EP0452375A1 - Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen. - Google Patents

Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen.

Info

Publication number
EP0452375A1
EP0452375A1 EP90901571A EP90901571A EP0452375A1 EP 0452375 A1 EP0452375 A1 EP 0452375A1 EP 90901571 A EP90901571 A EP 90901571A EP 90901571 A EP90901571 A EP 90901571A EP 0452375 A1 EP0452375 A1 EP 0452375A1
Authority
EP
European Patent Office
Prior art keywords
stator
transport elements
probes
transport
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90901571A
Other languages
English (en)
French (fr)
Other versions
EP0452375B1 (de
Inventor
Goetz Heidelberg
Andreas Gruendl
Joachim Kroemer
Peter Ehrhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L3 Magnet Motor GmbH
Original Assignee
Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH filed Critical Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH
Priority to AT90901571T priority Critical patent/ATE84009T1/de
Publication of EP0452375A1 publication Critical patent/EP0452375A1/de
Application granted granted Critical
Publication of EP0452375B1 publication Critical patent/EP0452375B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic

Definitions

  • the invention relates to a device for transporting goods, in particular in production sites, with transport elements which can be moved along at least one movement path, and with a linear motor drive device for driving the transport elements, the stator poles arranged in series on the movement path and has permanent magnets arranged in series on the transport elements, characterized by:
  • probes arranged on the movement path which respond in the presence of a transport element which is in a specific position relative to the probe location;
  • power converters from which coils can be supplied to the stator poles;
  • the transport device according to the invention is particularly suitable for moving products during the production process in factories.
  • a particularly preferred example is the movement of motor vehicle bodies during their manufacture in a motor vehicle factory.
  • the device can be designed for an automatic functional sequence, wherein additional or overlaid control interventions by hand are preferably possible. It is not just a question of the technology of having transport elements driven by linear motors, but the electronic control of the device monitors the observance of certain (minimum) distances between the transport elements and provides precise positioning when the transport elements are stopped at certain ones Points, especially at stations where production processes are to be carried out on the product located on the transport element. For example, there are stations for welding body parts together, for automatically installing parts in the motor vehicle body, for painting the body and the like.
  • the transport device is preferably equipped with universal stator pole coils, with which the necessary operating functions of the transport elements, in particular their acceleration, movement at a certain speed, deceleration and precise stopping, are carried out.
  • the transport device can be equipped throughout with the same type of coil.
  • probes In principle, one can make do with a single type of probe arranged on the movement path.
  • the signals supplied by these probes enable the electronic control to perform the switching on and off of the power converters correctly and with the correct sign, as well as the distance monitoring of the transport elements and the exact stopping positioning of the transport elements.
  • driving probes which provide signals for the timely switching on and off of the converters
  • proximity probes which provide signals for the distance control of the driving elements
  • Positioning probes which provide signals for the precise stopping of the driving elements.
  • probes are preferred which respond to the magnetic fields of magnets on the transport elements. Hall probes are a typical example.
  • the probes can respond to the permanent magnets of the linear motor drive device which are present anyway on the transport elements. However, one can also provide separate permanent magnets on the transport elements to which the (various) probes respond. Furthermore, it is possible to provide different influencing means on the transport elements for responding to different types of probes as they belong to the prior art, for example mirrors and optical sensors or the like.
  • FIG. 1 shows a detail of a transport device to illustrate a linear motor drive device for transport elements and the basic functioning of an electronic control therefor;
  • Figure 2 shows a short section of the linear motor drive device of Figure 1 on a larger scale to illustrate the technical structure.
  • FIG. 3 is a detailed, another
  • Embodiment of an electronic control for a transport device Embodiment of an electronic control for a transport device.
  • FIG. 1 schematically shows a transport element 2 which can be moved along a movement path 4, for example on the floor of a factory hall.
  • a row of permanent magnets 6 extending along the transport element 2 with changing polarity and constant pitch 8 is fastened.
  • a concrete example is about 30 to 50 permanent magnets 6 and a length of the permanent magnet row of 3 to 5 m.
  • a plurality of stator elements 10 are arranged one behind the other along the movement path.
  • Each stator element 10 contains a plurality of stator poles 12 and coils 14 in the longitudinal direction of the movement path (cf. FIG. 2).
  • a concrete example is approximately 8 to 12 stator poles 12 per stator element 10 and a length of the stator element 10 of approximately 0.8 to 1.2 m. Within each stator element 10 there is the same pole pitch 8 as in the permanent magnet row. At the transition from each stator element 10 to the adjacent stator element, the pole pitch is somewhat larger than within the stator element 10.
  • the stator poles 12 belonging to a stator element 10 are called a stator pole group, and the coils 14 belonging to a stator element 10 are called a coil group.
  • the permanent magnets 6 consist of Sm-Co material or of Fe-Nd material or of ferrite material. Such permanent magnet materials have a magnetic conductivity such as air, preferably a relative permeability of 1 to 2, so that smaller deviations of the air gap 18 from the design air gap width, for example due to deviations of the hall floor 4 from an exactly flat extension or due to the compression of the Tires of wheels 16 or same have no significant effects on the drive power of the linear motor drive device.
  • the width of the air gap 18 is approximately 10 mm.
  • a converter 20 is provided, which in each case briefly supplies current to the coils 14 of the stator element 10 connected in series, with an alternating current direction.
  • the current intensity flowing through the associated converter 20 is lower than if the coils 14 were connected in parallel.
  • the six power converters 20 shown are connected in parallel to one another to a common power supply.
  • the power supply has a mains rectifier 22, a choke 24 and a capacitor 26 for smoothing, and a switching power supply 28.
  • the switching power supply 28 supplies one or more auxiliary voltages which are lower than the power supply voltage and which are required by the converters 20.
  • the area between the power supply and the converters 20 is referred to as DC intermediate circuit 30.
  • the six stator elements 10 shown together represent a stator section 32.
  • a Hall probe 34 is assigned to each stator element 10 of this stator section 32 on the movement path 4 and responds to the magnetic fields of the permanent magnets 6 of the transport element 2.
  • the Signals from the probes 34 form the basis for electronic control of the linear motor drive device 36.
  • the electronic control has an electronic motor control unit 38 which, based on the signals from the probes 34, controls the switching on and off of the converters 20 in the correct and signed manner.
  • Superordinate to the motor control units 38 of a plurality of current sections 32 is a microprocessor control unit 40, which performs additional control functions which will be explained in more detail below.
  • a microprocessor control unit 40 is assigned a programmable controller 42.
  • An operating unit 44 is connected to the programmable controller 42.
  • the linear motor section 32 composed of six stator elements 10, the motor control unit 38 with the associated probes 34, the six power converters 20 and possibly the associated power supply together form a power unit.
