EP0438410B1 - Trocknerelement - Google Patents

Trocknerelement Download PDF

Info

Publication number
EP0438410B1
EP0438410B1 EP89906100A EP89906100A EP0438410B1 EP 0438410 B1 EP0438410 B1 EP 0438410B1 EP 89906100 A EP89906100 A EP 89906100A EP 89906100 A EP89906100 A EP 89906100A EP 0438410 B1 EP0438410 B1 EP 0438410B1
Authority
EP
European Patent Office
Prior art keywords
heating tube
reflector
element according
heating
drying element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89906100A
Other languages
English (en)
French (fr)
Other versions
EP0438410A1 (de
Inventor
Hans G. Platsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT89906100T priority Critical patent/ATE85002T1/de
Publication of EP0438410A1 publication Critical patent/EP0438410A1/de
Application granted granted Critical
Publication of EP0438410B1 publication Critical patent/EP0438410B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0423Drying webs by convection
    • B41F23/0426Drying webs by convection using heated air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0406Drying webs by radiation
    • B41F23/0413Infrared dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection

Definitions

  • the invention relates to a dryer element for use in a printing press according to the preamble of claim 1, and to a dryer unit constructed from such dryer elements.
  • a dryer element according to the preamble of claim 1 is known from US-A-2 683 939.
  • the rod-shaped heating element is a conventional heating rod, which is located inside the heating tube and is in direct contact with the blown air to be heated.
  • Such an arrangement is suitable for heating the blown air when no great heat output has to be transferred to the blown air.
  • large amounts of very hot blown air are required so that the printed products are reliably dried on a short way before reaching the next printing station.
  • warm air dryer elements are preferred for drying water-based paints, such as those used in particular as a clear lacquer over the printing inks, in order to give the surface of the finished product a shine
  • infrared radiation radiation is preferred for drying conventional offset inks and for drying oil-based paints. Dryer elements use.
  • Such a combined dryer element is suitable for use with printing inks which respond to both radiation drying and warm air drying. However, if you only want to carry out warm air drying or radiation drying with such a dryer element, as would be advantageous for some applications, this is not possible.
  • UV radiation dryer elements are also used for special coatings and printing inks that contain prepolymerized plastic materials. UV drying does not require special measures on a larger scale because of the installation of very powerful UV lamps, but also from radiation protection and from the extraction of the ozone generated by the UV rays, so that appropriately equipped printing machines are always combined with UV drying will be busy.
  • the present invention is therefore intended to provide a dryer element which, with a very compact structure, enables the local production of warm blown air in large quantities, so that a blown air dryer unit constructed with it is so compact that a conventional IR dryer can be easily replaced with it .
  • a rod-shaped infrared radiator is used to provide a large heat output in a very compact volume. This heat output is first transferred to the blown air by absorption on a heating pipe running parallel to the infrared heater. The blown air to be heated is sent through this. The heating tube is in turn upstream of the blow molding, which emits the heated air.
  • a dryer element as stated in claim 2, is particularly short overall, since the heating tube and blow bar are kept within the same transverse limits with respect to the direction of conveyance of the printed products.
  • the development of the invention according to claim 3 is advantageous on the one hand in terms of avoiding eddies in the heating tube.
  • the convexly curved outer surface of the heating tube ensures that the heat rays striking the heating tube are not reflected back into the infrared radiator, which improves the effective heat flow from the infrared radiator to the heating tube.
  • a light funnel leading these rays to the heating tube surface can be accomplished with elements having a circular cross-section that are particularly easy to manufacture.
  • the development of the invention according to claim 9 is advantageous with regard to the supply of large amounts of heat to the heating tube with a compact construction of the dryer element.
  • the electrical installation and maintenance of the dryer element is also simplified by using a twin infrared heater.
  • the secondary air flow is also generated in the dryer element according to claim 11 according to the principle of a water jet pump without an additional fan.
  • the development of the invention according to claim 11 also has the further advantage that the outer housing is already at a low temperature, which is advantageous in terms of accident protection.
  • the development of the invention according to claim 12 is advantageous in terms of a strong and effective secondary air entrainment effect, since the "water jet pump effect" is better for sharp, fast, small cross-section air jets than for large cross-section, slow air curtains.
  • a dryer unit as specified in claim 13 can simply be exchanged for an infrared dryer unit provided in the same standard slide-in frame. With short changeover times, this makes it possible to work with one and the same printing press with either infrared drying or blown air drying.
  • FIG. 1 shows a dryer element, generally designated 10, which has an outer housing, generally designated 12.
  • the outer housing 12 is delimited by side walls 14, 16, a bottom wall 18 and a grid 20 which is placed on folded support sections 22 of the side walls 14, 16.
  • the walls 14-18 have a large dimension when viewed perpendicular to the plane of the drawing.
  • the side walls 14, 16 carry, via arms 30, 32, reflector walls 34, 36, which together define an inner housing, designated overall by 38. This runs at a distance from Outer housing 12 so that secondary air channels are obtained between the two housings.
  • a horizontal bottom section is formed on the reflector wall 36, and the lower ends of the reflector walls 34, 36 essentially end in an extension of the delivery channel 24.
  • Upper wall sections 40, 42 of the reflector walls 34, 36 are arc-shaped. Their free edges delimit a cooling air inlet opening 44 of the inner housing 38, which is at a distance behind the grille 20.
  • a heating / nozzle unit designated overall by 46. This includes a heating pipe 48 running perpendicular to the drawing plane of FIG. 1, a nozzle pipe 50 running parallel and at a distance below the heating pipe 48, and a 180 ° elbow 52 with the same cross section, which smoothes the ends of the heating pipe 48 and nozzle pipe 50 lying behind the drawing plane connects.
