EP0451521B1 - Ouvrage de protection de berges - Google Patents

Ouvrage de protection de berges Download PDF

Info

Publication number
EP0451521B1
EP0451521B1 EP91103801A EP91103801A EP0451521B1 EP 0451521 B1 EP0451521 B1 EP 0451521B1 EP 91103801 A EP91103801 A EP 91103801A EP 91103801 A EP91103801 A EP 91103801A EP 0451521 B1 EP0451521 B1 EP 0451521B1
Authority
EP
European Patent Office
Prior art keywords
water
structure according
hollow
figures
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103801A
Other languages
German (de)
English (en)
Other versions
EP0451521A1 (fr
Inventor
Fritz Prof. Dr.-Ing. Büsching
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904011504 external-priority patent/DE4011504A1/de
Application filed by Individual filed Critical Individual
Publication of EP0451521A1 publication Critical patent/EP0451521A1/fr
Application granted granted Critical
Publication of EP0451521B1 publication Critical patent/EP0451521B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/14Preformed blocks or slabs for forming essentially continuous surfaces; Arrangements thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor

Definitions

  • the invention relates to a bank protection structure attached to wave-loaded slope structures, inclined damming walls or the like, consisting of at least partially closed, water-flowable hollow bodies, which together form a revetment parallel to the slope.
  • Revetment constructions and dyke embankments on the one hand and inclined baffle walls of shaft-loaded building constructions on the other hand must be dimensioned for dynamic stresses due to breaking water waves. Since the wave energy to be converted during the wave breaking process on the structure is proportional to the square of the wave height, the maximum possible crusher height on the structure under given geometric conditions represents a significant dimension. Furthermore, the water level, the crusher shape, the crusher position relative to the structure and the structure geometry are of particular importance .
  • the interaction process which also contributes to the development of the load, between the near-surface water particle kinematics of the incoming wave and that of the return water of the preceding wave has not yet been deliberately attempted to be influenced by constructive measures in the sense of lower wave-generated structural loads.
  • the wave-induced water movement in front of and on the structure is significantly changed.
  • the wave energy given in the form of a wave spectrum can be optimally damped by the structural design of the shell delimiting the cavity.
  • the water movement present in the presence of waves on embankments can be understood as a forced oscillating movement with several degrees of freedom (coupling oscillation).
  • the water volume located as a continuum in front of the embankment represents the vibrating system, which is characterized by different natural frequencies depending on the geometrical boundary conditions (water depth, slope inclination).
  • an overall system is used which consists of several partial oscillators with different natural frequencies. The effects of the waves coming from the sea are regarded as the excitation forces in this arrangement.
  • the water level deflections corresponding to the partial reflection on the one hand and the wave run-up return movements (washing movements) on the other hand can thus be assigned to approximately pronounced degrees of freedom of the system. If the system is changed in its degrees of freedom, this has immediate effect also a change in the number and amounts of its natural frequencies.
  • the invention has for its object to improve the kinematics of the water movement in front of and on the embankment structure, in particular in the sense of smaller crusher heights and a reduced wave run-up.
  • the revetment according to the invention should therefore only extend over the dynamically loaded area of the bank protection structure. This results in considerably smaller revetment dimensions and, as a result of the high proportion of voids, also a lower mass requirement.
  • the approaching waves move along a reference water level.
  • a certain volume of water in the wave surge is transported to above the upper horizontal boundary edge of the revetment, in order to flow through the inlet cross-section, the cavity and the outlet cross-section completely or at least partially unhindered after reversal of movement, and so on to be returned to the water volume in front of the building below the reference water level.
  • reference resting water level is to be understood as the so-called design water level, which is usually determined on the basis of nature studies as a "high water level” with a probability of occurrence that can vary widely depending on the location (in the Netherlands it is between 1: 1250 and 1: 10000).
  • This design water level depends on the wind conditions, the tide, the underwater topography and the danger posed by the building in question when it is destroyed. Similar definitions of probability theory also apply to the determination of the design wave according to height and period or length.
  • the "reference resting water level” also represents a design water level to be determined for the location.
  • the water inlet cross-section should not be lower than the lowest wave-generated water level deflection (deepest wave trough) based on the design water level.
  • the performance of the revetment then depends above all on the design of the inlet openings and the flow cross-sections, the optimal location and shape of which, however - as with other special flow structures in hydraulic engineering - can only be found using hydraulic model tests.
  • a theoretical limit for the height arrangement of the lower water outlet results from the fact that the water particle movements associated in the partial clapotis decrease with the distance from the water surface according to an exponential law and have completely subsided at a depth that corresponds to about half the wavelength.