  • Several such power units are connected to the microprocessor control unit 40 and the programmable logic controller 42, so that the entire linear motor drive device 36 is formed in this way.
  • the signals from the probes 34 can also form a basis for controlling the desired distances between the individual transport elements 2 on the movement path 4.
  • the control option is mentioned as an example that the microprocessor control unit 40 only permits the stator section 32 to be switched on again when the transport element 2 in question has left the stator section 32 in question.
  • probe 34 also provide the basis for a precise stopping of the transport element 2 in question, for example by interrupting the power supply when passing the last permanent magnet 6 or by triggering a braking device, for example when passing the tenth permanent magnet of the transport element 2.
  • the "distance control" and the "brake control” can be assigned to the microprocessor control unit 40.
  • FIG. 1 shows a brake chopper 46 connected to the DC voltage intermediate circuit 30 and this is followed by one or more braking resistors 48.
  • the energy released when the relevant transport element 2 is decelerated or braked is transferred via the brake chopper 46 destroyed in braking resistor 48.
  • the network rectifier 22 being designed as a two-way rectifier.
  • the individual converters 20 are switched on and off with a time delay due to the time-shifted signals of the probes 34.
  • the frequency of the signals of the probe 34 determines the speed of the transport element and the required time offset, for example in the motor control unit 38 or in the microprocessor.
  • Control unit 40 can be calculated.
  • all the coils 14 of a stator element 10 under consideration are connected to a common converter 20 and thus form a coil group switched with the same phase.
  • stator elements 10 it is possible to form in-phase or almost in-phase coil groups connected to a common converter 20 in a different type of interconnection.
  • the offset between the stator elements 10 is selected such that the stator element 10 arranged on the far left in the middle stator section 32 and the stator element 10 arranged on the far left in the adjacent stator section 32 have a total offset of one or two permanent magnet divisions 8 (or a multiple thereof) has, for example, the two foremost coils 14 of these two stator elements 10, possibly also further analog stator elements 10, connected to a common converter 20.
  • stator pole groups or coil groups which are distributed more apart along the movement path 4. As a result, if one converter 20 fails, the drive function of the device is less disturbed.
  • the power supply described does not have to be provided separately for each power unit described, consisting essentially of an electronic motor control unit 38 and a number of power converters 20, although this can be recommended, for example, for high, installed drive powers. It is quite possible to have a common power supply for several Stator sections 32 or also to be provided for the entire linear motor drive device of the entire movement path 4.
  • the power units described can be provided decentrally, for example essentially spatially assigned to the respective stator section 32. Alternatively, it is possible to arrange the power units centrally or in groups and to connect them electrically to the individual stator sections 32.
  • each transport element 2 interacts with four stator elements 10 in terms of drive.
  • the design is such that three stator elements 10 already provide the design drive power, one of the four converters 20 or one of the four stator elements 10 can fail, and the design drive power is nevertheless retained. With even higher demands on operational readiness, an even stronger over-installation can be carried out.
  • the motor control unit 38 or the microprocessor control unit 40 contains a setpoint speed information for the speed of movement of the transport elements 2. With this setpoint speed information, the actual speed information acquired via the probes 34 is continuously compared, and the control of the converters 20 is carried out by the latter Comparison made dependent.
  • driving programs are stored in the microprocessor control unit 40, for example, which differ in the acceleration, deceleration or movement speed of the transport elements 2.
  • a desired one of these driving programs can be selected in each case by means of the programmable logic controller 42 or the operating unit 44.
  • the microprocessor control unit 40 switches to generator operation of the stator elements 10.
  • the consequent voltage in the DC intermediate circuit 30 supplies the switching power supply 28 in question and maintains the voltage supply to the motor control unit 38 and the microprocessor control unit 40 via the lines 56, practically until the transport element 2 or the transport elements 2 come to a standstill at a further regulated distance are.
  • stator pole 12 that only every second stator pole 12 is provided with a coil 14 or that an unwound stator pole 12 is present in front of and behind each stator pole provided with a coil 14.
  • Those stator poles 12, which are also coil cores, are in a magnetically conductive connection with the unwound stator poles 12.
  • Adjacent stator elements 10 are magnetically separated from one another.
  • the coils 14 are placed as prefabricated units over the corresponding stator poles and fastened there.
  • 3 illustrates a more refined electronic control.
  • Each of the five stator sections 32 shown has - which is not particularly shown - six coil groups or stator elements 10.
  • An electronic motor control unit 38 is assigned to each stator section 32.
  • the motor control unit 38 is connected to the microprocessor control unit 40 by a bus connection (data busbar).
  • the motor control units 38 and the microprocessor control unit 40 are connected to brake request electronics 52, which in turn, like the microprocessor control unit 40, are connected to the programmable logic controller 42.
  • Each stator section 32 in turn has six travel probes 34a (only three being indicated in the drawing), the signals of which form the basis for the correct switching on and off of the converters with the correct sign.
  • Each stator section 32 is assigned six converters corresponding to the number of stator elements 10 contained, which are not shown separately.
  • Each stator section 32 is also assigned a proximity probe 34b, the signals of which are fed to the programmable logic controller 42 and form the basis for a brake release due to the transport elements being too close together.
  • a positioning probe 34c is provided on each stator section 32 (only shown for one stator section 32), the signals of which are fed to the relevant motor control unit 38. Based on the signals from the positioning probe 34c, a transport element 2 can be positioned in cooperation with the brake request electronics 52. to be stopped right there. It is also possible to provide a fine control for the last piece of movement around the positioning point.
  • the positioning probe 34c preferably does not respond to the permanent magnets 6, but rather to a separate positioning magnet 54, which is indicated in FIG. 1.
  • control functions are concentrated which are related to the environment of the manufacturing site, for example reaction to malfunctions in the delivery of the product to the transport device, changeover to another product series or the like.
  • the path of movement of the transport device can be endlessly closed or open with a start end and a end end. Even curved trajectories are easily manageable. It is understood that the ' transport elements 2 are laterally guided, if necessary, for example magnetically by the linear motor drive device, by lateral guide wheels or by the fact that the wheels 16 described run in channel-like depressions. It is possible, for example, for the transport elements 2 to move to the exact stopping position synchronously in all five stator sections 32, even if the individual transport elements 2 are transporting different product masses and there are different movement resistance conditions.
  • the design is such that there is at least a distance of the length of a stator element 10 between the individual transport elements 2, so that each stator element 10 interacts at most with one transport element 2 at each point in time under consideration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)

