EP0466717B1 - Precision reference-voltage source - Google Patents

Precision reference-voltage source Download PDF

Info

Publication number
EP0466717B1
EP0466717B1 EP90904754A EP90904754A EP0466717B1 EP 0466717 B1 EP0466717 B1 EP 0466717B1 EP 90904754 A EP90904754 A EP 90904754A EP 90904754 A EP90904754 A EP 90904754A EP 0466717 B1 EP0466717 B1 EP 0466717B1
Authority
EP
European Patent Office
Prior art keywords
resistor
reference voltage
voltage source
component
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90904754A
Other languages
German (de)
French (fr)
Other versions
EP0466717A1 (en
Inventor
Gerhard Conzelmann
Karl Nagel
Gerhard Fiedler
Andreas Junger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0466717A1 publication Critical patent/EP0466717A1/en
Application granted granted Critical
Publication of EP0466717B1 publication Critical patent/EP0466717B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • the invention relates to a precision reference voltage source according to the preamble of independent claim 1.
  • US Pat. No. 4,490,670 also discloses a monolithically integrated reference voltage source which operates on the bandgap principle and in which the temperature dependence of the reference voltage is linearized.
  • a monolithically integrated reference voltage source which operates on the bandgap principle and in which the temperature dependence of the reference voltage is linearized.
  • three current paths, each with an associated reference transistor, are required for linearization, and a resistor that is also required for linearization lies outside of these current paths parallel to the emitter-collector path of one of the three reference transistors.
  • a reference voltage source according to the preamble of the main claim is also known.
  • this requires a further reference transistor and two further resistors which cooperate with the further reference transistor.
  • the precision reference voltage source according to the invention with the characterizing features of independent claim 1 has the advantage that the piezo sensitivity is reduced. Further advantages result from the dependent claims 2 to 15.
  • the temperature coefficient of the bandgap voltage of silicon contains higher-order terms (Tsividis, YP: "Accurate Analysis of Temperature Effects in I C - V BE Characteristics with Application to Bandgap Reference Sources", IEEE Journal of Solid-State Circuits, Vol. SC- 15, No. 6, Dec. 1980).
  • the following zones are available for the monolithically integrated circuit: substrate (P ⁇ ), insulation diffusion (PP+), epitaxy (N ⁇ ), buried layer diffusion (N+), deep collector diffusion (N+) , Base diffusion (P), emitter diffusion (N+), metallization and possibly other zones such as doped polysilicon or Cr / Ni resistors (for "fused links"); other zones may also be present depending on the process, such as an upper and a lower insulation diffusion or a base connection diffusion.
  • FIG. 1 shows the basic circuit of a band gap reference according to Brokaw, supplemented by a starter circuit.
  • FIGS. 2 to 4 show the temperature responses of the reference voltages of an exemplary circuit for resistors with three different temperature coefficients in the temperature range from -40 ° C ⁇ Tj ⁇ + 160 ° C.
  • Figures 5 and 6 represent modifications of the circuit of Figure 1
  • Figure 7 shows the temperature response of the reference voltage generated.
  • FIG. 8 the circuit and in FIG. 9 the layout of cross-coupled lateral transistors to reduce their piezo sensitivity are shown, likewise in FIGS. 10 and 11 the arrangement in the layout for the critical NPN reference transistors.
  • the two reference transistors 23, 24 operate on the current mirror with the two lateral PNP transistors 25, 26, the common base of which lies on the collector 24 via the PNP emitter follower 27.
  • the PNP emitter follower 6 is coupled out from the collector of the transistor 23, the emitter of which is connected to the base of the NPN emitter follower 7.
  • the emitter of transistor 7 is not connected directly at point 17, but via resistor 8 at point 17.
  • the reference voltage to be tapped at terminal 18 is thus higher in accordance with the transformation ratio of resistors 8, 9.
  • the transistors 25, 26, 27, 6, 7 form an operational amplifier which is dynamically stabilized by means of the capacitor 10.
  • the transistor 4 with resistor 5, which also works as a current mirror, delivers a sufficiently small “starting current” into the circuit.
  • the positive pole of the operating voltage is connected to terminal 16, the negative to terminal 15.
  • the temperature curve of the reference voltage of an example in the circuit according to FIG. 1 is shown in FIG. 2.
  • the band gap voltage is shown as a function of the temperature between -40 ° C. and + 160 ° C. for an embodiment in which the horizontal tangent is in the middle of the Temperature range is set and the resistors 21 and 22, as usual with simple references, are shown by means of the base diffusion.
  • the reference voltage has a fairly parabolic temperature profile, which is known to depend on the manufacturing process, that is to say on doping and doping profiles, and can therefore also contain higher-order terms in other embodiments.
  • the storage at the two corner temperatures is slightly more than - 5 mV, corresponding to an average temperature coefficient of - 4%.
  • the temperature response can already be significantly improved by using emitter diffusion instead of basic diffusion for resistors 21, 22, as can be seen in FIG. If, in our example, the resistors 21 and 22 are also given the temperature coefficient "0" in a purely theoretical manner, the calculation shown in FIG. 4 still shows a deviation of approx. -2.3 mV with higher-order components.
  • Figure 5 shows a modification of the circuit for an execution of the resistors with a zone of the process, which contains a larger square term ⁇ 21. Since ⁇ 22 must always be smaller than ⁇ 21, in this case the resistor 22 is split into at least two partial resistors 32, 42 and a zone with a smaller ⁇ is to be used for the compensation resistor 42. A sufficiently good compensation for this example results if the difference between the coefficients of the quadratic terms ⁇ 21 and ⁇ 22 is 0.74 ⁇ 10 ⁇ 6. If the resistors 21, 32 are implemented by means of the base diffusion and the resistor 42 by means of the emitter diffusion, the temperature profile according to FIG. 7 is 3 435 ⁇ for the resistor 21, 393 ⁇ for the resistor 32 and 60 ⁇ for the resistor 42.
  • the resistors should be formed with zones that have the smallest possible piezo effect, such as emitter diffusion or other heavily n-doped zones.
  • the temperature coefficient of the square resistance contains practically no higher order terms.
  • the solution to this is shown in FIG. 6. So that the resistor 21 with a higher square portion than the resistor 22, it is split into the partial resistors 31 and 41 and the compensation resistor 41 by means of a zone with a larger square term.
  • the difference ⁇ 21 - ⁇ 22 should now be 0.49 ⁇ 10 ⁇ 6.
  • the resistor 31 receives the value 3 135 ⁇ and the resistor 22 the value 453 ⁇ , the correction in base diffusion 41 receives the value 300 ⁇ .
  • the course of the temperature response also corresponds to that of FIG. 7.
  • the difference between the resulting quadratic terms in the case of compensation in resistor 22 by means of resistor 42 is in the range 0.3 ⁇ 10 ⁇ 6 ⁇ ⁇ 21 - ⁇ 22 ⁇ 1.2 ⁇ 10 ⁇ 6. If, however, is compensated in the resistor 21 by means of the resistor 41, the range is to be set at 0.2 ⁇ 10 ⁇ 6 ⁇ ⁇ 21 ⁇ 0.8 ⁇ 10 ⁇ 6.
  • ⁇ 21 and ⁇ 22 can be calculated from the known terms of the zones used for the resistors.
  • ⁇ 21 ( ⁇ 31.R31 + ⁇ 41.R41).
  • R31 + R41 (R31 + R41) ⁇ 1
  • R32 + R42 (R32 + R42) ⁇ 1.
  • Resistors with differing temperature coefficients can also be represented by modulating the width of the resistors in the design due to the different amount of lateral underdiffusion in the overall resistance, especially since only minor differences can be generated in the quadratic term or a third order term has to be generated . Observations according to third-order terms appear to occur with particularly narrow resistances. Due to the general dependence of the temperature coefficients on the manufacturing process, no specific information can be given.
  • the specified compensations can only be adhered to to a certain extent if the actual value of the maximum of the band gap tension is also at the temperature on which the calculation is based. It is therefore advantageous to adjust to this maximum.
  • the resistors 21 and 22 are represented by more than one zone. This means that different process variations, i.e. resistance variations, are to be expected, which lead to a variation in the division ratio. In the case of a precision reference voltage source, the division ratio is to be adjusted to its setpoint by changing the compensation resistor 41 or 42.
  • the precision reference voltage source requires only a chip area of approximately 0.3 mm 2, despite resistors 31 and 22 including a four-stage matching network, which are shown by means of the relatively low-resistance emitter diffusion, measures for reducing the piezo sensitivity are advantageous.
  • the collectors of the two PNP lateral transistors 25 and 26 are therefore split into two identical sub-collectors in accordance with the circuit according to FIG. 8 and cross-connected to one another.
  • a further transistor 11 is inserted between the transistors 25 and 26 to derive any base currents in order to achieve higher operating temperatures.
  • FIG. 9 A possible layout for this is shown in FIG. 9.
  • the NPN reference transistors 23 and 24 are also arranged symmetrically to one another, specifically for an emitter ratio of 1: 2 and 1: 4 according to FIG. 10 and for an emitter ratio of 1: 4 and 1: 8 according to Figure 11. Only four sub-transistors 24 are shown in the latter.
  • the approximately piezocompensated ratio 1: 8 can easily be established by filling up the free spaces with another four partial transistors. Wiring is not a problem even with eight sub-transistors 24 arranged around transistor 23, since the eight sub-transistors can be accommodated in a single collector trough.
  • Precision reference voltage sources can hardly be produced specifically with the previous methods even with complex technologies and are therefore usually expensive selection types from a larger production lot. In contrast, according to the proposals of the invention, they can be produced specifically using standard technologies. Their area requirement is hardly larger than that of ordinary reference voltage sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Proposed is a monolithic-integrated precision reference-voltage source based on the bandgap principle and suitable for use over a wide temperature range. The parabolic temperature/reference-voltage curve produced by the source is made linear using the processing means available in the monolithic integration without the need for additional active components such as transistors and diodes. The precision voltage-reference source includes two resistors (21, 22) represented by the n-doped emitter diffusion zone.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Präzisions-Referenzspannungsquelle nach der Gattung des unabhängigen Anspruchs 1.The invention relates to a precision reference voltage source according to the preamble of independent claim 1.