  • an optimization for a given slope slope is to be carried out by means of model tests.
  • hollow body structures with a hydraulically favorable cross-section can be manufactured or used from in-situ concrete, as precast concrete, steel or composite structures, also using plastic elements or from flowable concrete blocks or hollow profile structures.
  • a lower design wave height can be taken as a basis, with the result that manufacturing and maintenance costs can be saved.
  • a component for the creation of a bank protection works, a dike embankment, a dam or the like (building) is characterized according to the invention by a hollow body through which water can flow and which can be laid in conjunction with a protective surface, with a head surface facing outwards in the composite and an opposite one facing inwards Support surface, between which a free water flow cross section is provided, which connects an inlet opening located at the top with a lower outlet opening.
  • While small-sized flow-through concrete moldings can serve as elements of hollow structures for the production of revetments and embankment embankments, it is advantageous to use large-volume flow-through concrete moldings for breakwater-like structures, longitudinal structures, transverse structures or the like.
  • Such components are, according to the invention, characterized, for example, by a water which can flow through more regularly, is polygonal in horizontal section, preferably rectangular, and can be stacked in association or association to form a spatial protective structure, with openings at the top and bottom which have different openings depending on the position of the water in the overall structure.
  • the component can be characterized by a shaped body that can flow through water rather regularly, is structured in a single or multi-chamber structure and can be stacked in association or association to form a spatial protective structure with top and bottom flow, depending on the position relative to the water level in the overall structure Chamber openings and vertically mutually offset inner and outer chamber walls that locally also an approximately regular flow direction deviating from the vertical, preferably parallel to the slope, is generated.
  • the top surfaces of the shaped blocks or concrete slabs can have features (openings) with the result that the water present above the shaped blocks or concrete slabs laid in the composite after the wave breaking process can get into the cavity under the top surfaces.
  • Such large-volume flowable concrete moldings are also suitable to be used as the actual supporting elements of the building structures.
  • dam-like structures can be filled in regular stacks with suitable material.
  • the hollow body structure is formed only from an upper shell 1a and a lower shell 1b.
  • the structural design of the flow cross-section 2a, 2b, 2d was not shown here for reasons of a better overview. The same applies to the waves moving along the reference water level 3 and the water volume of the wave run-up surge transported by them during the wave breaking process above the hollow body boundary 4. After the movement has been reversed, the latter is fed back in full or in part through the inlet cross-section 2a, the cavity 2b and the outlet cross-section 2d as a return flow to the water volume in front of the building below the reference water level 3.
  • the distance 5 of the upper boundary 4 of the hollow body structure from the reference water level at the embankment contour 6 as well as the design of the cross sections 2a, 2b and 2d per running meter of the shoreline 7 and the parallel length 8 of the hollow body structure are dependent on the configuration of the overall structure and the design wave characteristics can be determined by hydraulic model investigations.
  • the hollow body structure can be established separately from the slope cover 9a, 9b, which may be of conventional design, or in conjunction with it.
  • 1b shows an example of the possible (possibly optimal) arrangement of the upper hollow body boundary 4 below the reference water level on the structure 6, depending on the result of the model tests.
  • 1c contains the basic illustration of a hollow body structure which is partially permeable on its upper side. This embodiment is characterized in that it is functional for changing reference water levels between two limit water levels 3a and 3b.
  • the reference water level 3a drawn in above the design water level 3b reflects a temporarily higher water level, which z. B. future climate changes, but must not affect the functionality of the revetment according to the invention.
  • the return water located after the breaking of the waves above the lower limit water level 3b can penetrate through the openings 10 into the cavity 2c underneath and is then returned via the cavity 2b and the outlet cross-section 2d to the water volume in front of the building.
  • the distances 5a and 5b of the upper boundaries 4a and 4b of the upper, permeable shell part 11 and lower impermeable shell part 12 consisting of steps from the intersection of the upper boundary water level 6a and the lower boundary water level 6b with the slope contour and the associated lengths 8a and 8b and the net cross sections of the openings 10 depend on the configuration of the entire structure, the boundary water levels 3a, 3b, and the design wave characteristics and must be determined by model tests.
  • a flowable shaped block 2.1 is formed with funnel-shaped recesses 2.2 and corresponding conical formations 2.3 that it is in the middle a bandage of 4 neighboring shaped blocks 2.4 is fixed horizontally and vertically in its position.
  • the arrangement of the funnel-shaped recesses 2.2 also entails a smaller inlet loss.
  • the inner surfaces 2.6 of the stones can also be made of plastic hollow bodies (possibly pipes) or the like. consist. Since these shaped stones, which are closed on their circumference and laid in a composite, are not very permeable to leachate, they should preferably be arranged above an impermeable cover layer.