  • the front end of the heating tube 48 in FIG. 1 carries a connecting piece 54 which can be connected to the front of a blower, not shown, e.g. through a flexible hose.
  • the front end of the nozzle tube 50 in FIG. 1 is closed by an end wall 56.
  • openings 58 are provided in the peripheral wall of the nozzle tube 50 at intervals, in which nozzle bodies 60 are inserted. These each have a nozzle bore 62 which is aligned with the central plane of the discharge channel 24.
  • the nozzle body extends 60 at a distance through the slot 64 delimited by the free edges of the lower ends of the reflector walls 34, 36 up to the start of the discharge channel 24.
  • the nozzle body 60 is thus also at a distance from the left end of the bottom wall 18 and from the lower end of the side wall 14.
  • a twin infrared radiator 66 In the space lying between the legs of the U-shaped heating / nozzle unit, a twin infrared radiator 66, designated overall by 66, is arranged. This has a transparent housing 68 made of quartz glass, in which two heating coils 70, 72 are accommodated. The infrared radiator 76 extends over the entire length of the heating tube 48 and at a relatively short distance from the lowest point of the heating tube 48.
  • the half of the outer surface of the housing 68 which is remote from the heating tube 48 is provided with a reflective coating 74, which in practice can be an evaporated gold layer.
  • the ends of the infrared radiator 66 are held by angle brackets 76, which in turn are screwed to brackets 78 welded to the top of the nozzle tube 50, as shown at 80.
  • the dryer element described above works as follows: The air supplied to the nozzle 54 is pressed through the heating tube 48. The heat rays emitted by the infrared radiator 66 are absorbed by the outer surface of the heating tube 48, so that the heating tube 48 as a whole heats up to a high temperature. Heat is emitted from the heating tube 48 to the air pushed through, and the warm air reaches the nozzle tube 50 via the 180 ° elbow 52.
  • the heated air is discharged through the nozzle body 60 to the discharge channel 24.
  • the heated air is released in the form of sharp jets. Because of the sudden increase in the cross section of the jet at the discharge end of the nozzle body 60, a vacuum is obtained there.
  • air is drawn through the interior of the inner housing 38, as indicated by arrows 82.
  • air is drawn in via the secondary air channels, as indicated by the arrows 84.
  • the reflector walls 34, 36, on which a portion of the radiation emitted by the infrared emitter 66 also falls, are thus surrounded by secondary air on both sides and are thereby cooled.
  • the secondary air preheated in this way which is drawn in via the grille 20, is mixed in the discharge duct 24 with the very hot air which has flowed through the heating tube 48.
  • a large volume of warm blown air 86 is thus obtained, which emerges from the discharge channel 24 in the form of a curtain and meets, at an angle, a printed printed sheet 88 which moves in the direction of arrow 90.
  • the hot blown air curtain dries layers of paint and varnish on printed sheet 88.
  • the infrared radiator 66 can have an output of 3.5 kW and heat an air volume of 60 to 100 m3 of air to about 140 ° C. per hour. Mixing with about half the amount of secondary air then gives blowing air of about 100 ° C., as is desired for drying water-based paints.
  • the ratio between the radiation power absorbed by the heating tube 48 and the radiation power absorbed by the reflector walls 34, 36 can be specified via the surface properties of these elements: If the inner surface of the reflector walls 35, 36 is well reflective, the surface of the heating tube 48, on the other hand, absorbs radiation well, so the heat emitted by the infrared radiator 66 largely goes to the air flowing through the heating tube 48. If the reflectivity of the reflector walls 34, 36 deteriorates, an increasing proportion of the radiation power is emitted to the secondary air flow 82, 84 via the reflector walls 34, 36.
  • FIG. 2 shows, on an enlarged scale, the path of a few selected rays which originate from the heating coil 70.
  • a single cylindrical reflector 92 is provided which coaxially surrounds the heating tube 48.
  • rays which emanate from the heating coil 70 at an angle of approximately 45 ° to the vertical are reflected by the surface of the heating tube 48 (assuming incomplete absorption of the rays).
  • part of the power of the infrared radiator 66 is thus already due to the geometry onto the reflector walls 34, 36 transmitted.
  • this effect is weakened in that the reflector is cylindrical only above the center line of the heating tube 48 and, on the other hand, is flat below the center line. In this way it is achieved that the rays emitted by the heating coils, which are inclined at more than 45 ° to the vertical, reach the outer surface of the heating tube 48, as is also shown by the ray 100 shown there.
  • the reflector axis can be placed parallel to and at a distance from the heating tube axis, as shown in FIG. 3.
  • M1 denote the heating tube axis
  • M2 the reflector axis.
  • two crescent-shaped light funnels are obtained, which guide the jet 100 and also a jet 102, which passes straight across the outer surface of the heating tube 48, to the outer surface of the heating tube 48. It can be seen that the rays in between, which represent approximately the same heat output as the rays lying between the vertical and the ray 102, reach approximately the upper half of the heating tube 48 in total. In the arrangement shown in FIG. 3, heating tube 48 is thus heated quite uniformly in the circumferential direction.
  • FIG. 4 shows a blown air dryer unit, designated overall by 104, with a frame 106 composed of angle profiles, which carries several dryer elements 10.
  • An infrared dryer unit designated as a whole by 108, carries a plurality of infrared radiators 66 on an identical frame 106.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)

Abstract

Bei einem kompakten Trocknerelement zur Verwendung in der Trockenstrecke einer Druckmaschine wird heiße Blasluft dadurch erzeugt, daß man durch einen Infrarotstrahler (66) ein parallel zu diesem verlaufendes Heizrohr (48) von außen erhitzt. Die heiße Blasluft gelangt über einen 180°-Krümmer (52) in eine parallel zum Heizrohr (48) verlaufenden Blasleiste (50, 60). Ein die Heizrohr/Blasleisteneinheit umgebender Reflektor (34, 36) spiegelt Infrarotstrahlung auf das Heizrohr (48) und gibt die von ihm absorbierte Strahlungsenergie an einen Sekundärluftstrom (82, 84) ab, der beim Auslaß der Blasleiste (50, 60) dem heißen Hauptluftstrom zugemischt wird.