Die Anforderungen an die Kenndaten monolithisch integrierter Schaltungen für das Kraftfahrzeug werden laufend höher. Wegen des großen Temperaturbereichs von -40°C C ≦ Tj ≦ + 150° C und darüber sind Referenzspannungsquellen mit extrem kleinem bzw. definiert vorgebbarem Temperaturkoeffizienten (TK) und geringer Piezo-Empfindlichkeit besonders wichtig.The requirements for the characteristic data of monolithically integrated circuits for the motor vehicle are constantly increasing. Because of the large temperature range of -40 ° CC ≦ T j ≦ + 150 ° C and above, reference voltage sources with an extremely small or defined temperature coefficient (TK) and low piezo sensitivity are particularly important.

Aus dem Aufsatz von G. C. M. Meijer, P. C. Schmale und K. van Zalinge "A New Curvature-Corrected Bandgap Reference" in IEEE Journal of Solid-State Circuits, Vol. SC-17, Nr. 6, Dez. 1982 ist bereits eine Präzisions-Referenzspannungsquelle bekannt, die 47 Komponenten auf einer Chipfläche von 4 mm² enthält und einen IC-Herstellungsprozeß mit Nickel-Chrom-Widerstands-Technologie erfordert. Ihr Temperaturkoeffizient wird mit 50 ppm in einem Temperaturbereich von 25° C ≦ Tj ≦ 85° C angegeben.From the article by GCM Meijer, PC Schmale and K. van Zalinge "A New Curvature-Corrected Bandgap Reference" in IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 6, Dec. 1982, a precision Known reference voltage source, which contains 47 components on a chip area of 4 mm² and requires an IC manufacturing process with nickel-chromium resistance technology. Their temperature coefficient is given as 50 ppm in a temperature range of 25 ° C ≦ T j ≦ 85 ° C.

Aus dem Aufsatz von A. P. Brokaw "A Simple Three-Terminal IC Bandgap-Reference" in IEEE Journal of Solid-State Circuits, Vol. SC-9, Nr, Dez. 1974 ist des weiteren bereits eine nach dem Bandgap-Prinzip arbeitende monolisthisch integrierte Referenzspannungsquelle bekannt, die 29 Komponenten auf einer Chipfläche von 1,47 mm² enthält und ebenfalls mit Nickel-Chrom-Widerstands-Technologie hergestellt wird. Ihr Temperaturkoeffizient wird mit 5 bis 60 ppm für einen Temperaturbereich von -55°C ≦ Tj ≦ 125°C angegeben.AP Brokaw's article "A Simple Three-Terminal IC Bandgap-Reference" in IEEE Journal of Solid-State Circuits, Vol. SC-9, No., Dec. 1974 also includes a monolistically integrated one that works according to the bandgap principle Known reference voltage source, which contains 29 components on a chip area of 1.47 mm² and is also manufactured with nickel-chrome resistance technology. Their temperature coefficient is given as 5 to 60 ppm for a temperature range of -55 ° C ≦ T j ≦ 125 ° C.