Description

AUTOMATISCHE GUTTRANSPORT ORRICHTUNG MIT LINEAR- MOTORGETRIEBENEN TRANSPORTELEMENTEN
Gegenstand der Erfindung ist eine Vorrichtung zum Transportieren von Gütern, insbesondere in Fabrikations- stätten, mit Transportelementen, die entlang mindestens einer Bewegungsbahn bewegbar sind, und mit einer Linearmotor-Antriebseinrichtung zum angetriebenen Be¬ wegen der Transportelemente, die in Reihe angeordnete Statorpole an der Bewegungsbahn und in Reihe angeordnete Dauermagnete an den Transportelementen aufweist, gekennzeichnet durch:
(a) an der Bewegungsbahn angeordnete Sonden, die bei Vorhandensein eines Transportelements, das sich in bestimmter Relativposition zum Sonden¬ ort befindet, ansprechen; (b) Stromrichter, von denen Spulen der Statorpole Strom zuführbar ist; und
(c) eine elektronische Steuerung, die aufgrund von Signalen der Sonden die Stromrichter zeitrichtig und vorzeichenrichtig ein- und ausschaltet, Ab¬ stände der Transportelemente bei deren Bewegung einhält, und die Transportelemente positions¬ genau anhält.
Die erfindungsgemäße Transportiervorrichtung eignet sich besonders .zum Bewegen von Produkten während des Produktionsvorgangs in Fabriken. Als besonders bevor¬ zugtes Beispiel sei das Bewegen von Kraftfahrzeug- karosserien während deren Herstellung in einer Kraft¬ fahrzeugfabrik genannt. Die Vorrichtung kann für automatischen Funktionsablauf ausgebildet sein, wobei vorzugsweise zusätzliche oder überlagerte Steuerungs¬ eingriffe von Hand möglich sind. Es handelt sich nicht nur um die Technik, Transportelemente linearmotor- getrieben fahren zu lassen, sondern die elektronische Steuerung der Vorrichtung überwacht die Einhaltung be¬ stimmter (Mindest-)Abstände zwischen den Transport¬ elementen und leistet ein genaues Positionieren beim Anhalten der Transportelemente an bestimmten Punkten, insbesondere an Stationen, wo Produk ionsvorgänge an dem auf dem Transportelement befindlichen Produkt vorgenommen werden sollen. Beispielsweise handelt es sich um Stationen zum Zusammenschweißen von Karosserieteilen, zum automatischen Einbau von Teilen in die Kraftfahrzeugkarosserie, zum Lackieren der Karosserie und dergleichen. Vorzugsweise ist die Transportiervorrichtung mit univer¬ sellen Statorpol-Spulen ausgestattet, mit denen die erforderlichen Betriebsfunktionen der Transportelemente, insbesondere deren Beschleunigen, Bewegen mit bestimmter Geschwindigkeit, Verzögern und positionsgenaues Anhalten, bewerkstelligt werden. Man kann die Transportiervorrich¬ tung durchgehend mit dem gleichen Spulentyp ausstatten.
Bevorzugte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 bis 16 angegeben. Zu einigen dieser Anspruchsgegenstände werden anschließend Ausführungen gemacht, wobei die weiter unten beschriebenen Aus- führungsbeispiele die Erfindung im Detail verdeutlichen.
Im Prinzip kann man mit einer einzigen Art von an der Bewegungsbahn angeordneten Sonden auskommen. Die von diesen Sonden gelieferten Signale versetzen die elektronische Steuerung in die Lage, sowohl das zeit¬ richtige und vorzeichenrichtige Ein- und Ausschalten der Stromrichter als auch die Abstandsüberwachung der Transportelemente als auch das genaue Anhaltpositionieren der Transportelemente zu leisten. Es ist jedoch be¬ vorzugt und für die Ausbildung der elektronischen Steuerung häufig technisch günstiger, mehrere spezialisierte Sondentypen vorzusehen, insbesondere Fahrsonden, die Signale für das zeitrichtige Ein- und Ausschalten der Stromrichter liefern, Näherungssonden, die Signale für die Abstandssteuerung der Fahrelemente liefern, und Positioniersonden, die Signale für das positionsgenaue Anhalten der Fahrelemente liefern. Insgesamt sind Sonden bevorzugt, die auf die Magnet¬ felder von Magneten an den Transportelementen an¬ sprechen. Als typisches Beispiel seien Hallsonden genannt. Die Sonden können auf die sowieso an den Transportelementen vorhandenen Dauermagnete der Linear¬ motor-Antriebseinrichtung ansprechen. Man kann aber auch gesonderte Dauermagnete an den Transportelementen vor¬ sehen, auf die die (diversen) Sonden ansprechen. Ferner ist es möglich, an den Transportelementen anders¬ artige Beeinflussungsmittel zum Ansprechenlassen andersartiger Sonden vorzusehen, wie sie zum Stand der Technik gehören, z.B. Spiegel und optische Sensoren oder dergleichen.
Wenn man, wie bevorzugt, bei den Spulen der Statorpole und/oder den Stromrichtern eine zahlenmäßige Über¬ installation vorsieht, besteht eine Leistungsreserve, aufgrund der auch bei Ausfall einzelner Spulen, Spulengruppen, Stromrichter oder dergleichen die Funktionsfähigkeit mit Auslegungs-Antriebsleistung der gesamten Vorrichtung erhalten bleibt.
Es wird darauf hingewiesen, daß die Merkmale, die in einer Reihe der Ansprüche 2 bis 16 angegeben sind, auch für sich, d.h. ohne Einbeziehung der Merkmale mindestens des Anspruches 1, technisch sinnvoll ver¬ wirklichbar sind. Dies gilt besonders für die in den Ansprüchen 3, 4, 5, 12, 13 und 16 angegebenen Merk¬ male. Die Erfindung und Ausgestaltungen der Erfindung werden nachfolgend anhand von zeichnerisch dargestellten Ausführungsbeispielen noch näher erläutert. Es zeigt:
Figur 1 einen Ausschnitt einer Transportiervor¬ richtung zur Veranschaulichung einer Linearmotor-Antriebseinrichtung für Transportelemente und der grundsätzlichen Funktionsweise einer elektronischen Steuerung hierfür;
Figur 2 einen kurzen Ausschnitt der Linearmotor- Antriebseinrichtung von Fig. 1 in größeren Maßstab zur Veranschaulichung des technischen Aufbaus;
Figur 3 ein detailliert ausgeführtes, weiteres
Ausführungsbeispiel einer elektronischen Steuerung für eine Transportiervor¬ richtung.
In Fig. 1 ist schematisiert ein Transportelement 2 dargestellt, das längs einer Bewegungsbahn 4, bei¬ spielsweise auf dem Boden einer Fabrikhalle, bewegbar ist. An der Unterseite des Transportelementes 2 ist eine sich längs des Transportelements 2 erstreckende Reihe von Dauermagneten 6 mit wechselnder Polung und gleichbleibender Teilung 8 befestigt. Ein konkretes Beispiel sind etwa 30 bis 50 Dauermagnete 6 und eine Länge der Dauermagnetreihe von 3 bis 5 m. Im Hallenboden 4 versenkt oder oberhalb von diesem sind entlang der Bewegungsbahn eine Vielzahl von Stator- -elementen 10 hintereinander angeordnet. Jedes Stator¬ element 10 beinhaltet in Längsrichtung der Bewegungs¬ bahn mehrere Statorpole 12 und Spulen 14 (vgl. Fig. 2) . Ein konkretes Beispiel sind etwa 8 bis 12 Statorpole 12 pro Statorelement 10 und eine Länge des Statorelements 10 von etwa 0,8 bis 1,2 m. Innerhalb jedes Stator¬ elements 10 besteht die gleiche Polteilung 8 wie bei der Dauermagnetreihe. Am Übergang von jedem Stator¬ element 10 zum jeweils benachbarten Statorelement ist die Polteilung etwas größer als innerhalb des Statorelements 10. Die einem Statorelement 10 ange¬ hörenden Statorpole 12 werden als Statorpolgruppe, und die einem Statorelement 10 angehörenden Spulen 14 werden als Spulengruppe bezeichnet.
Unten an dem Transportelement 2 sind Räder 16 ange¬ ordnet, die auf dem Hallenboden 4 abrollen, um die Dauermagnete 6 auf Abstand von den Statorelementen 10 zu halten. Der vertikal gemessene Luftspalt zwischen den unteren Polflächen der Dauermagnete 6 und den oberen Polflächen der Statorelemente 10 ist mit 18 bezeichnet. Die Dauermagnete 6 bestehen aus Sm-Co-Material oder aus Fe-Nd-Material oder aus Ferrit¬ material. Derartige Dauermagnetmaterialien weisen eine magnetische Leitfähigkeit etwa wie Luft, vorzugsweise eine relative Permeabilität von 1 bis 2 auf, so daß kleinere Abweichungen des Luftspalts 18 von der Auslegungsluftspaltweite, beispiels¬ weise aufgrund von Abweichungen des Hallenbodens 4 von einer exakt ebenen Erstreckung oder aufgrund der Zusammendrückung der Bereifung der Räder 16 oder der- gleichen keine erheblichen Auswirkungen auf die An¬ triebsleistung der Linearmotor-Antriebseinrichtung hat. Die Weite des Luftspalts 18 beträgt etwa 10 mm.
Für jedes Statorelement 10 ist ein Stromrichter 20 vorgesehen, der den in Serie geschalteten Spulen 14 des betreffenden Statorelements 10 jeweils kurzzeitig Strom zuführt, und zwar mit zeitlich abwechselnder Stromrichtung. Infolge der Serienschaltung der Spulen 14 ist die durch den zugehörigen Stromrichter 20 fließende Stromstärke geringer als wenn die Spulen 14 parallel geschaltet wären.
Die gezeichneten sechs Stromrichter 20 sind parallel zueinander an eine gemeinsame Stromversorgung ange¬ schlossen. Die Stromversorgung weist einen Netz¬ gleichrichter 22, eine Drossel 24 sowie einen Kondensator 26 zur Glättung, und ein Schaltnetzteil 28 auf. Das Schaltnetzteil 28 liefert eine oder mehrere Hilfsspannungen, die niedriger als die Stro versorgungsspannung sind und die von den Strom¬ richtern 20 benötigt werden. Der Bereich zwischen der Stromversorgung und den Stromrichtern 20 wird als Gleichspannungszwischenkreis 30 be¬ zeichnet.
Die gezeichneten sechs Statorelemente 10 stellen zu¬ sammen einen Statorabschnitt 32 dar. Jedem Statorelement 10 dieses Statorabschnitts 32 ist an der Bewegungsbahn 4 eine Hallsonde 34 zugeordnet, die auf die Magnetfelder der Dauermagnete 6 des Transportelements 2 anspricht. Die Signale der Sonden 34 bilden die Basis für eine elektronische Steuerung der Linearmotor-Antriebs¬ einrichtung 36. Die elektronische Steuerung weist eine elektronische Motorsteuerungseinheit 38 auf, die aufgrund der Signale der Sonden 34 das zeitrichtige und vorzeichenrichtige Ein- und Ausschalten der Stromrichter 20 steuert. Den Motorsteuerheiten 38 mehrerer Stromabschnitte 32 übergeordnet ist eine Mikroprozessor-Steuereinheit 40, die weiter unten noch näher erläuterte, zusätzliche Steuerfunktionen leistet. Der Mikroprozessor-Steuereinheit 40 überge¬ ordnet ist eine speicherprogrammierbare Steuerung 42. An die speicherprogrammierbare Steuerung 42 ist eine Bedienungseinheit 44 angeschlossen.
Der Linearmotor-Abschnitt 32 aus sechs Statorelementen 10, der Motorsteuereinheit 38 mit den zugehörigen Son¬ den 34, den sechs Stromrichtern 20 und ggf.der zuge¬ hörigen Stromversorgung bilden zusammen eine Leistungs¬ einheit. An die Mikroprozessor-Steuereinheit 40 und die speicherprogrammierbare Steuerung 42 sind mehrere derartige Leistungseinheiten angeschlossen, so daß auf diese Weise die gesamte Linearmotor-Antriebsein¬ richtung 36 gebildet wird.