  • Shaped stones that 3a to 3d are designed to be permeable on the underside through rectangular (or differently shaped) recesses 3.1, can be directly on an existing permeable cover layer, filter mat or the like. be relocated.
  • Top curbs belonging to FIGS. 4 a and 5 a, cf. FIG. 2 can also have funnel-shaped cut-outs in accordance with FIG. Fig.2a have.
  • All shaped blocks according to FIGS. 3a to 5d can also be made completely closed with the hollow plastic bodies mentioned in FIGS. 2c and 2d and / or on their circumference.
  • the shaped stones acc. 6a to 7d are provided for seepage water-permeable revetments or cover layers and are accordingly laid on a filter mat or the like.
  • Flow cross-sections are here only formed as thin-walled hollow profiles with rectangular sections 6.1 or 7.1 or circular cross sections 6.2 or 7.2, which are provided at their ends with disk-like abutting surfaces 6.3 or 7.3.
  • the composite elements 6.4 and 6.5 on the end plates correspond to the shaped blocks in accordance with. 6a that of FIG. 2a or FIG. 3a and the composite elements 7.4 or 7.5 in the case of the shaped blocks according to FIG. 7a in principle those of FIG.
  • Gaps 6.6 and 7.6, respectively, remain between the hollow profiles of a stone and between the hollow profiles of two shaped stones arranged side by side, which enable an almost unhindered passage of seepage water.
  • the total surface formed by hollow profiles and end plates of the shaped stones laid in the composite advantageously corresponds to the surface of a rough revetment.
  • top curbs to be assigned to FIG. 7a can also be designed with streamlined inlet funnels according to FIG. 2a.
  • the shaped block is gem. 6a to 6c modified by arranging inclined head surfaces in such a way that water entry is possible with molded stones laid in a composite according to FIG. 1c.
  • the bond is ensured in this case by the fact that the end disks 8.1 and 8.2 parallel to the contour lines are of the same height on both sides, the lower end disk 8.2 being designed funnel-shaped 8.3 in the region of the inlets located above the top surfaces.
  • the shaped block according to FIG. Fig.2a to Fig.2c modified by arranging inclined head surfaces 9.1.
  • the bond is ensured in this case by the fact that the intermediate walls 9.2 and side walls 9.3 parallel to the fall line have a constant height.
  • Prefabricated panels with the cross-sectional configuration shown in Fig. 10 essentially consist of hollow sections 10.1, which may be covered with concrete or the like, possibly using structural steel mesh or the like. are shed.
  • the plates should have funnel-shaped widenings in the area of the hollow profile openings at the respective upper end, into which conical locking elements (not shown here), formed on the respective lower end of the plates, in the sense of a Intervene with horizontally offset panels.
  • the support surface of the plates forms a conventionally produced (impermeable) cover layer 10.3. In the case of an in-situ concrete construction, this is preferably rough on its surface 10.4. Hollow profiles laid on top are pushed in the fall line in the usual way with sleeves and with in-situ concrete, colcrete concrete or similar. shed.
  • the Surface can also be designed rough in the sense of greater energy conversion.
  • Panels in prefabricated construction with the cross-sectional configuration shown in FIG. 11 essentially consist of hollow profiles 11.1, which have recesses 11.2 on their underside or are designed to be slotted in order to ensure the infiltration of seepage water into the interior of the profile.
  • the grouting 11.3 is carried out as in Fig. 10 with concrete, asphalt concrete or the like, possibly using structural steel mesh or the like. to elements that are installed using machines.
  • the plates are placed on a sand-retaining filter mat 11.4 or similar. laid, which in turn is arranged over conventional, permeable layers 11.5.
  • the panel assembly is carried out with similar locking elements as for panels according to Fig.10 and in a staggered arrangement as shown in Fig.2 for the shaped blocks.
  • a plastic film 11.6 is arranged in the area between the hollow profiles, which is intended to prevent the potting material from penetrating into the filter mat. Butt joints, potting and surface design are carried out as for the embodiment according to Fig10.
  • FIGS. 12a to 12e show a hollow body construction of prefabricated concrete construction that is partially permeable on its surface according to FIG. 1c.
  • the shell which partially delimits the cavity towards the water side, consists of streamlined steps 12.1, between which openings 12.2 remain, through which the return water can enter the cavity 12.3 below.
  • hollow profiles 13.1 are shown on their circumference in FIG. 13, which are connected at their ends by shaped blocks 13.2.
  • the latter are said to be horizontal and vertical connection thereby ensure that on the one hand they take on the function of socket connections 13.3 along the fall line and, on the other hand, parallel to the contour lines in the area of their abutting surfaces are provided with form-fitting nose-shaped locking elements 13.4 which have correspondingly formed recesses 13.5 on the opposite abutting surfaces in the region of their ends are assigned.
  • the space 13.6 between the hollow profiles and shaped stones can preferably be filled with permeable building materials.
  • hollow profiles are provided in their ridge area or even on their entire circumference with holes or slits through which the water present after the breaking of the waves can enter the hollow body interior in the sense of a drainage.
  • a hollow body structure can be obtained according to FIG. 14 by supporting a second steel sheet shell 14.2 using steel profile support elements 14.3, the recognized design principles with regard to the risk of corrosion being observed.
  • FIG. 15 in turn shows the upper part of a hollow body structure which is partially permeable on its upper side as a hydraulic steel structure according to FIG.