Aus der US-PS 4 490 670 ist ferner eine nach dem Bandgap-Prinzip arbeitende, monolithisch integrierte Referenzspannungsquelle bekannt, bei der die Temperaturabhängigkeit der Referenzspannung linearisiert ist. Bei dieser bekannten Schaltungsanordnung sind zur Linearisierung drei Strompfade mit jeweils einem zugeordneten Referenztransistor notwendig, und ein darüber hinaus für die Linearisierung benötigter Widerstand liegt außerhalb dieser Strompfade parallel zur Emitter-Kollektor-Strecke eines der drei Referenztransistoren.US Pat. No. 4,490,670 also discloses a monolithically integrated reference voltage source which operates on the bandgap principle and in which the temperature dependence of the reference voltage is linearized. In this known circuit arrangement, three current paths, each with an associated reference transistor, are required for linearization, and a resistor that is also required for linearization lies outside of these current paths parallel to the emitter-collector path of one of the three reference transistors.

Aus der GB-OS 2 199 677 ist ferner eine Referenzspannungsquelle nach der Gattung des Hauptanspruchs bekannt. Diese benötigt zur Linearisierung außer dem ersten und dem zweiten Referenztransistor und dem ersten und dem zweiten Widerstand einen weiteren Referenztransistor und zwei mit dem weiteren Referenztransistor zusammenarbeitende weitere Widerstände.From GB-OS 2 199 677 a reference voltage source according to the preamble of the main claim is also known. For linearization, in addition to the first and the second reference transistor and the first and the second resistor, this requires a further reference transistor and two further resistors which cooperate with the further reference transistor.

Aus der US-PS 4 250 445 ist des weiteren eine Referenzspannungsquelle nach der Gattung des Hauptanspruchs bekannt, bei der die beiden Widerstände als Nickel-Chrom-Schichtwiderstände ausgebildet sind und demzufolge den Temperaturkoeffizienten "Null" bzw. einen sehr kleinen Temperaturkoeffizienten haben. Bei dieser bekannten Referenzspannungsquelle ist der quadratische Term der Referenzspannung bereits mit einem Widerstand kompensierbar, dessen Temperaturkoeffizient linear mit der Temperatur zusammenhängt. Diese Referenzspannungsquelle hat aber den Nachteil, daß für die Herstellung der Nickel-Chrom-Schichtwiderstände zusätzliche Verfahrensschritte, nämlich das Aufbringen der Nickel-Chrom-Widerstandsschicht samt zugehörigem Fotolackprozeß, erforderlich sind, was einen erheblichen Kostenmehraufwand bedeutet.From US Pat. No. 4,250,445 a reference voltage source according to the type of the main claim is further known, in which the two resistors are designed as nickel-chromium sheet resistors and consequently have the temperature coefficient "zero" or a very small temperature coefficient. In this known reference voltage source, the quadratic term of the reference voltage can already be compensated for with a resistor whose temperature coefficient is linearly related to the temperature. However, this reference voltage source has the disadvantage that additional process steps, namely the application of the nickel-chromium resistance layer together with the associated photoresist process, are required for the production of the nickel-chromium film resistors, which means a considerable additional cost.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Präzisions-Referenzspannungsquelle mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs 1 hat demgegenüber den Vorteil, daß bei ihr die Piezo-Empfindlichkeit gesenkt ist. Weitere Vorteile ergeben sich aus den abhäungigen Ansprüchen 2 bis 15.The precision reference voltage source according to the invention with the characterizing features of independent claim 1 has the advantage that the piezo sensitivity is reduced. Further advantages result from the dependent claims 2 to 15.

Der Temperaturkoeffizient der Bandgap-Spannung von Silizium enthält Terme höherer Ordnung (Tsividis, Y. P.: "Accurate Analysis of Temperature Effects in IC - VBE Characteristics with Application to Bandgap Reference Sources", IEEE Journal of Solid-State Circuits, Vol. SC-15, Nr. 6, Dez. 1980).The temperature coefficient of the bandgap voltage of silicon contains higher-order terms (Tsividis, YP: "Accurate Analysis of Temperature Effects in I C - V BE Characteristics with Application to Bandgap Reference Sources", IEEE Journal of Solid-State Circuits, Vol. SC- 15, No. 6, Dec. 1980).

Für die monolithisch integrierte Schaltung stehen folgende Zonen zur Verfügung: Substrat (P⁻), Isolierungs-Diffusion (P-P⁺), Epitaxie (N⁻), buried-layer-Diffusion (N⁺), deep-collector-Diffusion (N⁺), Basis-Diffusion (P), Emitter-Diffusion (N⁺), Metallisierung und evtl. weitere Zonen wie dotiertes Polysilizium bzw. Cr/Ni-Widerstände (für "fused-links"); auch weitere Zonen können prozeßbedingt vorhanden sein, wie etwa eine obere und eine untere Isolierungs-Diffusion oder eine Basisanschluß-Diffusion.The following zones are available for the monolithically integrated circuit: substrate (P⁻), insulation diffusion (PP⁺), epitaxy (N⁻), buried layer diffusion (N⁺), deep collector diffusion (N⁺) , Base diffusion (P), emitter diffusion (N⁺), metallization and possibly other zones such as doped polysilicon or Cr / Ni resistors (for "fused links"); other zones may also be present depending on the process, such as an upper and a lower insulation diffusion or a base connection diffusion.

Betrachtet man die Temperaturkoeffizienten der spezifischen bzw. flächenhaften Widerstände R(ΔT) = R To [1 + α(ΔT) + β (ΔT)² +γ(ΔT)³]

Figure imgb0001

dieser Zonen, so finden sich welche mit (nahezu) linearem Temperturkoeffizienten wie die N⁺-dotierten bzw. metallischen Zonen und solche mit einem mehr oder weniger hohen Anteil an Termen höherer Ordnung wie die P-dotierten. Ebenso finden sich Zonen mit mehr oder weniger hoher Piezo-Empfindlichkeit.Consider the temperature coefficients of the specific or area resistances R (ΔT) = R To [1 + α (ΔT) + β (ΔT) 2 + γ (ΔT) 3]
Figure imgb0001

of these zones, there are those with (almost) linear temperature coefficients like the N⁺-doped or metallic zones and those with a more or less high proportion of higher order terms like the P-doped. There are also zones with more or less high piezo sensitivity.