Description

  • Die Erfindung betrifft ein Trocknerelement zur Verwendung in einer Druckmaschine gemäß dem Oberbegriff des Anspruches 1, sowie eine aus derartigen Trocknerelementen aufgebaute Trocknereinheit.
  • Ein Trocknerelement gemäß dem Oberbegriff des Anspruches 1 ist aus der US-A-2 683 939 bekannt. Bei ihm ist das stabförmige Heizelement ein üblicher Heizstab, der sich im Inneren des Heizrohrs befindet und direkt in Kontakt mit der zu erhitzenden Blasluft steht. Eine derartige Anordnung eignet sich dann zum Aufheizen der Blasluft, wenn keine große Wärmeleistung auf die Blasluft übertragen werden muß. Bei sehr großer Fördergeschwindigkeit der Druckerzeugnisse benötigt man große Mengen sehr heißer Blasluft, damit die Druckerzeugnisse auf kurzem Weg vor Erreichen der nächsten Druckstation zuverlässig getrocknet werden.
  • Während zum Trocknen von Wasserlacken, wie sie insbesondere als Klarlack über den Druckfarben verwendet werden, um der Oberfläche des fertigen Produktes Glanz zu verleihen, Warmluft-Trocknerelemente bevorzugt werden, finden für das Trocknen von herkömmlichen Offsetfarben und zum Trocknen von Öl-Lacken bevorzugt Infrarotstrahlungs-Trocknerelemente Verwendung.
  • Es wurde auch schon vorgeschlagen (vergl. EP-A-0080448), zum Trocknen von Druckerzeugnissen ein kombiniertes Strahlungs/Warmluft-Trocknerelement zu verwenden. Bei dem in der EP-A-0080448 beschriebenen Trocknerelement ist eine Vielzahl in Förderrichtung aufeinander folgender Blasleisten durch eine zickzackgefaltete Wand vorgegeben, deren dem Förderweg zugewandete Spitzen mit Blasluftabgabeöffnungen versehen sind, während in den zwischen den Wellungen liegenden Zwischenräumen Infrarotheizstrahler angeordnet sind. Die von den letzteren abgegebene Strahlung erreicht teilweise direkt die Oberfläche der Druckerzeugnisse, teilweise dient sie zum Erwärmen der auf der Rückseite mit Blasluft beaufschlagten zickzackförmig gewellten Wand.
  • Ein derartiges kombiniertes Trocknerelement eignet sich zur Verwendung mit solchen Druckfarben, die sowohl auf Strahlungstrocknung als auch Warmlufttrocknung ansprechen. Möchte man mit einem solchen Trocknerelement jedoch ausschließlich eine Warmlufttrocknung oder eine Strahlungstrocknung durchführen, wie dies für manche Anwendungsfälle vorteilhaft wäre, so ist dies nicht möglich.
  • Für spezielle Lacke und Druckfarben, welche vorpolymerisierte Kunststoffmaterialien enthalten, werden ferner UV-Strahlungs-Trocknerelemente verwendet. Die UV-Trocknung erfordert nicht zur wegen der Installation sehr leistungsstarker UV-Strahler sondern auch vom Strahlenschutz her und von der Absaugung des von den UV-Strahlen erzeugten Ozones her Spezialmaßnahmen größeren Umfanges, so daß man entsprechend ausgerüstete Druckmaschinen immer in Verbindung mit UV-Trocknung auslasten wird.
  • Bei der IR-Trocknung und der Blaslufttrocknung wäre dagegen eine Umrüstung oft sinnvoll, wenn auf einer vorgegebenen Maschine andere Druckaufträge abgewickelt werden sollen. Diese Umrüstung scheitert aber derzeit daran, daß IR-Trockner und Blaslufttrockner unterschiedlichen Platzbedarf haben: Mit IR-Trocknung kann man auf sehr kompaktem Raum die Trocknung der Druckerzeugnisse bewerkstelligen; herkömmliche Blaslufttrockner benötigen dagegen viel Platz.
  • Durch die vorliegende Erfindung soll daher ein Trocknerelement geschaffen werden, welches bei sehr kompaktem Aufbau die lokale Herstellung von warmer Blasluft in großen Mengen ermöglicht, so daß eine mit ihm aufgebaute Blaslufttrocknereinheit derart kompakt baut, daß ein herkömmlicher IR-Trockner einfach gegen sie ausgetauscht werden kann.
  • Diese Aufgabe ist erfindungsgemäß gelöst durch ein Trocknerelement gemäß Anspruch 1.
  • Bei dem erfindungegemäßen Trocknerelement wird ein stabförmiger Infrarotstrahler dazu verwendet, in einem sehr kompakten Volumen eine große Wärmeleistung bereitzustellen. Das übertragen dieser Wärmeleistung auf die Blasluft erfolgt zunächst durch Absorption auf einem parallel zum Infrarotstrahler verlaufenden Heizrohr. Durch dieses wird die zu erhitzende Blasluft geschickt. Das Heizrohr ist seinerseits der Blasleiste strömungsvorgeschaltet, welche die erhitzte Luft abgibt.
  • Man hat so einerseits eine effektive intensive Wärmeübertragung zwischen Infrarotstrahler und Heizrohr, welche man durch direktes Vorbeiblasen der Luft am Infrarotstrahler nicht erreichen könnte. Da die gesamte Aufheizung der Blasluft vor dem Eintreten derselben in die Blasleiste beendet ist, tritt auch an den verschiedenen Austrittsstellen der Blasleiste gleich warme Blasluft aus.