  • the shell partially delimiting the cavity towards the water side consists of flat steel profiles 15.1 which are connected to profile steels 15.2 in an inclined, stepped arrangement. Openings 15.3 remain through the steps through which the return water can enter the cavity 15.4 below.
  • the hollow body structure is principally formed from the outer inclined layer in a spatial association or combination of molded bodies 16.1, 16.2 and 16.9.
  • the lowest shaped bodies 16.2 give off their vertical bearing forces overall to the subsurface (subgrade).
  • the moldings located above are supported on the one hand on the moldings below the same (outer) layer and on the other hand on the parallel to the latter the inclined (inner) layer 16.3 on the support body in such a way that a spatial association or composite effect arises between the two layers.
  • the shaped bodies of the inner layer can be filled with suitable material in the sense of improved flow guidance in connection with the creation of the support body or covered with prefabricated fitting bodies (not shown here; see FIG. 25).
  • the support forces present on the right-hand side of the molded body are transferred into the support body 16.4.
  • FIGS. 17a to 17g and in FIGS. 18a to 18e The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 16 can be seen in FIGS. 17a to 17g and in FIGS. 18a to 18e.
  • Fig.17a to 17g it can be seen that the desired biaxial horizontal composite effect arises from the fact that a molded body with its 4 corner support edges 17.1 projecting at the corners of its underside and T-shaped intermediate support edges 17.2 in correspondingly shaped recesses 17.5 and 17.4 in the head surfaces of each engages 4 shaped bodies arranged above a rectangular base area.
  • the molded body contains a continuous partition 17.5 which divides it into two main chambers 17.6.
  • a flow of the main chambers deviating from the vertical in the longitudinal direction of the chamber is ensured by the fact that partition walls 17.7 are only present in the main chambers transversely to the longitudinal direction of the chamber in the upper region of the molded body.
  • FIGS. 17a to 17g show a shaped body similar to FIGS. 17a to 17g, but with only one main chamber. If this molded body is used as the sole component of a hollow structure, a composite in a uniaxially horizontal direction can be achieved in that a molded body with its 4 corner support edges 18.1 projecting on the underside engages in correspondingly shaped recesses 18.2 in the head surfaces of two identical molded bodies which are offset in each case . A composite effect transverse to the longitudinal direction of the chamber is therefore not achievable in this case.
  • this molded body can also be combined with the Shaped bodies according to FIGS. 17a to 17g are used, in particular for completing the association in the end region of a hollow body structure or in the region of the connection to other slope structures.
  • FIGS. 19a to 19f for a shaped concrete body differs from that of FIGS. 17a to 17g essentially by a different design of the locking elements 19.1 or 19.2 projecting at the support corners and the corresponding recesses 19.3 or 19.4 in the top surfaces.
  • Fig. 21 shows a breakwater-like structure or a longitudinal structure which consists of shaped bodies in its actual supporting structure.
  • the cross section marked A-A in FIG. 22 is shown.
  • the shaped bodies in the core area 21.1 and - depending on the purpose of the structure - are also filled with suitable material on the leeward side 21.2 of the structure, while the structure on the windward side exposed to the wave attack is one of the figures .16 has a similar hollow body structure 21.3 with the effect described there.
  • Fig. 22 a plan view matching to Fig. 21 is shown. In particular, it can be seen that the desired drainage of the return water is achieved constructively using the same shaped concrete body at the end of the dam structure shown.
  • FIGS. 23a to 23e and 24a to 24f The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 21 can be seen in FIGS. 23a to 23e and 24a to 24f.
  • FIGS. 23a to 23e it can be seen that the desired biaxial horizontal composite effect within the spatial association formed from shaped bodies is achieved in that the individual shaped body engages with its lower pyramid-like opening 23.1 in a corresponding opening, the beveled edges 23.2 are formed by the formation of the top surfaces of 4 underlying shaped bodies which are each arranged above a rectangular base surface.
  • the top surface of the individual shaped body has a cruciform structure 23.3 in the plan, which is limited to the upper part of the shaped body.
  • the lower part of the molded body consists of a frame 23.4 which is rectangular in plan and has no intermediate walls in its interior. Accordingly, a flow that deviates from the vertical, preferably parallel to the slope, can form here if the molded body is laid in a spatial association - an element of the flowable hollow body structure.
  • the lower part as a separate partial element consists of a frame 24.2 which is rectangular in plan, on which the separate cruciform upper part 24.3 can be placed.
  • wedge-shaped recesses 24.4 are provided in the area of the abutting surfaces on the lower part, into which the rungs of the upper part, which are hexagonal in cross section, engage with their inclined lower edges 24.5 in a form-fitting manner.
  • FIG. 25 shows an example of the arrangement of flow-guiding prefabricated fitting bodies in the vertical section of a breakwater-like structure or a longitudinal structure. It can be seen from the vertical section 25.1 through the individual fitting body that this engages in the vertical direction over both partial elements of the molded body according to FIGS. 24a to 24f. On the other hand, the top view 25.2 of the individual fitting body shows that it can advantageously also represent a horizontal composite element between two molded bodies arranged next to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Claims (40)