Die Signale der Sonden 34 können ferner eine Basis für die Steuerung gewünschter Abstände der einzelnen Tran- sportelemente 2 auf der Bewegungsbahn 4 bilden. Als Bei¬ spiel sei die Steuerungsmöglichkeit genannt, daß die Mikroproezessor-Steuereinheit 40 erst dann wieder eine Einschaltung des Statorabschnitts 32 zuläßt, wenn das betreffende Transportele ent 2 den betreffenden Stator¬ abschnitt 32 verlassen hat. Schließlich kann die Sonde 34 auch die Basis für ein positionsgenaues Anhalten des be¬ treffenden Transportelements 2 liefern, beispielsweise durch Unterbrechung der Stromzufuhr beim Passieren des letzten Dauermagneten 6 oder durch Auslösen einer Brems¬ einrichtung beispielsweise beim Passieren des zehnten Dauermagneten des Transportelements 2. Die "Abstands¬ steuerung" und die "BremsSteuerung" können der Mikropro¬ zessor-Steuereinheit 40 zugeordnet sein.
Ferner erkennt man in Fig. 1 einen an den Gleich- spannungs-Zwischenkreis 30 angeschlossenen Bre s- chopper 46 und diesem nachgeschaltet einen oder mehrere Bremswiderstände 48. Die beim Verzögern bzw. Bremsen des betreffenden Transportelements 2 frei¬ werdende Energie wird über den Bremschopper 46 im Bremswiderstand 48 vernichtet. Alternativ ist eine Rückspeisung ins Netz möglich, wobei der Netzgleich¬ richter 22 als Zweiwegegleichrichter ausgebildet wäre.
Wegen des Versatzes zwischen den Statorelementen 10, der von der Dauermagnetteilung 8 unterschiedlich ist, werden die einzelnen Stromrichter 20 aufgrund der zeitversetzten Signale der Sonden 34 zeitversetzt ein- und ausgeschaltet. Alternativ ist es im Prinzip möglich, mit nur einer Sonde 34 pro Statorabschnitt 32 auszu¬ kommen, weil sich aus der Frequenz der Signale der Sonde 34 die Geschwindigkeit des Transportelements er¬ gibt und der erforderliche Zeitversatz beispielsweise in der Motorsteuereinheit 38 oder in der Mikroprozessor- Steuereinheit 40 errechnet werden kann. Bei dem in Fig. 1 gezeichneten Ausführungsbeispiel sind sämtliche Spulen 14 eines betrachteten Statorelements 10 an einen gemeinsamen Stromrichter 20 angeschlossen und bilden so eine mit gleicher Phase geschaltete Spulen¬ gruppe. Alternativ ist es möglich, in andersartiger Zu¬ sammenschaltung gleichphasige oder nahezu gleichphasige, an einen gemeinsamen Stromrichter 20 angeschlossene Spulengruppen zu bilden. Wenn beispielsweise der Versatz zwischen den Statorelementen 10 so gewählt ist, daß das ganz links im mittleren Statorabschnitt 32 angeordnete Statorelement 10 und das ganz links im benachbarten Statorabschnitt 32 angeordnete Statorelement 10 einen Gesamt-Versatz von einem oder zwei Dauermagnetteilungen 8 (oder einem Vielfachen davon) hat, kann man beispiels¬ weise die beiden vordersten Spulen 14 dieser beiden Statorelemente 10, gegebenenfalls auch weiterer analog angeordneter Statorelemente 10, an einen gemeinsamen Stromrichter 20 anschließen. Analoges gilt für die zwei¬ ten, dritten, ... Spulen 14 jedes Statorelements 10. Dann hat man Statorpolgruppen bzw. Spulengruppen, die längs der Bewegungsbahn 4 auseinandergezogener verteilt sind. Infolgedessen ergibt sich bei Ausfall eines Stromrichters 20 eine weniger ausgeprägte Störung der Antriebsfunktion der Vorrichtung.
Ferner wird darauf hingewiesen, daß die beschriebene - Stromversorgung nicht für jede beschriebene Leistungs¬ einheit, elektronisch bestehend im wesentlichen aus einer Motorsteuerungseinheit 38 und einer Anzahl von Stromrichtern 20, getrennt vorgesehen sein muß, obwohl sich dies beispielsweise bei hohen, installierten Antriebsleistungen empfehlen kann. Es ist durchaus möglich, eine gemeinsame Stromversorgung für mehrere Statorabschnitte 32 oder auch für die gesamte Linear¬ motor-Antriebseinrichtung der gesamten Bewegungsbahn 4. vorzusehen.
Die beschriebenen Leistungseinheiten können dezentral, beispielsweise im wesentlichen räumlich zugeordnet dem jeweiligen Statorabschnitt 32 vorgesehen sein. Alter¬ nativ ist es möglich, die Leistungseinheiten insge¬ samt oder gruppenweise zentral anzuordnen und elektrisch mit den einzelnen Statorabschnitten 32 zu verbinden.
Es ist bevorzugt, gemessen an einer Auslegungs-Antriebs- leistung der Vorrichtung, eine Leistungsüber- installation vorzusehen. Bei dem in Fig. 1 gezeichneten Ausführungsbeispiel wirkt jedes Transportelement 2 antriebsmäßig jeweils gleichzeitig mit vier Stator¬ elementen 10 zusammen. Wenn man beispielsweise die Auslegung so trifft, daß bereits drei Statorelemente 10 die Auslegungs-Antriebsleistung erbringen, kann einer von den vier Stromrichtern 20 oder eines der vier Statorelemente 10 ausfallen, und es bleibt dennoch die Auslegungs-Antriebsleistung erhalten. Bei noch höheren Anforderungen an die Betriebsbereitschaft kann man eine noch stärkere Überinstallation vornehmen.