  • Würde man die Heißlufterzeugung auf konventionelle Weise dadurch vornehmen, daß man die Blasluft direkt an Widerstandsdrähten vorbeiführt, so müßte man ein Heizregister vorsehen, welches separat außerhalb der Druckmaschine aufgestellt werden muß. Man benötigt also zusätzlichen Aufstellplatz, der an schon installierten Maschinen in der Regel nicht zur Verfügung steht, und man hat auch zusätzliche Wärmeverluste auf dem Weg vom Erzeugungsort zum Anwendungsort.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • Ein Trocknerelement, wie es im Anspruch 2 angegeben ist, baut insgesamt besonders kurz, da Heizrohr und Blasleiste sich in bezüglich der Förderrichtung der Druckerzeugnisse gleichen transversalen Grenzen halten.
  • Die Weiterbildung der Erfindung gemäß Anspruch 3 ist zum einen im Hinblick auf das Vermeiden von Wirbeln im Heizrohr von Vorteil. Darüber hinaus wird durch die konvex gebogene außenliegende Oberfläche des Heizrohres gewährleistet, daß die auf das Heizrohr auffallenden Wärmestrahlen nicht in den Infrarotstrahler zurückreflektiert werden, was den effektiven Wärmestrom vom Infrarotstrahler zum Heizrohr verbessert.
  • Dabei kann man dann gemäß Anspruch 4 die von der konvexen Außenfläche des Heizrohres weglaufenden Wärmestrahlen mit mechanisch einfachen Mitteln wieder auffangen und zur Lufterhitzung verwenden.
  • Mit der Weiterbildung der Erfindung gemäß Anspruch 5 wird erreicht, daß auch diejenigen Wärmestrahlen die Oberfläche des Heizrohres erreichen, die ausgehend vom Infrarotstrahler zunächst am Heizrohr vorbeilaufen.
  • Gemäß Anspruch 6 läßt sich ein diese Strahlen zur Heizrohroberfläche führender Lichttrichter mit mechanisch besonders einfach herstellbaren, kreisförmigen Querschnitt aufweisenden Elementen bewerkstelligen.
  • Wählt man den Mittelpunkt des kreisförmigen Reflektors und dessen Radius gemäß Anspruch 7 so, daß die Enden der zu beiden Seiten der Elementmittelebene liegenden beiden Lichttrichter dem Infrarotstrahler gegenüberliegen und spitz zulaufen, erhält man eine in Umfangsrichtung besonders gleichförmige Aufheizung des Heizrohres.
  • Die Weiterbildung der Erfindung gemäß Anspruch 8 ist im Hinblick auf das Zuführen derjenigen Wärmestrahlen zum Heizrohr von Vorteil, die vom Infrarotstrahler in den vom Heizrohr abgelegenen Halbraum abgegeben werden.
  • Die Weiterbildung der Erfindung gemäß Anspruch 9 ist im Hinblick auf das Zuführen hoher Wärmemengen zum Heizrohr bei kompaktem Aufbau des Trocknerelementes von Vorteil. Auch die elektrische Installation und Wartung des Trocknerelementes wird durch die Verwendung eines Zwillings-Infrarotstrahlers vereinfacht.
  • Zur Kühlung der dem Infrarotstrahler zugeordneten elektrischen Anschlüsse und Halteeinrichtungen ist es in der Regel notwendig, am Infrarotstrahler einen begrenzten Kühlluftstrom zu unterhalten. Mit der Weiterbildung der Erfindung gemäß Anspruch 10 wird dieser Kühlluftstrom sehr einfach und ohne zusätzliche Gebläse auf mechanisch sehr einfache Weise dadurch erhalten, daß der Reflektor Teil eines den Infrarotstrahler umgebenden Kühlluftgehäuses ist, welches nach Art einer Wasserstrahlpumpe an den Auslaß der Blasleiste angekoppelt ist.
  • In der Regel ist es aus Kostengründen nicht möglich, die Innenfläche des Reflektor echt spiegelnd auszubilden, z.B. zu polieren und mit einer Oberflächenschicht zu versehen. Eine gut spiegelnde Oberfläche wäre an sich wünschenswert, um einen möglichst großen Anteil der vom Infrarotstrahler gegebenen Wärmestrahlung zur Außenfläche des Heizrohres zu bringen, wo sie dann absorbiert wird. Läßt man jedoch am Reflektor einen Sekundärluftstrom vorbeistreichen und mischt man disen Sekundärluftstrom, der durch den Reflektor aufgewärmt wird, dem Haupt-Blasluftstrom zu, so wird auch die vom Reflektor aufgenommene Wärmemenge nutzbar gemacht. Diesen Nebeneffekt erhält man sowohl bei einem Trocknerelelemt gemäß Anspruch 10 als auch in verstärktem Maße bei einem Trocknerelement gemäß Anspruch 11. Dabei erfolgt auch beim Trocknerelement gemäß Anspruch 11 die Erzeugung des Sekundärluftstromes nach dem Prinzip einer Wasserstrahlpumpe ohne ein zusätzliches Gebläse. Die Weiterbildung der Erfindung gemäß Anspruch 11 hat auch den weiteren Vorteil, daß das Außengehäuse schon auf niederer Temperatur liegt, was im Hinblick auf den Unfallschutz von Vorteil ist.
  • Die Weiterbildung der Erfindung gemäß Anspruch 12 ist im Hinblick auf einen möglichst ausgeprägten und effektiven Sekundärluft-Mitnahmeeffekt von Vorteil, da die "Wasserstrahlpumpenwirkung" für scharfe, schnelle, kleine Querschnitt aufweisende Luftstrahlen besser ist als für großen Querschnitt aufweisende, langsame Luftvorhänge.
  • Eine Trocknereinheit, wie sie im Anspruch 13 angegeben ist, kann einfach gegen eine in einem gleichen Standard-Einschubrahmen vorgesehene Infrarot-Trocknereinheit ausgetauscht werden. Dies ermöglicht es bei geringen Umrüstzeiten bei ein und derselben Druckmaschine wahlweise mit Infrarottrocknung und Blaslufttrocknung zu arbeiten.
  • Nachstehend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigen:
    • Figur 1: einen transversalen Querschnitt durch ein Trocknerelement einer Blasluft-Trocknereinheit für eine Offset-Druckmaschine;