Zeichnungdrawing

Die Erfindung sei anhand der Figuren 1 bis 11 erläutert. Figur 1 zeigt die Grundschaltung einer Bandgap-Referenz nach Brokaw, ergänzt durch eine Anwerfschaltung. In den Figuren 2 bis 4 sind die Temperaturgänge der Referenzspannungen einer beispielhaften Schaltung für Widerstände mit drei verschiedenen Temperaturkoeffizienten im Temperaturbereich von - 40 °C ≦ Tj ≦ + 160 °C wiedergegeben. Die Figuren 5 und 6 stellen Modifikationen der Schaltung nach Figur 1 dar, Figur 7 den damit erzeugten Temperaturgang der Referenzspannung. In Figur 8 ist die Schaltung und in Figur 9 das Layout überkreuzgekoppelter Lateraltransistoren zur Verminderung ihrer Piezoempfindlichkeit aufgezeigt, ebenso in Figur 10 und 11 die Anordnung im Layout für die kritischen NPN-Referenz-Transistoren.The invention will be explained with reference to Figures 1 to 11. Figure 1 shows the basic circuit of a band gap reference according to Brokaw, supplemented by a starter circuit. FIGS. 2 to 4 show the temperature responses of the reference voltages of an exemplary circuit for resistors with three different temperature coefficients in the temperature range from -40 ° C ≦ Tj ≦ + 160 ° C. Figures 5 and 6 represent modifications of the circuit of Figure 1, Figure 7 shows the temperature response of the reference voltage generated. In FIG. 8 the circuit and in FIG. 9 the layout of cross-coupled lateral transistors to reduce their piezo sensitivity are shown, likewise in FIGS. 10 and 11 the arrangement in the layout for the critical NPN reference transistors.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Bandgap-Referenz nach Figur 1 besteht aus den beiden Referenz-Transistoren 23 und 24, wobei der Transistor 24 in der Regel durch Parallelschalten von K gleichen Transistoren 23 mit 2 ≦ K ≦ 16 hergestellt ist. Wegen der formalen Abhängigkeit von In K ist K = 4 bereits ausreichend und K über 8 kaum gebräuchlich. Zusammen mit dem Widerstand 22 erzeugt die Anordnung am Widerstand 21 eine temperaturproportionale Spannung, die den negativen Temperaturgang der Basis-Emitter-Spannung des Transistors 23 bei richtiger Auslegung bereits recht gut kompensiert. Die Potentialdifferenz 17/15 stellt die Summenspannung dar. Sie entspricht recht genau dem Potential des Bandabstands (von Silizium).The bandgap reference according to FIG. 1 consists of the two reference transistors 23 and 24, the transistor 24 generally being produced by connecting K identical transistors 23 with 2 ≦ K ≦ 16 in parallel. Because of the formal dependence on In K, K = 4 is already sufficient and K above 8 is hardly used. Together with the resistor 22, the arrangement at the resistor 21 generates a temperature-proportional voltage which, when properly designed, compensates for the negative temperature response of the base-emitter voltage of the transistor 23 quite well. The potential difference 17/15 represents the total voltage. It corresponds exactly to the potential of the bandgap (of silicon).

Die beiden Referenz-Transistoren 23, 24 arbeiten auf den Stromspiegel mit den beiden lateralen PNP-Transistoren 25, 26, deren gemeinsame Basis über den PNP-Emitterfolger 27 am Kollektor 24 liegt. Entsprechend wird mit dem PNP-Emitterfolger 6 vom Kollektor des Transistors 23 ausgekoppelt, dessen Emitter mit der Basis des NPN-Emitterfolgers 7 verbunden ist. Um auch größere Spannungen als die Bandgap-Spannung zu erhalten, ist der Emitter des Transistors 7 nicht direkt am Punkt 17, sondern über den Widerstand 8 am Punkt 17 angeschlossen. Die an der Klemme 18 abzunehmende Referenzspannung ist somit entsprechend dem Transformationsverhältnis der Widerstände 8, 9 höher. Die Transistoren 25, 26, 27, 6, 7 bilden einen Operationsverstärker, der mittels des Kondensators 10 dynamisch stabilisiert ist. Der ebenfalls als Stromspiegel arbeitende Transistor 4 mit Widerstand 5 liefert einen hinreichend kleinen "Anlaufstrom" in die Schaltung. Der positive Pol der Betriebsspannung ist mit der Klemme 16, der negative mit der Klemme 15 verbunden.The two reference transistors 23, 24 operate on the current mirror with the two lateral PNP transistors 25, 26, the common base of which lies on the collector 24 via the PNP emitter follower 27. Correspondingly, the PNP emitter follower 6 is coupled out from the collector of the transistor 23, the emitter of which is connected to the base of the NPN emitter follower 7. In order to obtain voltages greater than the bandgap voltage, the emitter of transistor 7 is not connected directly at point 17, but via resistor 8 at point 17. The reference voltage to be tapped at terminal 18 is thus higher in accordance with the transformation ratio of resistors 8, 9. The transistors 25, 26, 27, 6, 7 form an operational amplifier which is dynamically stabilized by means of the capacitor 10. The transistor 4 with resistor 5, which also works as a current mirror, delivers a sufficiently small “starting current” into the circuit. The positive pole of the operating voltage is connected to terminal 16, the negative to terminal 15.

Den Temperaturverlauf der Referenzspannung eines Beispiels in der Schaltung nach Figur 1 zeigt Figur 2. Dort ist die Bandgap-Spannung als Funktion der Temperatur zwischen - 40 °C und + 160 °C für eine Ausführung wiedergegeben, bei der die horizontale Tangente in die Mitte des Temperaturbereichs gelegt ist und die Widerstände 21 und 22, wie bei einfachen Referenzen üblich, mittels der Basis-Diffusion dargestellt sind. Wie daraus hervorgeht, weist die Referenzspannung einen ziemlich parabelförmigen Temperaturverlauf auf, der bekanntlich vom Herstellungsprozeß, also von Dotierungen und Dotierungsprofilen abhängig ist und somit bei anderen Ausführungen auch noch Terme höherer Ordnung enthalten kann. An den beiden Ecktemperaturen beträgt die Ablage etwas mehr als - 5 mV, entsprechend einem mittleren Temperaturkoeffizienten von - 4 %.The temperature curve of the reference voltage of an example in the circuit according to FIG. 1 is shown in FIG. 2. There, the band gap voltage is shown as a function of the temperature between -40 ° C. and + 160 ° C. for an embodiment in which the horizontal tangent is in the middle of the Temperature range is set and the resistors 21 and 22, as usual with simple references, are shown by means of the base diffusion. As can be seen from this, the reference voltage has a fairly parabolic temperature profile, which is known to depend on the manufacturing process, that is to say on doping and doping profiles, and can therefore also contain higher-order terms in other embodiments. The storage at the two corner temperatures is slightly more than - 5 mV, corresponding to an average temperature coefficient of - 4%.