  1. Ouvrage de protection de berges, mis en place sur murs de soutènement inclinés, structures de talus soumis à l'action des vagues, ou analogues, cet ouvrage étant consistitué de corps creux traversables par l'eau, au moins partiellement fermés, qui constituent ensemble une couverture parallèle au talus, caractérisé par les particularités suivantes:
    a) la couverture s'étend seulement sur la zone de l'ouvrage de protection de berges qui est chargée dynamiquement;
    b) la couverture présente une section supérieure d'entrée de l'eau (2a) qui constitue la limite supérieure (4; 4b) d'une partie coque (1a; 12) imperméable à l'eau sur sa surface, s'étend dans un plan au moins approximativement perpendiculaire au talus, et capte au moins une partie du volume d'eau soulevé au-dessus de la couverture, du flux montant de la vague et respectivement de l'eau qui se retire;
    c) la section d'entrée de l'eau (2a) s'étend au moins à hauteur de la plus basse déviation de la surface de l'eau produite par les vagues en-dessous du niveau d'eau de calcul (3) fixé pour l'ouvrage;
    d) la couverture présente en outre une section transversale inférieure de sortie de l'eau (2d), qui s'étend à peu près parallèlement à la section supérieure d'entrée de l'eau (2a) et en-dessous du niveau d'eau de calcul (3), et conduit l'eau de retrait en-dessous de ce niveau d'eau de calcul (3), pour la restituer au volume d'eau présent face à l'ouvrage;
    e) les sections d'entrée d'eau (2a) et de sortie d'eau (2d) au moins approximativement alignées entre elles sont reliées entre elles par au moins un canal d'écoulement traversant (2b) s'étendant à peu près parallèlement au talus.
  2. Ouvrage selon la revendication 1, caractérisé en ce que les composants précités sont intégrés dans la zone de l'ouvrage chargée dynamiquement (figure 1a).
  3. Ouvrage selon la revendication 1, caractérisé en ce sue les composants précités sont posés sur la zone chargée dynamiquement d'un ouvrage conventionnel (9c). (figure 1b).
  4. Ouvrage selon la revendication 1, 2 ou 3, caractérisé en ce que la construction à deux coques consiste en des blocs moulés posés en accouplement (figure 2).
  5. Ouvrage selon la revendication 1, 2 ou 3, caractérisé en ce que la construction à deux coques consiste en des plaques de béton réalisées sous la forme de pièce préfabriquée, posées en accouplement (figures 10 à 12e).
  6. Ouvrage selon la revendication 4 ou 5, caractérisé en ce que les blocs moulés ou plaques de béton sont munis dans la zone de leurs faces d'appui, d'éléments de verrouillage à interpénétration, horizontaux et verticaux, assurant un accouplement, éléments de verrouillage auxquels sont associés des éléments de verrouillage aménagés de manière correspondante sur les faces d'appui opposées dans la zone de leurs extrémités, de telle façon qu'une fente de passage d'eau de suintement demeure assurée entre les blocs moulés ou plaques de béton (figures 2 à 9d ainsi que 12a à 12e).
  7. Ouvrage selon l'une des revendications 1 à 4, caractérisé en ce que les surfaces frontales (9.1) des blocs moulés présentent une plus forte pente que les faces de positionnement dans la ligne de pente du talus, de sorte qu'à l'issue du processus de bris de la vague l'eau se trouvant au-dessus des blocs moulés placés en accouplement peut passer localement dans la cavité (2c) se trouvant sous les faces frontales (figures 1c et 8a à 9d).
  8. Ouvrage selon l'une quelconque des revendications précédentes, caractérisé en ce que les délimitations des corps creux consistent en des profils creux (2.6), (6.1), (6.2), (7.1), (7.2), (10.1), (13.1), qui sont posés en agencement parallèle à la ligne de pente (figures 2a à 2d, 6a à 11, 13a à 13c).
  9. Ouvrage selon la revendication 8, caractérisé en ce que les profils creux sont baignés d'eau de suintement (figures 6a-8d et figures 13a-13c).
  10. Ouvrage selon la revendication 8 ou 9, caractérisé en ce que les profils creux sont en appui avec des manchons.
  11. Ouvrage selon la revendication 8, 9 ou 10, caractérisé en ce que les profils creux sont accouplés à leurs extrémités par des blocs (13.2) qui assurent un accouplement horizontal et vertical en ce sens qu'ils ont d'une part la fonction de liaisons entre manchons (13.3) le long de la ligne de pente et d'autre part, parallèlement aux lignes de niveau, sont munis dans la zone de leurs faces d'appui, d'éléments de verrouillage à interpénétration, horizontaux et verticaux, assurant un accouplement, éléments de verrouillage auxquels sont associés des éléments de verrouillage agencés de manière correspondante sur les faces d'appui opposées dans la zone de leurs extrémités (figures 13a à 13c).
  12. Ouvrage selon la revendication 11, caractérisé en ce que les éléments de verrouillage sont réalisés sous la forme d'évidements (13.5) et respectivement de saillies (13.4) en forme de becs sur les arêtes inférieures et/ou supérieures courtes. (figures 13a à 13c).
  13. Ouvrage selon l'une des revendications 8 à 12, caractérisé en ce que du matériau de remplissage perméable à l'eau de suintement est disposé entre et/ou au-dessus des profils creux.