    • Figur 2: eine Prinzipdarstellung in vergrößertem Maßstabe, anhand welcher die übertragung der Wärme vom Infrarotstrahler zum Heizrohr des Trocknerelementes von Figur 1 erläutert wird;
    • Figur 3: eine zu Figur 2 ähnliche Prinzipdarstellung, welche für ein abgewandeltes Trocknerelement gilt; und
    • Figur 4: eine Ansicht einer aus Trocknerelementen gemäß Figur 1 aufgebauten Blasluft-Trocknereinheit sowie einer Infrarot-Trocknereinheit, die gleiche Außengeometrie aufweist.
  • In Figur 1 ist ein insgesamt mit 10 bezeichnetes Trocknerelement wiedergegeben, welches ein insgesamt mit 12 bezeichnetes Außengehäuse hat. Das Außengehäuse 12 ist begrenzt durch Seitenwände 14, 16, eine Bodenwand 18 sowie ein Gitter 20, das auf umgekantete Auflageabschnitte 22 der Seitenwände 14, 16 aufgesetzt ist. Die Wände 14-18 haben senkrecht zur Zeichenebene gesehen große Abmessung.
  • Am in Figur 1 links unten liegenden Ende des Außengehäuses 12 ist ein gestreckter Abgabekanal 24 für Warmluft vorgesehen, der durch umgekantete Wandabschnitte 26, 28 der Seitenwand 14 und der Bodenwand 18 begrenzt ist.
  • Die Seitenwände 14, 16 tragen über Arme 30, 32 Reflektorwände 34, 36, die zusammen ein insgesamt mit 38 bezeichnetes Innengehäuse vorgeben. Dieses verläuft unter Abstand zum Außengehäuse 12, so daß zwischen den beiden Gehäusen Sekundärluftkanäle erhalten werden.
  • Wie aus Figur 1 ersichtlich, ist an die Reflektorwand 36 ein horizontaler Bodenabschnitt angeformt, und die unteren Enden der Reflektorwände 34, 36 enden im wesentlichen in Verlängerung des Abgabekanales 24. Obere Wandabschnitte 40, 42 der Reflektorwände 34, 36 sind kreisbogenförmig. Ihre freien Ränder begrenzen eine Kühlluft-Eintrittsöffnung 44 des Innengehäuses 38, die unter Abstand hinter dem Gitter 20 liegt.
  • Im Innengehäuse 38 ist eine insgesamt mit 46 bezeichnete Heiz/Düseneinheit vorgesehen. Zu dieser gehört ein senkrecht zur Zeichenebene von Figur 1 verlaufendes Heizrohr 48, ein parallel unter Abstand unter dem Heizrohr 48 verlaufendes Düsenrohr 50 und ein gleichen Querschnitt aufweisender 180°-Krümmer 52, der die hinter der Zeichenebene liegenden Enden von Heizrohr 48 und Düsenrohr 50 glatt verbindet.
  • Das in Figur 1 vorne liegende Ende des Heizrohres 48 trägt einen Stutzen 54, der mit der Vorderseite eines nicht gezeigten Gebläses verbindbar ist, z.B. durch einen flexiblen Schlauch. Das in Figur 1 vorne liegende Ende des Düsenrohres 50 ist durch eine Stirnwand 56 verschlossen.
  • Auf einer Mantellinie, die mit der Achse des Abgabekanales 24 fluchtet, sind in der Umfangswand des Düsenrohres 50 unter Abstand aufeinanderfolgend öffnungen 58 vorgesehen, in welche Düsenkörper 60 eingesetzt sind. Diese haben jeweils eine Düsenbohrung 62, die auf die Mittelebene des Abgabekanales 24 ausgerichtet ist.
  • Wie aus Figur 1 ersichtlich, erstreckt sich der Düsenkörper 60 unter Abstand durch den durch die freien Kanten der unteren Enden der Reflektorwände 34, 36 begrenzten Schlitz 64 hindurch bis zum Beginn des Abgabekanales 24. Der Düsenkörper 60 hat somit auch Abstand vom linken Ende der Bodenwand 18 und vom unteren Ende der Seitenwand 14.
  • In dem zwischen den Schenkeln der U-förmigen Heiz/Düseneinheit liegenden Raum ist ein insgesamt mit 66 bezeichneter Zwillings-Infrarotstrahler 66 angeordnet. Dieser hat ein aus Quarzglas bestehendes transparentes Gehäuse 68, in welchem zwei Heizwendeln 70, 72 untergebracht sind. Der Infrarotstrahler 76 erstreckt sich über die gesamte Länge des Heizrohres 48 und zwar unter verhältnismäßig geringem Abstand vom tiefsten Punkt des Heizrohres 48.
  • Die vom Heizrohr 48 abliegende Hälfte der Außenfläche des Gehäuses 68 ist mit einer reflektierenden Beschichtung 74 versehen, die in der Praxis eine aufgedampfte Goldschicht sein kann.
  • Die Enden des Infrarotstrahlers 66 sind von Winkelträgern 76 gehalten, die ihrerseits mit an der Oberseite des Düsenrohres 50 festgeschweißten Haltewinkeln 78 verschraubt sind, wie bei 80 gezeigt.
  • Das oben beschriebene Trocknerelement arbeitet folgendermaßen:
       Die dem Stutzen 54 zugeführte Luft wird durch das Heizrohr 48 gedrückt. Die vom Infrarotstrahler 66 ausgesandten Wärmestrahlen werden von der Außenfläche des Heizrohres 48 absorbiert, so daß sich das Heizrohr 48 insgesamt auf hohe Temperatur aufheizt. Vom Heizrohr 48 wird Wärme an die hindurchgedrückte Luft abgegeben, und die warme Luft gelangt über den 180°-Krümmer 52 in das Düsenrohr 50.
  • Von dort wird die erhitzte Luft durch die Düsenkörper 60 zum Abgabekanal 24 hin abgegeben. Dieses Abgeben der erhitzten Luft erfolgt in Form scharfer Strahlen. Wegen der plötzlichen Strahlquerschnittsvergrößerung beim Abgabeende der Düsenkörper 60 erhält man dort einen Unterdruck. Hierdurch wird einerseits Luft durch das Innere des Innengehäuses 38 hindurchgezogen, wie durch Pfeile 82 angedeutet. Zudem wird Luft über die Sekundärluftkanäle angesaugt, wie durch die Pfeile 84 angedeutet.