Die Motorsteuerungseinheit 38 oder die Mikroprozessor- Steuereinheit 40 enthält eine Sollgeschwindigkeits- information für die Bewegungsgeschwindigkeit der Transportelemente 2. Mit dieser Sollgeschwindigkeits- infor ation wird laufend die über die Sonden 34 er¬ faßte Istgeschwindigkeitsinformation verglichen, und die Ansteuerung der Stromrichter 20 wird von diesem Vergleich abhängig gemacht.
'Ferner sind beispielsweise in der Mikroprozessor- Steuereinheit 40 mehrere Fahrprogramme gespeichert, die sich beispielsweise in der Beschleunigung, der Verzögerung oder der Bewegungsgeschwindigkeit der Transportelemente 2 unterscheiden. Mittels der speicherprogrammierbaren Steuerung 42 oder der Be¬ dienungseinheit 44 läßt sich jeweils ein ge¬ wünschtes dieser Fahrprogramme auswählen.
Bei Ausfall der Stromversorgung wird durch die Mikro¬ prozessor-Steuereinheit 40 auf Generatorbetrieb der Statorelemente 10 umgeschaltet. Die infolgedessen im Gleichspannungs-Zwischenkreis 30 anstehende Spannung versorgt das betreffende Schaltnetzteil 28 und hält über die Leitungen 56 die SpannungsVersorgung der Motorsteuerungseinheit 38 und der Mikroprozessor- Steuerungseinheit 40 aufrecht, praktisch bis das Transportelement 2 bzw. die Transportelemente 2 mit weiterhin geregeltem Abstand zum Stillstand gekommen sind.
In Fig. 2 erkennt man, daß nur jeder zweite Stator¬ pol 12 mit einer Spule 14 versehen ist bzw. vor und hinter jedem mit einer Spule 14 versehenen Stator¬ pol ein unbewickelter Statorpol 12 vorhanden ist. Die¬ jenigen Statorpole 12, die zugleich Spulenkerne sind, stehen in magnetisch leitender Verbindung mit den un- bewickelten Statorpolen 12. Benachbarte Stator¬ elemente 10 sind magnetisch voneinander getrennt. Die Spulen 14 sind als vorgefertigte Einheiten über die entsprechenden Statorpole gesteckt und dort befestigt. Fig. 3 veranschaulicht eine verfeinerte elektronische Steuerung. Jeder der fünf gezeichneten Statorab- εchnitte 32 weist - was nicht besonders einge¬ zeichnet ist - sechs Spulengruppen bzw. Stator¬ elemente 10 auf. Jedem Statorabschnitt 32 ist eine elektronische Motorsteuereinheit 38 zugeordnet. Die Motorsteuereinheit 38 ist durch eine Bus-Ver¬ bindung (Datensammelschiene) mit der Mikroprozessor- Steuereinheit 40 verbunden. Außerdem sind die Motor¬ steuereinheiten 38 und die Mikroprozessor-Steuer¬ einheit 40 mit einer Bremsanforderungselektronik 52 verbunden, die ihrerseits wie die Mikroprozessor- Steuereinheit 40 mit der speicherprogrammier¬ baren Steuerung 42 verbunden ist. Jeder Statorab¬ schnitt 32 weist wiederum sechs Fahrsonden 34a auf (wobei nur drei zeichnerisch angedeutet sind)-, deren Signale die Basis für das zeitrichtige und vor¬ zeichenrichtige Ein- und Ausschalten der Strom¬ richter bilden. Jedem Statorabschnitt 32 sind ent¬ sprechend der Anzahl der enthaltenen Statorelemente 10 sechs Stromrichter zugeordnet, die nicht ge¬ sondert eingezeichnet sind. Jedem Statorabschnitt 32 ist ferner eine Näherungssonde 34b zugeordnet, deren Signale der speicherprogrammierbaren Steuerung 42 zugeführt werden und die Basis für eine Bremsauslösung wegen zu starker Annäherung von Transportelementen bilden. An jedem Statorabschnitt 32 ist schlie߬ lich eine Positioniersonde 34c vorgesehen (nur bei einem Statorabschnitt 32 eingezeichnet) , deren Signale der betreffenden Motorsteuereinheit 38 zuge¬ führt werden. Aufgrund der Signale der Positioniersonde 34c kann im Zusammenwirken mit der Bremsanforderungs¬ elektronik 52 ein Transportelement 2 positions- genau dort zum Anhalten gebracht werden. Es ist ferner möglich, für das letzte Stück Bewegungsweg um den Positionierpunkt eine Feinregelung vorzusehen. Vorzugs¬ weise spricht die Positioniersonde 34c nicht auf die Dauermagnete 6 an, sondern auf einen gesonderten Positionierungsmagnet 54, der in Fig. 1 angedeutet ist.
In der speicherprogrammierbaren Steuerung 42 sind die¬ jenigen Steuerungsfunktionen konzentriert, die mit dem Umfeld der Fabrikationsstätte zusammenhängen, bei¬ spielsweise Reaktion auf Störungen in der Produkt¬ zulieferung zur Transportvorrichtung, Umstellung auf eine andere Produktserie oder dergleichen.
Die Bewegungsbahn der Transportvorrichtung kann endlos geschlossen oder offen mit einem Anfangsende und einem Schlußende sein. Auch gekrümmte Bewegungsbahnen sind problemlos bewältigbar. Es versteht sich, daß die 'Transportelemente 2 bedarfsweise seitlich geführt sind, beispielsweise magnetisch durch die Linearmotor- Antriebseinrichtung, durch seitliche Führungsräder oder dadurch, daß die beschriebenen Räder 16 in rinnenartigen Vertiefungen laufen. Es ist beispielsweise möglich, daß die Transportelemente 2 in allen fünf Statorabschnitten 32 zugleich die genaue Anhaltposition synchron anfahren, selbst wenn die einzelnen Transportelemente 2 unter¬ schiedliche Produktmassen transportieren und unterschied¬ liche Bewegungswiderstandsverhältnisse herrschen.
In der Regel ist die Auslegung derart, daß zwischen den einzelnen Transportelementen 2 mindestens ein Abstand von der Länge eines Statorelements 10 ist, so daß zu jedem betrachteten Zeitpunkt jedes Stator¬ element 10 höchstens mit einem Transportelement 2 zu¬ sammenwirkt.