  14. Ouvrage selon l'une des revendications 8 à 13, caractérisé en ce que les profils creux présentent des ouvertures de passage de l'eau (3.1), (11.2) pour permettre l'entrée de l'eau de suintement (figures 3a à 5d et 11).
  15. Ouvrage selon l'une des revendications précédentes, en particulier pour des niveaux d'eau variant entre deux niveaux d'eau limites (3a, 3b), caractérisé en ce qu'une structure de corps creux partiellement perméable à l'eau se raccorde à la limite supérieure (4; 4b) de la partie coque imperméable à l'eau (1a; 12). (figures 1c, 12c, 15b).
  16. Ouvrage selon la revendication 15, caractérisé en ce que la structure de corps creux partiellement perméable à l'eau est une partie coque (11) constituée de degrés (12,1), qui présente sur sa face supérieure, entre les degrés, des ouvertures d'entrée d'eau (10; 12.2; 15.3) qui débouchent dans une cavité s'étendant en-dessous (2c; 12.3; 15.4), alignée avec le canal d'écoulement (2b) s'étendant parallèlement au talus (figures 1c, 12c, 15b).
  17. Ouvrage selon la revendication 1, caractérisé en ce que les corps de forme sont munis dans la zone de leurs faces d'appui, d'éléments de verrouillage à interpénétration assurant un accouplement, auxquels sont associés des éléments de verrouillage agencés de manière correspondante sur les faces d'appui opposées dans la zone de leurs extrémités (figures 17a à 20e; figures 23a à 24f).
  18. Ouvrage de protection de berges, mis en place sur murs de soutènement inclinés, structures de talus soumis à l'action des vagues, ou analogues, cet ouvrage étant consistitué de corps creux traversables par l'eau, au moins partiellement fermés, qui constituent ensemble une couverture parallèle au talus, caractérisé par les particularités suivantes:
    a) l'ouvrage de protection de berges est réalisé sous forme de structure à corps creux sensiblement parallèle au talus, sous forme d'ouvrage longitudinal ou ouvrage du type brisant, qui même avec la couverture consiste en des corps creux empilés en paquet respectivement disposés en accouplement;
    b) la couverture s'étend seulement sur la zone de l'ouvrage de protection de berges qui est chargée dynamiquement;
    c) les corps creux (16.7) constituant la couche extérieure, disposés au-dessus du niveau d'eau de calcul (16.5) fixé pour l'ouvrage présentent - pour la captation d'abord principalement verticale d'une partie au moins du volume d'eau, du flux montant de la vague et respectivement de l'eau de reflux, soulevé au-dessus de la surface de référence de l'eau (16.5) lors du processus de bris de la vague au contact de l'ouvrage - des sections d'entrée d'eau (16.6), et les corps creux (16.7) constituant également la couche extérieure, disposés au-dessous du niveau d'eau de calcul (16.5) présentent des sections de sortie d'eau (16.8) qui restituent le volume d'eau précité au volume d'eau présent face à l'ouvrage;
    d) la section d'entrée de l'eau (16.6) s'étend au moins à hauteur de la plus basse déviation de la surface de l'eau produite par les vagues en-dessous du niveau d'eau de calcul (16.5) fixé pour l'ouvrage;
    e) la section inférieure de sortie d'eau (16.8) s'étend approximativement parallèlement à la section supérieure d'entrée d'eau (16.6).
    f) les sections d'entrée et de sortie (16.6, 16.8) sont au moins approximativement alignées entre elles et débouchent chacune dans une cavité s'étendant en dessous (16.7), qui constitue un canal d'écoulement traversant, s'étendant sensiblement parallèlement au talus (figures 16, 21 et 25).
  19. Ouvrage selon l'une des revendications précédentes caractérisé par un corps creux traversable par l'eau, pouvant être posé en accouplement pour former une face de protection et comportant une face frontale dirigée vers l'extérieur dans l'accouplement et une face d'appui opposée à la face frontale et dirigée vers l'intérieur, entre lesquelles est prévue une section de libre écoulement de l'eau, qui relie une ouverture d'entrée s'étendant en haut dans l'accouplement avec une ouverture de sortie inférieure.
  20. Ouvrage selon la revendication 19, caractérisé en ce que les faces d'appui des corps creux sont munies d'éléments de verrouillage.
  21. Ouvrage selon la revendication 20 caractérisé en ce que les éléments de verrouillage sont réalisés sous la forme d'évidements en forme d'entonnoir (2.2) et respectivement de saillies coniques (2.3) dans la zone des ouvertures des corps creux (figures 2a à 3g, 6a à 6d, 8a à 9d, 12a à 12e).
  22. Ouvrage selon la revendication 20, caractérisé en ce que les éléments de verrouillage sont réalisés sous la forme d'évidements (4.2) respectivement de saillies en forme de becs (4.1) sur les arêtes longues, qui constituent les faces de positionnement et/ou faces frontale avec les côtés avant respectivement arrière du corps creux (figures 4a à 4d, 7a à 7d).
  23. Ouvrage selon la revendication 20, caractérisé en ce que les éléments de verrouillage sont réalisés sous la forme d'évidements (5.2) respectivement saillies (7.1) en forme de becs sur les arêtes courtes et le long d'environ la moitié de la longueur des arêtes longues, qui constituent les faces de positionnement avec des parois latérales respectivement avec les côtés avant et arrière du corps creux (figures 5a à 5d).