  • Die Reflektorwände 34, 36, auf welche ebenfalls ein Teil der vom Infrarotstrahler 66 abgegebenen Strahlung fällt, sind somit beidseitig von Sekundärluft umströmt und hierdurch gekühlt. Die so vorgewärmte Sekundärluft, die über das Gitter 20 angesaugt wird, wird im Abgabekanal 24 mit der sehr heißen Luft vermischt, die das Heizrohr 48 durchströmt hat. Man erhält so insgesamt ein großes Volumen an warmer Blasluft 86, welches in Form eines Vorhanges aus dem Abgabekanal 24 austritt und schräg auf einen bedruckten Druckbogen 88 trifft, der sich in Richtung des Pfeiles 90 bewegt. Der heiße Blasluftvorhang trocknet Farb- und Lackschichten auf dem Druckbogen 88.
  • In der Praxis kann der Infrarotstrahler 66 eine Leistung von 3,5 kW haben und pro Stunde eine Luftmenge von 60 bis 100 m³ Luft auf etwa 140 °C aufheizen. Durch Vermischen mit etwa der halben Menge an Sekundärluft erhält man dann Blasluft von etwa 100°C, wie sie zur Trocknung von Wasserlacken erwünscht ist.
  • Das Verhältnis zwischen der vom Heizrohr 48 aufgenommenen Strahlungsleistung und der von den Reflektorwänden 34, 36 aufgenommenen Strahlungsleistung läßt sich über die Oberflächenbeschaffenheit dieser Elemente vorgeben:
    Ist die Innenfläche der Reflektorwände 35, 36 gut spiegelnd, die Oberfläche des Heizrohres 48 dagegen gut strahlungabsorbierend, so geht die vom Infrarotstrahler 66 abgegebene Wärme zum größten Teil an die das Heizrohr 48 durchströmende Luft. Verschlechtert man das Reflexionsvermögen der Reflektorwände 34, 36, wird ein zunehmender Anteil der Strahlungsleistung über die Reflektorwände 34, 36 an den Sekundärluftstrom 82, 84 abgegeben.
  • Figur 2 zeigt in vergrößertem Maßstabe den Weg einiger ausgesuchter Strahlen, die von der Heizwendel 70 ausgehen. Vereinfachend ist angenommen, daß nur ein einziger zylindrischer Reflektor 92 vorgesehen ist, der das Heizrohr 48 koaxial umgibt. Man erkennt bei dieser Anordnung, daß Strahlen, die bis zu einem Winkel von etwa 45° zur Vertikalen geneigt von der Heizwendel 70 ausgehen, von der Oberfläche des Heizrohres 48 reflektiert werden (unvollständige Asorption der Strahlen unterstellt). Derartige Strahlen, die dann nach Reflexion an der Innenfläche des Reflektors 92 ein zweites Mal auf die Außenfläche des Heizrohres 48 auftreffen, tragen die Bezugszeichen 94, 96 und 98.
  • Man erkennt, daß diese Strahlen den Infrarotstrahler 66 auch nach Reflexion an der Oberfläche des Heizrohres 48 nicht mehr erreichen.
  • Strahlen, die die Heizwendel 70 unter einem Winkel von mehr als 45° zur Vertikalen geneigt verlassen, z.B. der Strahl 100 erreichen offensichtlich die Oberfläche des Heizrohres 48 nicht, werden vielmehr vielfach an der Innenfläche des zylindrischen Reflektors 92 reflektiert.
  • Bei einer das Heizrohr 48 umgebenden zylindrischen Reflektoranordnung wird somit schon geometriebedingt ein Teil der Leistung des Infrarotstrahlers 66 auf die Reflektorwände 34, 36 übertragen.
  • Dieser Effekt ist beim Ausführungsbeispiel nach Figur 1 dadurch geschwächt, daß der Reflektor nur oberhalb der Mittellinie des Heizrohres 48 zylindrisch ist, unterhalb der Mittellinie dagegen eben. Auf diese Weise wird ereicht, daß auch die unter mehr als 45° zur Vertikalen geneigten von den Heizwendeln abgegebenen Strahlen die Außenfläche des Heizrohres 48 erreichen, wie der dort ebenfalls eingezeichnete Strahl 100 zeigt.
  • Zum gleichen Zwecke kann man bei Verwendung eines zylindrischen Reflektors die Reflektorachse parallel unter Abstand zur Heizrohrachse legen, wie in Figur 3 dargestellt. Dort bezeichnen M₁ die Heizrohrachse, M₂ die Reflektorachse. Man erhält nun zu beiden Seiten der vertikalen Mittellinie des Trocknerelementes zwei sich sichelförmig verjüngende Lichttrichter, welche den Strahl 100 und auch einen gerade streifend über die Außenfläche des Heizrohres 48 hinweggehenden Strahl 102 zur Außenfläche des Heizrohres 48 leiten. Man erkennt, daß die dazwischenliegenden Strahlen, welche etwa die gleiche Wärmeleistung repräsentieren wie die zwischen der Vertikalen und dem Strahl 102 liegenden Strahlen, insgesamt gerage etwa die obere Hälfte des Heizrohres 48 erreichen. Bei der in Figur 3 gezeigten Anordnung hat man somit eine in Umfangsrichtung recht gleichförmige Aufheizung des Heizrohres 48.
  • Figur 4 zeigt eine insgesamt mit 104 bezeichnete Blasluft-Trocknereinheit mit einem aus Winkelprofilen zusammengesetzten Rahmen 106, der mehrere Trocknerelemente 10 trägt.
  • Eine insgesamt mit 108 bezeichnete Infrarot-Trocknereinheit trägt auf einem identischen Rahmen 106 eine Vielzahl von Infrarotstrahlern 66.
  • Man erkennt, daß so die beiden Arten von Trocknereinheiten an einer Druckmaschine rasch leicht gegeneinander getauscht werden können.

