à un noeud de circuit commun (K8).
  5. Circuit de source de courant selon la revendication 4, caractérisé en ce que le troisième montage symétrique de courant (T16, T17) commande un premier groupe de transistors de source de courant (T171, T172, ...) et le quatrième montage symétrique de courant (T14, T15) commande un deuxième groupe de transistors de source de courant (T151, T152, ...) et que, pour le prélèvement d'autres ou troisièmes courants de source de courant (i81 i82, ...), les courants de sortie des transistors de source de courant, rassemblés par paire et appartenant respectivement au premier et au deuxième groupe, sont amenés chaque fois à un noeud de circuit commun (K81, K82, ...).
  6. Circuit de source de courant selon une des revendications précédentes, caractérisé en ce qu'un transistor de source de courant (T8) est prévu, qui est commandé par le premier montage symétrique de courant (T1, T2) et que, comme source de tension de référence (Qréf), on a prévu un transistor bipolaire (Q1) monté en diode et dont le trajet émetteur-collecteur est disposé en série avec le transistor de source de courant (T8), l'électrode de collecteur se trouvant au potentiel de la source de tension de service (VDD) et la tension de référence (VBE) étant prélevable sur l'électrode d'émetteur.
  7. Circuit de source de courant selon une des revendications précédentes, caractérisé en ce qu'il est réalisé selon la technologie CMOS.
EP91116900A 1990-10-29 1991-10-04 Circuit de source de courant Expired - Lifetime EP0483537B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4034371 1990-10-29
DE4034371A DE4034371C1 (fr) 1990-10-29 1990-10-29

Publications (3)

Publication Number Publication Date
EP0483537A2 EP0483537A2 (fr) 1992-05-06
EP0483537A3 EP0483537A3 (en) 1992-11-25
EP0483537B1 true EP0483537B1 (fr) 1996-06-05

Family

ID=6417260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91116900A Expired - Lifetime EP0483537B1 (fr) 1990-10-29 1991-10-04 Circuit de source de courant

Country Status (5)

Country Link
US (1) US5204612A (fr)
EP (1) EP0483537B1 (fr)
JP (1) JP2504647B2 (fr)
DE (2) DE4034371C1 (fr)
HK (1) HK59797A (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201155C1 (fr) * 1992-01-17 1993-01-28 Texas Instruments Deutschland Gmbh, 8050 Freising, De
DE4315299C1 (de) * 1993-05-07 1994-06-23 Siemens Ag Stromquellenanordnung
KR960004573B1 (ko) * 1994-02-15 1996-04-09 금성일렉트론주식회사 기동회로를 갖는 기준전압발생회로
FR2721771B1 (fr) * 1994-06-27 1996-09-06 Sgs Thomson Microelectronics Dispositif de mise en veille d'une source de polarisation.
DE19524185B4 (de) * 1995-04-18 2009-01-29 Tridonicatco Gmbh & Co. Kg Gleichrichterschaltung
JPH08293744A (ja) * 1995-04-21 1996-11-05 Mitsubishi Electric Corp 半導体回路
EP0778509B1 (fr) * 1995-12-06 2002-05-02 International Business Machines Corporation Générateur de courant de référence compensé en température avec des résistances à fort coéfficient de température
US5808460A (en) * 1997-09-29 1998-09-15 Texas Instruments Incorporated Rapid power enabling circuit
US5818294A (en) * 1996-07-18 1998-10-06 Advanced Micro Devices, Inc. Temperature insensitive current source
US5854563A (en) * 1996-07-19 1998-12-29 Vlsi Technology, Inc. Process control monitoring system and method therefor
WO1998011660A1 (fr) * 1996-09-11 1998-03-19 Macronix International Co., Ltd. Circuit d'alimentation basse tension
US5877616A (en) * 1996-09-11 1999-03-02 Macronix International Co., Ltd. Low voltage supply circuit for integrated circuit
US5936392A (en) * 1997-05-06 1999-08-10 Vlsi Technology, Inc. Current source, reference voltage generator, method of defining a PTAT current source, and method of providing a temperature compensated reference voltage
KR19990047008A (ko) * 1997-12-02 1999-07-05 구본준 외부조건 변화에 둔감한 기준전압 발생회로
US6014042A (en) * 1998-02-19 2000-01-11 Rambus Incorporated Phase detector using switched capacitors
US6222350B1 (en) * 2000-01-21 2001-04-24 Titan Specialties, Ltd. High temperature voltage regulator circuit
DE10015276A1 (de) * 2000-03-28 2001-10-11 Infineon Technologies Ag Stromerzeugungseinrichtung und Spannungserzeugungseinrichtung
DE10042586B4 (de) * 2000-08-30 2010-09-30 Infineon Technologies Ag Referenzstromquelle mit MOS-Transistoren
DE10065379A1 (de) * 2000-12-27 2002-07-18 Infineon Technologies Ag Stromspiegelschaltung
GB0211564D0 (en) 2002-05-21 2002-06-26 Tournaz Technology Ltd Reference circuit
KR100492095B1 (ko) * 2003-02-24 2005-06-02 삼성전자주식회사 스타트업 회로를 갖는 바이어스회로
DE102004002007B4 (de) 2004-01-14 2012-08-02 Infineon Technologies Ag Transistoranordnung mit Temperaturkompensation und Verfahren zur Temperaturkompensation
US7673881B2 (en) * 2007-01-29 2010-03-09 Sapo U.S.A. Corp. Target game
JP2010033448A (ja) * 2008-07-30 2010-02-12 Nec Electronics Corp バンドギャップレファレンス回路
FR2973128B1 (fr) * 2011-03-22 2014-01-10 Altis Semiconductor Snc Source de courant de polarisation pour amplificateur operationnel utilisant des paires differentielles cmos