  24. Ouvrage selon l'une des revendications 19 à 23 caractérisé par des flasques d'extrémité (6.3, 7.3) qui dépassent les contours extérieurs des corps creux pour un meilleur effet de liaison avec une couche de couverture ou analogue (figures 6a à 7d).
  25. Ouvrage selon l'une des revendications 19 à 24, caractérisé en ce que la délimitation des corps creux est réalisée sous la forme de coques en tôles d'acier (14.2) et/ou profils d'acier (14.3). (figures 14 à 15d).
  26. Ouvrage selon l'une des revendications 19 à 25, caractérisé en ce qu'à la limite supérieure du corps creux servant de bloc de bordure sont prévus, dans la zone de ses entrées, des entonnoirs d'entrée favorables à l'écoulement.
  27. Ouvrage selon l'une des revendications 19 à 26, caractérisé en ce que les surfaces des faces formant goulotte dans les corps creux (2.6) sont en matière synthétique.
  28. Ouvrage selon la revendication 27, caractérisé en ce que les surfaces des faces formant goulotte dans les corps creux consistent avec les surfaces des évidements dans les faces de positionnement, d'éléments en matière synthétique préfabriqués au sens d'une coque perdue.
  29. Ouvrage selon l'une des revendications 19 à 28, caractérisé en ce que les cavités traversables par un écoulement dans les corps creux consistent en des profils creux.
  30. Ouvrage selon l'une des revendications 19 à 29, caractérisé en ce que le corps creux consistent en une plaque de béton réalisée sous la forme d'une pièce préfabriquée (figures 12a à 12e).
  31. Ouvrage selon la revendication 29 et 30, caractérisé en ce que les profils creux sont garnis de béton ou analogue coulé.
  32. Ouvrage selon la revendication 30 ou 31, caractérisé en ce que dans la face frontale du corps creux sont prévus des évidements qui sont réalisés inclinés en gradin avec des ouvertures (12.2) s'étendant entre les degrés (12.1), à travers lesquelles l'eau présente en hauteur après le processus du bris de la vague peut passer localement dans la cavité (12.3) se trouvant sous les gradins (figures 12a à 12e).
  33. Ouvrage selon l'une des revendications 19 à 21, caractérisé par un corps de forme pouvant s'empiler en paquet ou en accouplement pour former une structure de protection spatiale, ayant en coupe horizontale une forme polygonale, de préférence rectangulaire et pouvant être traversé assez régulièrement par l'eau, ce corps de forme ayant des ouvertures situées en haut et en-bas traversées par des écoulements différents selon la position relative par rapport au niveau de l'eau dans l'ensemble de l'ouvrage.
  34. Ouvrage selon la revendication 33, caractérisé en ce que le corps de forme présente en coupe horizontale des éléments au moins partiellement circulaires ou arqués.
  35. Ouvrage selon l'une des revendications précédentes, caractérisé par un corps de forme (figures 17a à 20e ainsi que 23a à 24b) pouvant s'empiler en paquet ou en accouplement pour former une structure de protection spatiale, ayant une structure à une ou plusieurs chambres et pouvant être traversé assez régulièrement par l'eau, ce corps de forme ayant des ouvertures de chambre situées en haut et en-bas traversées par des écoulements différents selon la position relative par rapport au niveau de l'eau dans l'ensemble de l'ouvrage, et des parois de chambre intérieures et extérieures décalées mutuellement selon la verticale de façon à également produire, localement, une direction d'écoulement à peu près régulière s'écartant de la verticale, de préférence parallèle au talus.
  36. Ouvrage selon la revendication 35, caractérisé en ce qu'en vue d'un meilleur guidage de l'écoulement, des corps de forme traversables par l'écoulement sont munis de corps adaptables préfabriqués guidant l'écoulement.
  37. Ouvrage selon la revendication 36, caractérisé en ce que les corps adaptables guidant l'écoulement sont réalisés sous la forme de structures partielles (25.1, 25.2) chevauchant les corps de forme.
  38. Ouvrage selon la revendication 37, caractérisé en ce que des parois intérieures de chambres représentent des structures partielles sensiblement en forme de grille (24.3) et des parois extérieures de chambre des structures partielles séparées, sensiblement en forme de cadre (24.4), qui disposées l'une sur l'autre en accouplement, constituent un élément d'un paquet spatial (figures 24a à 24 f).
  39. Ouvrage selon l'une des revendications 33 à 38 caractérisé en ce que les faces d'appui entre les corps de forme respectivement entre les structures partielles respectivement entre les corps de formes et structures partielles sont munies d'éléments de verrouillage.
  40. Ouvrage selon la revendication 39, caractérisé en ce que les éléments de verrouillage sont réalisés sous la forme d'évidements du genre en tronc de pyramide (23.2) respectivement de saillies correspondantes (23.1, 24.5) dans la zone des ouvertures des corps de forme, respectivement sur les faces d'appui des structures partielles.
EP91103801A 1990-04-10 1991-03-13 Ouvrage de protection de berges Expired - Lifetime EP0451521B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904011504 DE4011504A1 (de) 1989-09-16 1990-04-10 Uferschutzwerk, laengswerk, querwerk, wellenbrecher od. dgl. sowie zugehoerige bauelemente
DE4011504 1990-04-10