In diesem Beispiel läßt sich der Temperaturgang bereits dadurch deutlich verbessern, daß für die Widerstände 21, 22 die Emitterdiffusion anstelle der Basisdiffusion herangezogen wird, wie die Figur 3 erkennen läßt. Werden ferner in unserem Beispiel - rein theoretisch - die Widerstände 21 und 22 mit dem Temperaturkoeffizienten "0" versehen, so zeigt die in Figur 4 wiedergegebene Rechnung immer noch eine Abweichung von ca. - 2,3 mV mit Anteilen höherer Ordnung.In this example, the temperature response can already be significantly improved by using emitter diffusion instead of basic diffusion for resistors 21, 22, as can be seen in FIG. If, in our example, the resistors 21 and 22 are also given the temperature coefficient "0" in a purely theoretical manner, the calculation shown in FIG. 4 still shows a deviation of approx. -2.3 mV with higher-order components.

Dieser stets in etwa parabelförmige Verlauf läßt sich nun dadurch kompensieren, daß in Figur 1 dem Widerstand 21 ein Temperaturkoeffizient mit größeren Anteilen an Termen höherer Ordnung gegeben wird als dem Widerstand 22.This always approximately parabolic course can now be compensated for in that the resistance 21 in FIG. 1 is given a temperature coefficient with larger proportions of terms of higher order than the resistor 22.

Figur 5 zeigt eine Modifikation der Schaltung für eine Ausführung der Widerstände mit einer Zone des Prozesses, die einen größeren quadratischen Term β₂₁ enthält. Da nun β₂₂ stets kleiner sein muß als β₂₁, ist in diesem Fall der Widerstand 22 in mindestens zwei Teil-Widerstände 32, 42 aufzuspalten und für den Kompensations-Widerstand 42 eine Zone mit kleinerem β zu verwenden. Eine hinreichend gute Kompensation für dieses Beispiel ergibt sich, wenn die Differenz der Koeffizienten der quadratischen Terme β₂₁ und β₂₂ bei 0,74 · 10⁻⁶ liegt. Führt man die Widerstände 21, 32 mittels der Basisdiffusion und den Widerstand 42 mittels der Emitterdiffusion aus, so ergibt sich der Temperaturverlauf nach Figur 7 mit 3 435 Ω für den Widerstand 21, 393Ω für den Widerstand 32 und 60Ω für den Widerstand 42.Figure 5 shows a modification of the circuit for an execution of the resistors with a zone of the process, which contains a larger square term β₂₁. Since β₂₂ must always be smaller than β₂₁, in this case the resistor 22 is split into at least two partial resistors 32, 42 and a zone with a smaller β is to be used for the compensation resistor 42. A sufficiently good compensation for this example results if the difference between the coefficients of the quadratic terms β₂₁ and β₂₂ is 0.74 · 10⁻⁶. If the resistors 21, 32 are implemented by means of the base diffusion and the resistor 42 by means of the emitter diffusion, the temperature profile according to FIG. 7 is 3 435 Ω for the resistor 21, 393Ω for the resistor 32 and 60Ω for the resistor 42.

Wie bereits erwähnt, sollten die Widerstände mit Zonen gebildet werden, die einen möglichst geringen Piezoeffekt aufweisen, wie etwa der Emitterdiffusion oder anderer stärker n-dotierter Zonen. In diesem Fall enthält der Temperaturkoeffizient des Quadratwiderstands praktisch keine Terme höherer Ordnung. Die Lösung hierzu ist in Figur 6 wiedergegeben. Damit sich der Widerstand 21 mit einem höheren quadratischen Anteil als der Widerstand 22 darstellen läßt, ist er in die Teil-Widerstände 31 und 41 aufzuspalten und der Kompensations-Widerstand 41 mittels einer Zone mit größerem quadratischem Term auszuführen. Die Differenz β₂₁ - β₂₂ sollte jetzt 0,49 · 10⁻⁶ betragen. Enthält die Emitterdiffusions-Zone keine Terme höhere Ordnung und weist die für den Kompensations-Widerstand 41 benutzte Basisdiffusion wieder den gleichen quadratischen Term auf wie im vorigen Beispiel, so erhält der Widerstand 31 den Wert 3 135Ω und der Widerstand 22 den Wert 453Ω , die Korrektur in Basisdiffusion 41 erhält den Wert 300Ω. Der Verlauf des Temperaturgangs entspricht ebenfalls dem von Figur 7.As already mentioned, the resistors should be formed with zones that have the smallest possible piezo effect, such as emitter diffusion or other heavily n-doped zones. In this case the temperature coefficient of the square resistance contains practically no higher order terms. The solution to this is shown in FIG. 6. So that the resistor 21 with a higher square portion than the resistor 22, it is split into the partial resistors 31 and 41 and the compensation resistor 41 by means of a zone with a larger square term. The difference β₂₁ - β₂₂ should now be 0.49 · 10⁻⁶. If the emitter diffusion zone does not contain any higher-order terms and if the base diffusion used for the compensation resistor 41 has the same square term as in the previous example, the resistor 31 receives the value 3 135Ω and the resistor 22 the value 453Ω, the correction in base diffusion 41 receives the value 300Ω. The course of the temperature response also corresponds to that of FIG. 7.

Werden zur Kompensation des quadratischen Terms der Referenzspannung prozeßbedingte Streuungen berücksichtigt, so liegt die Differenz der resultierenden quadratischen Terme bei einer Kompensation im Widerstand 22 mittels des Widerstands 42 im Bereich 0,3 · 10⁻⁶ ≦ β₂₁ - β₂₂≦ 1,2 · 10⁻⁶. Wird dagegen im Widerstand 21 mittels des Widerstands 41 kompensiert, so ist der Bereich mit 0,2 · 10⁻⁶≦ β₂₁ ≦ 0,8 · 10⁻⁶ anzusetzen.If process-related scatter is taken into account to compensate for the quadratic term of the reference voltage, the difference between the resulting quadratic terms in the case of compensation in resistor 22 by means of resistor 42 is in the range 0.3 · 10⁻⁶ ≦ β₂₁ - β₂₂ ≦ 1.2 · 10⁻ ⁶. If, however, is compensated in the resistor 21 by means of the resistor 41, the range is to be set at 0.2 · 10⁻⁶ ≦ β₂₁ ≦ 0.8 · 10⁻⁶.