Claims (13)

  1. Trocknerelement zur Verwendung in einer Druckmaschine,
       mit einer Blasleiste (50, 60), welche warme Blasluft transversal zur Förderrichtung der Druckerzeugnisse verteilt abgibt, mit einem strömungsmäßig der Blasleiste (50, 60) vorgeschalteten Heizrohr (48), dem ein stabförmiges Heizelement zum Aufheizen der Blasluft zugeordnet ist, welches sich parallel zur Mantelfläche des Heizrohres (48) erstreckt, dadurch gekennzeichnet, daß das Heizelement ein Infrarotstrahler (66) ist und außerhalb des Heizrohres (50, 60) verläuft und daß das Heizrohr (48) eine Infrarotstrahlung absorbierende Oberfläche hat.
  2. Trocknerelement nach Anspruch 1, dadurch gekennzeichnet,
       daß sich die Blasleiste (50, 60) parallel zum Heizrohr (48) erstreckt und mit diesem über einen 180°-Krümmer (52) verbunden ist.
  3. Trocknerelement nach Anspruch 1 oder 2, dadurch gekennzeichnet,
       daß das Heizrohr (48) kreisförmigen Querschnitt hat.
  4. Trocknerelement nach Anspruch 3, dadurch gekennzeichnet,
       daß dem Heizrohr (48) ein es zumindest teilweise umgebender Reflektor (34, 36; 92) zugeordnet ist.
  5. Trocknerelement nach Anspruch 4, dadurch gekennzeichnet,
       daß der Abstand des Reflektors (92) vom Heizrohr (48) mit zunehmenden Abstand vom Infrarotstrahler (66) abnimmt.
  6. Trocknerelement nach Anspruch 5 in Verbindung mit
       Anspruch 3, dadurch gekennzeichnet, daß der Reflektor (92) kreisförmigen Querschnitt aufweist und die Reflektorachse (M₂) unter Abstand parallel zur Heizrohrachse (M₁) verläuft.
  7. Trocknerelement nach Anspruch 6, dadurch gekennzeichnet,
       daß die Innenfläche des Reflektors (92) das Heizrohr (48) an der dem Infrarotstrahler (66) gegenüberliegenden Mantelfläche berührt.
  8. Trocknerelement nach einem der Ansprüche 1-7, dadurch
       gekennzeichnet, daß der Infrarotstrahler in einem Quarzglasgehäuse (68) angeordnete Heizwendeln (70, 72) aufweist und auf das Quarzglasgehäuse in dem vom Heizrohr (48) abgewandten Teil eine Verspiegelung (74) vorgesehen ist.
  9. Trocknerelement nach einem der Ansprüche 1-8, dadurch
       gekennzeichnet, daß der Infrarotstrahler (66) ein Zwillingsstrahler mit zwei unter verglichen mit dem Durchmesser des Heizrohres (48) kleinen Abstand voneinander aufweisenden Heizwendeln (70, 72) ist.
  10. Trocknerelement nach einem der Ansprüche 1-9, dadurch
       gekennzeichnet, daß der Reflektor (34, 36) Teil eines Innengehäuses (38) ist, welches an einem von Infrarotstrahler (66) abliegenden Abschnitt einen Austrittsschlitz (64) aufweist, der mit einem Blasluft-Abgabekanal (24) in Verbindung steht, und daß das Innengehäuse (38) in einem dem Heizrohr (48) benachbarten Abschnitt eine Ansaugöffnung (44) für Kühlluft aufweist.
  11. Trocknerelement nach Anspruch 9 oder 10, gekennzeichnet
       durch ein das Innengehäuse (38) unter Abstand umgebendes Außengehäuse (12), welches einen Einlaß (20) für Sekundärluft aufweist, der dem reflektorseitigen Abschnitt des Innengehäuses (38) benachbart ist, sowie einen der Blasleiste (50, 60) benachbarten Auslaß für durch den Reflektor (34, 36) erwärmte Sekundärluft aufweist.
  12. Trocknerelement nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Blasleiste (50, 60) diskrete unter Abstand aufeinander folgende Düsen (60) aufweist.
  13. Trocknereinheit zur Verwendung in einer Druckmaschine,
       gekennzeichnet durch mehrere Trocknerelemente (10) nach einem der Ansprüche 1 bis 12, welche in gleicher Ausrichtung parallel nebeneinander liegend von einem Standard-Einschubrahmen (106) getragen sind, der in eine Führung eines Trocknerrahmens einsetzbar ist.
EP89906100A 1988-10-14 1989-05-24 Trocknerelement Expired - Lifetime EP0438410B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89906100T ATE85002T1 (de) 1988-10-14 1989-05-24 Trocknerelement.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3835000 1988-10-14
DE3835000A DE3835000A1 (de) 1988-10-14 1988-10-14 Trocknerelement