Publications (2)

Publication Number Publication Date
EP0451521A1 EP0451521A1 (fr) 1991-10-16
EP0451521B1 true EP0451521B1 (fr) 1996-07-24

Family

ID=6404097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103801A Expired - Lifetime EP0451521B1 (fr) 1990-04-10 1991-03-13 Ouvrage de protection de berges

Country Status (2)

Country Link
EP (1) EP0451521B1 (fr)
DE (1) DE59108012D1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533027A1 (de) * 1995-09-07 1997-03-13 Guenter J Dipl Ing Peters Vernetzte Ringmatte im Wasserbau System PETERS
DE29715260U1 (de) * 1997-08-26 1997-10-23 Lage Karl Elementensatz zum Erstellen eines Damms
DE29812221U1 (de) * 1998-07-09 1999-12-30 Scholle Joerg Steingarten - für aquatische Organismen besiedelbare Spundwandkonstruktion
DE102006028976B4 (de) * 2006-06-23 2012-02-23 Factum Gmbh Damm

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL93233C (fr) * 1900-01-01
BE667841A (fr) * 1964-08-04 1965-12-01
US3503216A (en) * 1968-01-29 1970-03-31 Ramiro M Oquita Underwater paving element
DE2038674C3 (de) * 1970-08-04 1978-06-29 E.A.H. Naue Kg, 4992 Espelkamp Wasserdurchlässiges Deckwerk für Uferböschungen o.dgl
CA1102146A (fr) * 1978-12-15 1981-06-02 Gerard E. Jarlan Monolithes a couloirs-guides d'ecoulement pour la construction en milieu marin
EP0051680B1 (fr) * 1980-01-22 1985-08-21 IWASA, Nobuhiko Caisson de suppression d'ondes
FR2561684B1 (fr) * 1984-03-23 1986-12-26 Rossi Jean Louis Element de construction pour murs de soutenement destine a etre garni de vegetation
JPS63226404A (ja) * 1987-03-17 1988-09-21 Nippon Tetorapotsuto Kk 傾斜ブロツクおよびこれを使用する護岸構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EMPFEHLUNGEN FÜR DIE AUSFÜHRUNG VON KÄSTENSCHUTZWERKEN. EAK 1981, Heft 36, S. 70-103 und s. 179-281. *

Also Published As

Publication number Publication date
DE59108012D1 (de) 1996-08-29
EP0451521A1 (fr) 1991-10-16

Similar Documents

Publication Publication Date Title
DE3152098C2 (fr)
EP0039372B1 (fr) Brique moulée pour talus
EP2286035A2 (fr) Dispositif et procédé de protection contre les crues, l'affouillement et l'érosion des côtes
DE2521777A1 (de) Bauwerk zur befestigung von eindaemmungen
DE69333376T2 (de) Vorrichtung zur Wellenenergiezerstreuung
DE102006051707A1 (de) Hochabsorbierende Gabionenwand
EP0451521B1 (fr) Ouvrage de protection de berges
DE2040609A1 (de) Betonstein
DE60113279T2 (de) Gitterträger- oder Netzbehälterstruktur für Erosionsschutz
AT352639B (de) Uferverbau
DE1811682C3 (de) Verlorene Schalung für eine Stützmauer
DE2107030A1 (de) Deckwerk für Dämme, Deiche und andere Wasserbauten
DE4011504A1 (de) Uferschutzwerk, laengswerk, querwerk, wellenbrecher od. dgl. sowie zugehoerige bauelemente
DE2160874A1 (de) Bituminoese kerndichtung in wasserstaudaemmen
DE7614681U1 (de) Boeschungsstein
DE4344703A1 (de) Erdbauwerk
DE19607989A1 (de) Quaderförmiger Pflasterstein
DE102005048147B3 (de) Wandelement
DE3930997A1 (de) Uferschutzwerk, deichaussenboeschung, stauwand od.dgl. sowie zugehoerige bauelemente
DE4104045C2 (de) Verfahren zur Herstellung einer vielseitig einsetzbaren Stützwandkonstruktion zur Stabilisierung von Geländesprüngen
EP1911883B1 (fr) Pont pour petits animaux destiné à des croisements de voies de communication d'eaux
AT406494B (de) Uferverbau
DE2649132A1 (de) Laermschutzwand
DE1970492U (de) Boeschungsmatte zur sicherung von erdbauwerken.
AT397523B (de) Verfahren zur stabilisierung von erdbauten und/oder natürlichen hügelhängen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK FR GB NL

17P Request for examination filed

Effective date: 19910827

17Q First examination report despatched

Effective date: 19920424

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960724

REF Corresponds to:

Ref document number: 59108012

Country of ref document: DE

Date of ref document: 19960829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960927

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970306

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970325

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

BERE Be: lapsed

Owner name: BUSCHING FRITZ

Effective date: 19980331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020318

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030310

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040331

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001