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380944A (en) * 1976-10-16 1978-07-17 Toshiba Corp Semiconductor circuit
NL8001558A (nl) * 1980-03-17 1981-10-16 Philips Nv Stroomstabilisator opgebouwd met veldeffekttransistor van het verrijkingstype.
JPS57186564A (en) * 1981-05-12 1982-11-17 Lucas Industries Ltd Antiskid braking system for car
JPS5880718A (ja) * 1981-11-06 1983-05-14 Mitsubishi Electric Corp 基準電圧発生回路
JPS6146508A (ja) * 1984-08-11 1986-03-06 Fujitsu Ltd 定電流源安定化回路
JPH0810415B2 (ja) * 1984-12-04 1996-01-31 日本電気株式会社 基準電圧源
IT1184820B (it) * 1985-08-13 1987-10-28 Sgs Microelettronica Spa Generatore di corrente stabilizzata ad alimentazione singola,particolarmente per circuiti integrati di tipo mos
US4706013A (en) * 1986-11-20 1987-11-10 Industrial Technology Research Institute Matching current source
JPS63237609A (ja) * 1987-03-26 1988-10-04 Toshiba Corp 電圧制御型発振回路
GB2213011B (en) * 1987-09-16 1991-09-25 Philips Electronic Associated A method of and a circuit arrangement for processing sampled analogue electricals
GB2225885A (en) * 1988-12-08 1990-06-13 Philips Electronic Associated Integrator circuit

Also Published As

Publication number Publication date
EP0483537A2 (fr) 1992-05-06
HK59797A (en) 1997-05-16
DE59107888D1 (de) 1996-07-11
JPH05189071A (ja) 1993-07-30
DE4034371C1 (fr) 1991-10-31
EP0483537A3 (en) 1992-11-25
US5204612A (en) 1993-04-20
JP2504647B2 (ja) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0483537B1 (fr) Circuit de source de courant
EP1704452B1 (fr) Systeme transistor a compensation de temperature et procede de compensation de temperature
DE2641860A1 (de) Integrierte stromversorgungsschaltung
DE2104043A1 (de) Operationsverstärker
DE3017669C2 (de) Verstärkerschaltungsanordnung
DE69221999T2 (de) Bezugsstromschleife
DE3937501A1 (de) Verfahren und vorrichtung zur erzeugung einer vorspannung
DE102004027298B4 (de) Auf dem Chip ausgeführter Hochpassfilter mit großer Zeitkonstanten
DE3640368A1 (de) Spannungsverstaerkerschaltung mit niedrigem offset
DE3933986A1 (de) Komplementaerer stromspiegel zur korrektur einer eingangsoffsetspannung eines "diamond-followers" bzw. einer eingangsstufe fuer einen breitbandverstaerker
EP0010149B1 (fr) Source de référence sur un circuit intégré TEC et mise en oeuvre de cette source de référence
DE69317521T2 (de) Eingangsschaltung für eine integrierte Schaltung
DE3243674C2 (de) Bezugsspannungsschaltung
DE2250625C3 (de) Schaltungsanordnung zur Konstanthaltung eines an eine Last gelieferten Stromes
DE3323446A1 (de) Eingangssignalpegelwandler fuer eine mos-digitalschaltung
EP0351639B1 (fr) Circuit d'entrée pour amplificateur haute fréquence
EP1523703B1 (fr) Circuit de reference largeur de bande interdite
DE2745302B1 (de) Schaltungsanordnung zur Kontrolle der Versorgungsspannung fuer vorzugsweise integrierte Schaltkreise
DE69707940T2 (de) Ruhestromeinstellung für Verstärkerausgangsstufe
DE2635243C2 (de) Aktive integrierte Schaltungsanordnung
DE69522196T2 (de) Pufferschaltung und Vorspannungsschaltung
DE4129334A1 (de) Praezisions-mos-widerstand
DE2751886A1 (de) Monolithisch integrierte, rueckgekoppelte verstaerkerschaltung
EP1435029A2 (fr) Procede de production de tension de sortie
DE3688486T2 (de) Differenzverstärker mit Stromsteuerung zum Erhöhen der Ausgangssignalsteigung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19930119

17Q First examination report despatched

Effective date: 19940712

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEMIC TELEFUNKEN MICROELECTRONIC GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REF Corresponds to:

Ref document number: 59107888

Country of ref document: DE

Date of ref document: 19960711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960626

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TEMIC TELEFUNKEN MICROELECTRONIC GMBH TRANSFER- TE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010917

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031009

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501