Die resultierenden Terme β₂₁ und β₂₂ lassen sich aus den bekannten Termen der für die Widerstände verwendeten Zonen berechnen. Für eine Kompensation im Bereich des Widerstands 21 ist allgemein β₂₁ = (β₃₁.R₃₁ + β₄₁.R₄₁).(R₃₁ + R₄₁)⁻¹

Figure imgb0002

bzw. für eine Kompensation im Bereich des Widerstands 22 β₂₂ = (β₃₂.R₃₂ + β₄₂.R₄₂).(R₃₂ + R₄₂)⁻¹.
Figure imgb0003
The resulting terms β₂₁ and β₂₂ can be calculated from the known terms of the zones used for the resistors. For compensation in the area of the resistor 21 is general β₂₁ = (β₃₁.R₃₁ + β₄₁.R₄₁). (R₃₁ + R₄₁) ⁻¹
Figure imgb0002

or for compensation in the area of the resistor 22 β₂₂ = (β₃₂.R₃₂ + β₄₂.R₄₂). (R₃₂ + R₄₂) ⁻¹.
Figure imgb0003

Treten, wie aus der Literatur ersichtlich, beim Temperaturgang der Referenzspannung auch Terme höherer Ordnung auf, so ist es vorteilhaft, auch diese zu berücksichtigen.If, as can be seen from the literature, higher-order terms also occur in the temperature response of the reference voltage, it is advantageous to also take these into account.

Widerstände mit differierenden Temperaturkoeffizienten lassen sich wegen des unterschiedlich großen Anteils der seitlichen Unterdiffusion am Gesamt-Widerstand auch durch eine Modulation der Breite der Widerstände im Design darstellen, zumal ja nur geringfügige Differenzen im quadratischen Term zu erzeugen sind bzw. ein Term dritter Ordnung zu erzeugen ist. Beobachtungen nach scheinen Terme dritter Ordnung bei besonders schmalen Widerständen aufzutreten. Wegen der generellen Abhängigkeit der Temperaturkoeffizienten vom Herstellungsprozeß können hierzu keine konkreten Angaben gemacht werden.Resistors with differing temperature coefficients can also be represented by modulating the width of the resistors in the design due to the different amount of lateral underdiffusion in the overall resistance, especially since only minor differences can be generated in the quadratic term or a third order term has to be generated . Observations according to third-order terms appear to occur with particularly narrow resistances. Due to the general dependence of the temperature coefficients on the manufacturing process, no specific information can be given.

Die angegebenen Kompensationen sind einigermaßen exakt nur einzuhalten, sofern der Istwert des Maximums der Bandgapspannung auch bei der der Rechnung zugrundegelegten Temperatur liegt. Es ist deshalb vorteilhaft, auf dieses Maximum hin abzugleichen.The specified compensations can only be adhered to to a certain extent if the actual value of the maximum of the band gap tension is also at the temperature on which the calculation is based. It is therefore advantageous to adjust to this maximum.

Bei den vorgeschlagenen Lösungen sind die Widerstände 21 und 22 durch mehr als eine Zone dargestellt. Dies bedeutet, daß auch mit unterschiedlichen Prozeß-Streuungen, also Widerstands-Streuungen zu rechnen ist, die zu einer Streuung des Teilerverhältnisses führen. Bei einer Präzisions-Referenzspannungsquelle ist das Teilerverhältnis auf seinen Sollwert abzugleichen durch Verändern des Kompensations-Widerstands 41 oder 42. Methoden zum Abgleich von Widerstands-Netzwerken beim Waferproben sind in A. B. Grebene: "Bipolar and MOS Analog Integrated Circuit Design" by John Wiley & Sons, 1984, Seiten 155 bis 159 beschrieben und nicht Gegenstand der Erfindung.In the proposed solutions, the resistors 21 and 22 are represented by more than one zone. This means that different process variations, i.e. resistance variations, are to be expected, which lead to a variation in the division ratio. In the case of a precision reference voltage source, the division ratio is to be adjusted to its setpoint by changing the compensation resistor 41 or 42. Methods for matching resistor networks in wafer samples are described in AB Grebene: "Bipolar and MOS Analog Integrated Circuit Design" by John Wiley & Sons , 1984, pages 155 to 159 and not the subject of the invention.

Obwohl die Präzisions-Referenzspannungsquelle trotz mittels der relativ niederohmigen Emitterdiffusion dargestellten Widerständen 31 und 22 einschließlich eines vierstufigen Abgleich-Netzwerks nur eine Chipfläche von ca. 0,3 mm² benötigt, sind Maßnahmen zur Verringerung der Piezoempfindlichkeit vorteilhaft. Die Kollektoren der beiden PNP-Lateraltransistoren 25 und 26 sind deshalb entsprechend der Schaltung nach Figur 8 in jeweils zwei gleiche Teilkollektoren aufgespalten und kreuzweise miteinander verbunden. Zwischen den Transistoren 25 und 26 ist zum Ableiten eventueller Basisströme ein weiterer Transistor 11 eingefügt, um so höhere Betriebstemperaturen zu erreichen.Although the precision reference voltage source requires only a chip area of approximately 0.3 mm 2, despite resistors 31 and 22 including a four-stage matching network, which are shown by means of the relatively low-resistance emitter diffusion, measures for reducing the piezo sensitivity are advantageous. The collectors of the two PNP lateral transistors 25 and 26 are therefore split into two identical sub-collectors in accordance with the circuit according to FIG. 8 and cross-connected to one another. A further transistor 11 is inserted between the transistors 25 and 26 to derive any base currents in order to achieve higher operating temperatures.

Ein mögliches Layout hierzu zeigt Figur 9. Auch die NPN-Referenz-Transistoren 23 und 24 sind symmetrisch zueinander angeordnet, und zwar für ein Emitterverhältnis 1:2 und 1:4 nach Figur 10 und für ein Emitterverhältnis 1:4 und 1:8 nach Figur 11. In letzterer sind nur vier Teiltransistoren 24 eingezeichnet. Durch Auffüllen der freien Plätze mit weiteren vier Teiltransistoren läßt sich leicht das in etwa piezokompensierte Verhältnis 1:8 herstellen. Die Verdrahtung ist auch bei acht um den Transistor 23 angeordneten Teiltransistoren 24 kein Problem, da sich die acht Teiltransistoren in einer einzigen Kollektorwanne unterbringen lassen.A possible layout for this is shown in FIG. 9. The NPN reference transistors 23 and 24 are also arranged symmetrically to one another, specifically for an emitter ratio of 1: 2 and 1: 4 according to FIG. 10 and for an emitter ratio of 1: 4 and 1: 8 according to Figure 11. Only four sub-transistors 24 are shown in the latter. The approximately piezocompensated ratio 1: 8 can easily be established by filling up the free spaces with another four partial transistors. Wiring is not a problem even with eight sub-transistors 24 arranged around transistor 23, since the eight sub-transistors can be accommodated in a single collector trough.