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung zum Transportieren von Gütern, insbe¬ sondere in Fabrikationsstatten, mit Transportelementen (2) , die entlang mindestens einer Bewegungsbahn (4) bewegbar sind, und mit einer Linearmotor-Antriebsein¬ richtung (36) zum angetriebenen Bewegen der Transport¬ elemente (2) , die in Reihe angeordnete Statorpole (12) an der Bewegungsbahn (4) und in Reihe angeordnete Dauermagnete (6) an den Transportelementen (2) aufweist, gekennzeichnet durch:
(a) an der Bewegungsbahn (4) angeordnete Sonden (34) , die bei Vorhandensein eines Transportelementes (2) , das sich in bestimmter Relativposition zum Sonden¬ ort befindet, ansprechen;
(b) Stromrichter (20) , von denen den Spulen (14) der Statorpole (12) Strom zuführbar ist; und
(c) eine elektronische Steuerung, die aufgrund von Signalen der Sonden (34) die Stromrichter (20) zeit¬ richtig und vorzeichenrichtig ein- und ausschaltet, Abstände der Transportelemente (2) bei deren Bewegung einhält, und die Transportelemente (2) positionsgenau anhält.
2. Vorrichtung nach Anspruch 1, dadurch gekenn¬ zeichnet, daß mehrere Statorspole (12) zu einer Stator¬ polgruppe (10) zusammengefaßt sind, deren Spulen (14) , vorzugsweise in Serienschaltung, an einen gemeinsamen Stromrichter (20) angeschlossen sind.
3. Vorrichtung nach Anspruch 2, dadurch gekenn¬ zeichnet, .daß benachbarte Statorpolgruppen (10) um ein von der Dauermagnetteilung (6) an den Transport¬ elementen (2) abweichendes Maß gegeneinander versetzt sind, wobei dieser Teilungsabweichungsversatz bei einem Teil der Statorpolgruppennachbarn oder bei allen Statorpolgruppennachbarn vorgesehen ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß jeweils vor und hinter einem mit einer Spule (14) versehenen Statorpol (12) ein unbewickelter Statorpol (12) vorgesehen ist, der mit dem Spulenkern magnetisch leitend verbunden ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mehrere Stromrichter (20) mit einer gemeinsamen Stromversorgung zu einer Leistungseinheit zusammengefaßt sind, die mit einer elektronischen Steuereinheit (28) ausgestattet ist, wobei für die gesamte Bewegungsbahn (4) eine oder mehrere Leistungseinheiten vorgesehen sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Luftspalt (18) zwischen den Polflächen der Statorpole (12) und den Polflächen der Dauermagnete (6) 1 bis 15 mm, vorzugsweise 8 bis 12 mm beträgt.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Dauermagnete (6) "aus einem Material mit magnetischer Leitfähigkeit etwa wie Luft bestehen, so daß sich die Antriebsleistung der Linearmotor-Antriebsein- richtung (36) bei Änderungen des Luftspalts (18) zwischen den Polflächen der Statorpole (12) und den Pol¬ flächen der Dauermagnete (6) um einige Millimeter nur geringfügig ändert.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß an der Bewegungsbahn (4) außer Fahrsonden (34a) , die Signale für das zeitrichtige und vorzeichenrichtige Ein- und Aus¬ schalten der Stromrichter (20) liefern, gesonderte Näherungssonden (34b) vorgesehen sind, die Signale für die Abstandssteuerung der Transportelemente (2) liefern.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß an der Bewegungsbahn (4) außer Fahrsonden (34a) , die Signale für das zeit¬ richtige und vorzeichenrichtige Ein- und Ausschalten der Stromrichter (20) liefern, gesonderte Positionierungssonden (34c) vorgesehen sind, die Signale für das positionsgenaue Anhalten der Transportelemente (2) liefern.
10. Vorrichtung nach Anspruch 9, dadurch gekenn¬ zeichnet, daß an den Transportelementen (2) ge¬ sonderte Magnete (54) oder andere Beeinflussungs- mittel vorgesehen sind, auf die die Fahrsonden (34a) und/oder die Näherungssonden (34b) und/oder die Positionierungssonden (34c) ansprechen.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch eine derartige Auslegung, daß ein Anhalten der Transportelemente (2) mit einer Positionsgenauigkeit unter 1 mm möglich ist.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß bei den Spulen (14) der Statorpole (12) und/oder den Stromrichtern (20) eine zahlenmäßige Überinstallation vorgesehen ist, derart, daß bei Ausfall von wenigen Spulen (14) und/oder Stromrichtern (20) ein Betrieb mit der Auslegungs- Antriebsleistung möglich ist.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die elektronische Steuerung so ausgelegt ist, daß Stromrichter-Steuereinheiten (38) aufgrund einer Sollgeschwindigkeitsinformation und einer aus Sondensignalen ermittelten Istgeschwindigkeitsinfor- matoin den Strom zu den angeschlossenen Stromrichtern (20) steuern.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die elektronische Steuerung einen Speicher für auswählbare Fahrprogramme aufweist.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die elektronische Steuerung so ausgelegt ist, daß die beim Verzögern der Fahr¬ elemente (2) anfallende Energie in das Netz zurück¬ gespeist und/oder Bremswiderständen (48) zugeführt wird.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die elektronische Steuerung so ausgelegt ist, daß bei Ausfall der Stromeinspeisung aus dem Netz die durch Verzögern der Fahrelemente (2) verfügbare Energie zur Versorgung der elektronischen Steuerung genutzt wird.
EP90901571A 1989-01-10 1990-01-09 Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen Expired - Lifetime EP0452375B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90901571T ATE84009T1 (de) 1989-01-10 1990-01-09 Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3900511 1989-01-10
DE3900511A DE3900511A1 (de) 1989-01-10 1989-01-10 Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen

Publications (2)

Publication Number Publication Date
EP0452375A1 true EP0452375A1 (de) 1991-10-23
EP0452375B1 EP0452375B1 (de) 1992-12-30

Family

ID=6371810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90901571A Expired - Lifetime EP0452375B1 (de) 1989-01-10 1990-01-09 Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen

Country Status (4)

Country Link
EP (1) EP0452375B1 (de)
CA (1) CA2045557A1 (de)
DE (2) DE3900511A1 (de)
WO (1) WO1990008086A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889449B2 (en) 2017-09-25 2021-01-12 Canon Kabushiki Kaisha Transport system and manufacturing method of article

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736176B2 (ja) * 1991-02-14 1998-04-02 株式会社東芝 リニアモータ駆動エレベータの制御装置
DE4305274A1 (de) * 1993-02-20 1994-09-01 Krauss Maffei Ag Langstator-Linearmotor
WO1996027544A1 (de) * 1995-03-06 1996-09-12 Sig Schweizerische Industrie-Gesellschaft Vorrichtung zum transportieren von produkten zwischen verschiedenen stationen
DE19512523A1 (de) * 1995-04-03 1996-10-10 Daimler Benz Ag Transportelement
KR100372952B1 (ko) * 1995-04-03 2003-06-18 체겔레크 아에게 안라겐- 운트 아우토마티지룽스테크닉 게엠베하 전기공급및데이터전송부를갖는트랙-유도형이송장치
DE19733547C2 (de) * 1997-08-02 2003-12-18 Noell Crane Sys Gmbh Steuerung und Positionserfassung von Förderanlagen mit Linear-Synchronmotoren-Antrieb
TNSN00088A1 (fr) 1999-04-26 2002-05-30 Int Paper Co Systeme et methode a mouvement variable
DE10025351A1 (de) * 2000-05-23 2001-11-29 Wittenstein Gmbh & Co Kg Hub-/Schwenkantrieb
DE10256203A1 (de) * 2002-11-30 2004-06-09 Stefan Eickenberg Weiche für Transportvorrichtung
DE102004027905A1 (de) * 2004-06-09 2005-12-29 Leybold Optics Gmbh Vorrichtung zum Transport von Substraten
DE102004037622A1 (de) * 2004-08-02 2006-02-23 Leybold Optics Gmbh Prozesssystem sowie Vorrichtung zum Transport von Substraten
DE102005013349A1 (de) * 2005-03-23 2006-10-05 Bosch Rexroth Aktiengesellschaft Linearmotor und Verfahren zum Betrieb eines Linearmotors
ATE544228T1 (de) 2008-10-31 2012-02-15 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung eines linearen bewegungssystems
EP2182621B1 (de) 2008-10-31 2012-06-06 Robert Bosch GmbH Verfahren und Vorrichtung zur Steuerung eines linearen Bewegungssystems
EP2182628A1 (de) 2008-10-31 2010-05-05 Robert Bosch GmbH Verfahren und Vorrichtung zur Steuerung eines linearen Bewegungssystems
GB2485759B (en) * 2010-10-15 2015-08-26 Baa Ip Holdco Ltd Transport
EP2746201B1 (de) * 2012-12-21 2015-09-30 Robert Bosch Gmbh Vorrichtung und Verfahren zur Förderung von Trägern in einer Maschine
DE102012025326B4 (de) * 2012-12-22 2022-01-20 Festo Se & Co. Kg Verfahren zum Betreiben eines elektromagnetischen Transportsystems und elektromagnetisches Transportsystem
CA3078825A1 (en) * 2017-10-11 2019-04-18 Velocity Magnetics, Inc. Using linear synchronous motors for retarding linear motion and conveying systems
CN113541435B (zh) * 2021-06-29 2022-09-06 中国科学院电工研究所 分布式直线电机推进系统及供电方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787716A (en) * 1972-02-16 1974-01-22 Aerospace Corp Linear pulsed d.c. motor and controls therefor
JPS59138523A (ja) * 1983-01-25 1984-08-09 Hitachi Kiden Kogyo Ltd リニアモ−タによる搬送物の移送制御方法
DE3414312A1 (de) * 1984-04-16 1985-10-24 Magnet-Motor Gesellschaft für magnetmotorische Technik mbH, 8130 Starnberg Elektrisch gesteuerter elektromotor
GB2185720B (en) * 1986-01-27 1989-11-01 Daifuku Kk Conveyor system utilizing linear motor
JP2501808B2 (ja) * 1986-12-19 1996-05-29 株式会社東芝 磁気浮上式搬送システム
DE3722524A1 (de) * 1987-06-06 1988-12-22 Krause Johann A Maschf Fertigungsstrassen sowie verfahren zur fertigung von werkstuecken auf derselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9008086A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889449B2 (en) 2017-09-25 2021-01-12 Canon Kabushiki Kaisha Transport system and manufacturing method of article
US11702295B2 (en) 2017-09-25 2023-07-18 Canon Kabushiki Kaisha Transport system and manufacturing method of article

Also Published As

Publication number Publication date
DE59000699D1 (de) 1993-02-11
EP0452375B1 (de) 1992-12-30
CA2045557A1 (en) 1990-07-11
WO1990008086A1 (de) 1990-07-26
DE3900511A1 (de) 1990-07-12

Similar Documents

Publication Publication Date Title
EP0452375A1 (de) Automatische guttransportvorrichtung mit linearmotorgetriebenen transportelementen.
EP0052346B1 (de) Elektrischer Antrieb oder Generator
DE69907302T2 (de) Linearpositionsgeber
EP2099640B1 (de) Magnetschwebefahrzeug mit wenigstens einem magnetsystem
AT517219A4 (de) Verfahren und Langstatorlinearmotor zur Übergabe einer Transporteinheit an einer Übergabeposition
EP3521219B1 (de) Transportvorrichtung und verfahren zum anpassen einer transportvorrichtung
EP4121316B1 (de) Energieübertragung in einem linearen transportsystem
DE2424879A1 (de) Parallelgeschaltetes linear-elektromotorsystem
EP1864370A1 (de) Linearmotor und verfahren zum betrieb eines linearmotors
DE102016222806B3 (de) Transportgutträger, Transportsystem und Verfahren zum Transport eines Transportguts
DE2415038A1 (de) Geschwindigkeitsregelung fuer fahrzeuge eines transportsystems
DE2328034A1 (de) Antriebsstrom-zufuhrsteuerungssystem fuer thyristorisierte linearmotoren
DE102013108767A1 (de) Dezentrale Linear Motor Regelung für Transportsysteme
DD262212A5 (de) Verfahren zur gesteuerten betaetigung eines geraetes zum entladen der transportierten gegenstaende in einer sortiervorrichtung
EP0209076B1 (de) Vorrichtung zum Transportieren und Positionieren von Lasten
EP0877466A1 (de) Antriebsmittel für eine Linearbewegung insbesondere kontinuierliche Linearbewegung und Langstator-Linearmotor
EP0298194B1 (de) Elektrischer Antrieb
EP0300123B1 (de) Elektrischer Antrieb oder Generator
EP0278532A2 (de) Elektrischer Antrieb oder Generator
DE19532540A1 (de) Verfahren zur Steuerung einer Modellautoanlage sowie Vorrichtung zur Durchführung dieses Verfahrens
DE4012668A1 (de) Rocar-steuerung
DE19732564A1 (de) Transportvorrichtung für Waren oder Gepäckstücke
DE3425928A1 (de) Positioniersteuerung fuer laufwagen in oberflaechenbehandlungsanlagen
EP0301164A2 (de) Elektrischer Antrieb oder Generator
EP0300125A1 (de) Elektrischer Antrieb oder Generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19921230

Ref country code: FR

Effective date: 19921230

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19921230

Ref country code: SE

Effective date: 19921230

Ref country code: NL

Effective date: 19921230

REF Corresponds to:

Ref document number: 84009

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930131

Ref country code: LI

Effective date: 19930131

REF Corresponds to:

Ref document number: 59000699

Country of ref document: DE

Date of ref document: 19930211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930406

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011221

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020125

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030109