Präzisions-Referenzspannungsquellen sind mit den bisherigen Methoden selbst mit aufwendigen Technologien kaum gezielt herzustellen und deshalb in der Regel teure Selektionstypen aus einem größeren Fertigungslos. Demgegenüber lassen sie sich nach den Vorschlägen der Erfindung gezielt mit Standard-Technologien herstellen. Ihr Flächenbedarf ist kaum größer als der gewöhnlicher Referenzspannungsquellen.Precision reference voltage sources can hardly be produced specifically with the previous methods even with complex technologies and are therefore usually expensive selection types from a larger production lot. In contrast, according to the proposals of the invention, they can be produced specifically using standard technologies. Their area requirement is hardly larger than that of ordinary reference voltage sources.

Claims (15)

  1. Monolithically integrated precision reference voltage source employing the bandgap principle, having a first N-P-N reference transistor (23) and a second N-P-N reference transistor (24) which are connected in parallel with one another in order to divide a current into two current paths, and each of which has an emitter electrode, a collector electrode and a base electrode, the base electrodes of the two reference transistors (23, 24) being connected to one another and to an output terminal (18) at which the reference voltage is taken off and a series circuit comprising a first resistor (21) and a second resistor (22) further leading from a supply potential (15) to the emitter electrode of the second N-P-N reference transistor (24) and the emitter electrode of the first N-P-N reference transistor (23) being connected to the node between the first (21) and the second (22) resistor, and having a first P-N-P current-balance transistor (25) and a second P-N-P current-balance transistor (26) for impressing the currents on the current paths of the two N-P-N reference transistors (23, 24), characterised in that, to reduce the influence of the piezoelectric effect on the two P-N-P current-balance transistors (25, 26) mentioned, which are constructed as lateral transistors, their collectors are halved in size and the halves are each interconnected crosswise (Figure 8, Figure 9).
  2. Precision reference voltage source according to Claim 1, characterised in that, to reduce the influence of the piezoelectric effect on the N-P-N reference transistors (23, 24) driven at different current density, the at least two identical component transistors of the second reference transistor (24) are arranged symmetrically with respect to the first reference transistor (23) in relation to the piezoelectric effect.
  3. Precision reference voltage source according to Claim 1 or 2, characterised in that, to compensate for the temperature coefficient of higher order remaining in the two reference transistors (23, 24), the two resistors (21, 22) are formed as least partly by zones having different temperature coefficients, and in that the quadratic term of the temperature coefficient of the first resistor (21) is greater than the quadratic term of the temperature coefficient of the second resistor (22).
  4. Precision reference voltage source according to Claim 3, characterised in that, in a production of the first resistor (21) by means of a zone having a larger quadratic term of the temperature coefficient, the second resistor (22) is split up into the series circuit comprising a first component resistor (32) and a second component resistor (42), the first component (32) being constructed by means of the same zone as the first resistor (21) and the second component resistor (42), serving as compensation resistor, being constructed by means of a zone with a smaller quadratic term (Figure 5).
  5. Precision reference voltage source according to Claim 4, characterised in that the difference in the quadratic terms of the temperature coefficients β₂₁ of the first resistor (21) and β₂₂ of the resulting second resistor (22) produced by the sum of the component resistors (32, 42) is in the range of 0.3 x 10⁻⁶ ≦ β₂₁ - β₂₂ ≦ 1.2 × 10⁻⁶.
  6. Precision reference voltage source according to Claim 4, characterised in that the first resistor (21) and the first component resistor (32) are produced by means of the base diffusion zone and the second component resistor (42), serving as compensation resistor, by means of the emitter diffusion zone (Figure 5).
  7. Precision reference voltage source according to Claim 3, characterised in that, in a production of the second resistor (22) by means of a zone having a smaller quadratic term, the first resistor (21) is split up into the series circuit comprising a third component resistor (31) and a fourth component resistor (41), the third component resistor (31) being constructed by means of the same zone as the second resistor (22) and the fourth component resistor (41), serving as compensation resistor, by means of a zone having a larger quadratic term (Figure 6).
  8. Precision reference voltage source according to Claim 7, characterised in that the difference in the quadratic terms of the temperature coefficients β₂₁ of the resulting first resistor (21) produced by the sum of the component resistors (31, 41 ) and β₂₂ of the second resistor (22) is in the range of 0.2 x 10⁻⁶ ≦ β₂₁ - β₂₂ ≦ 0.8 × 10⁻⁶.
  9. Precision reference voltage source according to Claim 7, characterised in that the second resistor (22) and the third component resistor (31) are produced by means of the emitter diffusion zone and the fourth component resistor (41), serving as compensation resistor, by means of the base diffusion zone (Figure 6).
  10. Precision reference voltage source according to one of Claims 3 to 9, characterised by an alignment of the actual value of the reference voltage, which actual value deviates from the reference value as a result of unavoidable manufacturing tolerances, with the reference value.
  11. Precision reference voltage source according to Claim 10, characterised by an alignment by altering at least one of the two component resistors (41 or 42, respectively), serving a compensation resistors.
  12. Precision reference voltage source according to Claim 2, characterised in that the second reference transistor (24) comprises four or eight, respectively, identical component resistors (Figure 10, Figure 11).
  13. Precision reference voltage source according to one of Claims 3 to 12, characterised in that the third-order term for the correction of the temperature coefficients of higher order remaining in the two reference transistors (23, 24) driven with different current density is also concomitantly taken into account.
  14. Precision reference voltage source according to Claim 13, characterised in that the temperature coefficient of at least one component resistor of the resistor combinations (21 and 22; 31, 41 and 22; or 21, 32 and 42, respectively) can be altered by altering its width in the design.
  15. Precision reference voltage source according to one of Claims 3 to 14, characterised in that a defined temperature coefficient, deviating from the temperature coefficient "0", of the reference voltage is adjusted by altering the divider ratio of the resistors [21, 22; 21, (32 + 42); or 22, (31 + 41)] referred to the value of the divider ratio to achieve the temperature coefficient "0".
EP90904754A 1989-04-01 1990-03-21 Precision reference-voltage source Expired - Lifetime EP0466717B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3910511 1989-04-01
DE3910511 1989-04-01
DE4005756 1990-02-23
DE4005756A DE4005756A1 (en) 1989-04-01 1990-02-23 Monolithically integrated precision reference voltage source - has parabolic course of temp. relation of reference voltage linearised without additional components

Publications (2)

Publication Number Publication Date
EP0466717A1 EP0466717A1 (en) 1992-01-22
EP0466717B1 true EP0466717B1 (en) 1993-08-11

Family

ID=25879416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904754A Expired - Lifetime EP0466717B1 (en) 1989-04-01 1990-03-21 Precision reference-voltage source

Country Status (6)

Country Link
US (1) US5258702A (en)
EP (1) EP0466717B1 (en)
JP (1) JP2818289B2 (en)
DE (2) DE4005756A1 (en)
ES (1) ES2042287T3 (en)
WO (1) WO1990012353A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930001577A (en) * 1991-06-19 1993-01-16 김광호 Reference voltage generator
DE4344447B4 (en) * 1993-12-24 2009-04-02 Atmel Germany Gmbh Constant current source
US5448158A (en) * 1993-12-30 1995-09-05 Sgs-Thomson Microelectronics, Inc. PTAT current source
US5701097A (en) * 1995-08-15 1997-12-23 Harris Corporation Statistically based current generator circuit
US5783973A (en) 1997-02-24 1998-07-21 The Charles Stark Draper Laboratory, Inc. Temperature insensitive silicon oscillator and precision voltage reference formed therefrom
US6150871A (en) * 1999-05-21 2000-11-21 Micrel Incorporated Low power voltage reference with improved line regulation
IT1313386B1 (en) * 1999-06-09 2002-07-23 St Microelectronics Srl METHOD TO OBTAIN A REFERENCE OF VOLTAGE AND CONSTANT CURRENT AT VARIING TEMPERATURE WITH A SINGLE BAND-GAP STAGE.
JP2005122277A (en) * 2003-10-14 2005-05-12 Denso Corp Band gap constant voltage circuit
DE102004062357A1 (en) * 2004-12-14 2006-07-06 Atmel Germany Gmbh Supply circuit for generating a reference current with predeterminable temperature dependence
US20060170487A1 (en) * 2005-01-31 2006-08-03 International Business Machines Corporation A voltage reference circuit for ultra-thin oxide technology and low voltage applications
US20130300395A1 (en) * 2012-05-11 2013-11-14 Gregory A. Maher Accessory detection over temperature
RU2580458C1 (en) * 2015-02-25 2016-04-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Донской Государственный Технический Университет" (Дгту) Reference voltage source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250445A (en) * 1979-01-17 1981-02-10 Analog Devices, Incorporated Band-gap voltage reference with curvature correction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242693A (en) * 1978-12-26 1980-12-30 Fairchild Camera & Instrument Corporation Compensation of VBE non-linearities over temperature by using high base sheet resistivity devices
US4362984A (en) * 1981-03-16 1982-12-07 Texas Instruments Incorporated Circuit to correct non-linear terms in bandgap voltage references
US4443753A (en) * 1981-08-24 1984-04-17 Advanced Micro Devices, Inc. Second order temperature compensated band cap voltage reference
US4490670A (en) * 1982-10-25 1984-12-25 Advanced Micro Devices, Inc. Voltage generator
GB8630980D0 (en) * 1986-12-29 1987-02-04 Motorola Inc Bandgap reference circuit
US4808908A (en) * 1988-02-16 1989-02-28 Analog Devices, Inc. Curvature correction of bipolar bandgap references
US4939442A (en) * 1989-03-30 1990-07-03 Texas Instruments Incorporated Bandgap voltage reference and method with further temperature correction
US5053640A (en) * 1989-10-25 1991-10-01 Silicon General, Inc. Bandgap voltage reference circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250445A (en) * 1979-01-17 1981-02-10 Analog Devices, Incorporated Band-gap voltage reference with curvature correction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Handbook of Semiconductor Electronics, Lloyd P. Hunter.McGraw Hill Book Company, New York, U.S.A. Third Edition,1970 *

Also Published As

Publication number Publication date
DE59002341D1 (en) 1993-09-16
DE4005756A1 (en) 1990-10-04
JP2818289B2 (en) 1998-10-30
JPH04504320A (en) 1992-07-30
WO1990012353A1 (en) 1990-10-18
EP0466717A1 (en) 1992-01-22
US5258702A (en) 1993-11-02
ES2042287T3 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
DE69024619T2 (en) Band gap reference voltage circuit
DE2154904C3 (en) Temperature compensated DC reference voltage source
DE2951835C2 (en)
DE2537564C2 (en) Process for manufacturing an integrated circuit and the use of this process
DE68926201T2 (en) Operational amplifier circuit
EP0466717B1 (en) Precision reference-voltage source
DE69736827T2 (en) VOLTAGE REFERENCE WITH BARRIER FIELD EFFECT AND MANUFACTURING METHOD
DE2854901A1 (en) CONSTANT VOLTAGE GENERATOR FOR GENERATING A CONSTANT VOLTAGE WITH A SPECIFIED TEMPERATURE COEFFICIENT
EP0483537B1 (en) Current source circuit
DE2309154B2 (en) POWER AMPLIFIER
EP0508327A2 (en) CMOS-Bandgap reference circuit
DE2541352A1 (en) OSCILLATOR IN C-MOS TECHNOLOGY
DE2935346A1 (en) INTEGRATED REFERENCE VOLTAGE SOURCE IN MOS TRANSISTOR TECHNOLOGY
DE3127839A1 (en) TEMPERATURE COMPENSATED REFERENCE VOLTAGE SOURCE
DE68919764T2 (en) Fully differential reference voltage source.
DE3447002C2 (en)
DE3047685A1 (en) TEMPERATURE STABLE VOLTAGE SOURCE
DE2250625A1 (en) CURRENT REGULATOR
DE2520890A1 (en) TRANSISTOR AMPLIFIER OF THE DARLINGTON DESIGN WITH INTERNAL PRELOAD
DE69005649T2 (en) Voltage generator circuit.
DE4109893A1 (en) INTEGRATED CIRCUIT ARRANGEMENT WITH A DIFFERENTIAL AMPLIFIER
DE3002894C2 (en) Monolithically integrated semiconductor circuit with transistors
DE2541887C3 (en) Monolithically integrated semiconductor circuit with an I2 L configuration
DE4129334A1 (en) Precision MOSFET resistance circuit - uses pair of drain- and source-coupledMOSFET(s) and associated source followers
DE3716577C2 (en) Current mirror circuit of great performance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920615

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930816

REF Corresponds to:

Ref document number: 59002341

Country of ref document: DE

Date of ref document: 19930916

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042287

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040321

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050413

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090526

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100321