Publications (2)

Publication Number Publication Date
EP0438410A1 EP0438410A1 (de) 1991-07-31
EP0438410B1 true EP0438410B1 (de) 1993-01-27

Family

ID=6365106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89906100A Expired - Lifetime EP0438410B1 (de) 1988-10-14 1989-05-24 Trocknerelement

Country Status (5)

Country Link
US (1) US5159763A (de)
EP (1) EP0438410B1 (de)
JP (1) JPH04502887A (de)
DE (2) DE3835000A1 (de)
WO (1) WO1990003888A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072895A1 (de) * 2009-12-17 2011-06-23 Koenig & Bauer Aktiengesellschaft Trockner

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228454C2 (de) * 1992-08-26 1999-01-14 Monforts Gmbh & Co A Vorrichtung zum Beblasen einer textilen Warenbahn
JPH08500427A (ja) * 1992-08-26 1996-01-16 アー モンフォルツ ゲゼルシャフト ミット ベシュレンクテル ハフツグ ウント コンパニー 繊維ウェブに処理ガスを吹付けるための装置
US5317127A (en) * 1992-08-28 1994-05-31 Pitney Bowes Inc. Apparatus including air blowing and infrared light means for drying ink on a sheet
DE4244003A1 (de) * 1992-12-24 1994-06-30 Platsch Hans G Strahlungstrocknerleiste und Strahlungstrockner mit solcher
US5517214A (en) * 1993-07-20 1996-05-14 A.B. Dick Company Ink jet image drier
US6293196B1 (en) * 1993-10-06 2001-09-25 Howard W. DeMoore High velocity, hot air dryer and extractor
AU2348601A (en) * 1999-11-11 2001-06-06 Smart Reflow Gmbh Convection module with pneumatic drive
DE10244288A1 (de) * 2002-09-23 2004-04-01 Eltosch Torsten Schmidt Gmbh Vorrichtung zur Führung von Luft
US20100071225A1 (en) * 2008-09-19 2010-03-25 Shannon Ross Portable cooler drying frame
EP2463100B1 (de) * 2010-12-03 2013-07-17 Heidelberger Druckmaschinen AG Bogen verarbeitende Maschine, insbesondere Bogendruckmaschine
JP5631908B2 (ja) * 2012-01-31 2014-11-26 富士フイルム株式会社 乾燥装置及び画像形成装置
US20130306271A1 (en) * 2012-05-18 2013-11-21 Shenzhen China Star Optoelectronics Technology Co., Ltd. Blowing Device and Method for Using the Blowing Device
US9387698B2 (en) 2014-07-24 2016-07-12 Xerox Corporation Printer convection dryer
US10308010B2 (en) * 2017-02-08 2019-06-04 Ricoh Company, Ltd. Infrared-heated air knives for dryers
CN108759406A (zh) * 2018-06-30 2018-11-06 浙江唐艺织物整理有限公司 一种植绒布高效烘干装置
DE102022124575A1 (de) 2022-09-23 2024-03-28 Duo Technik Gmbh Vorrichtung zum Trocknen von Flächengebilden
DE102022124767A1 (de) 2022-09-27 2023-09-07 Heidelberger Druckmaschinen Aktiengesellschaft Vorrichtung zum Trocknen von Bedruckstoff

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1074056B (de) * 1960-01-28 James Hallcy S. Sons Limited West Bromwich Stafford (Großbritan men) Rohrformige zum Einbau in eine Druck maschine bestimmte Warmluft Heizvor richtung
DE631625C (de) * 1936-07-11 Albert Schnellpressen Vorrichtung zum Schraegaufblasen von Luft o. dgl. auf Papier- oder sonstige Bahnen und Bogen mittels Blasduesen
DE1070647B (de) * 1959-12-10 Kalle S. Co. Aktiengesellschaft, Wiesbaden-Biebrich Infrarotfrockner für Druckmaschinen
US2683939A (en) * 1952-05-12 1954-07-20 Master Appliance Mfg Co Electric drying and exhaust unit
GB895655A (en) * 1958-11-04 1962-05-02 Halley & Sons Ltd James Improved apparatus for drying printed webs of material
GB922296A (en) * 1961-02-16 1963-03-27 Strattwell Developments Ltd Improvements in apparatus for drying continuous webs of textile and other materials
ZA711340B (en) * 1970-03-19 1972-10-25 Wiggins Teape Res Dev Improvements in methods and apparatus for drying sheet material
US3894343A (en) * 1972-06-15 1975-07-15 Thermogenics Of New York Ink curing and drying apparatus
DE2731075A1 (de) * 1977-07-09 1979-01-25 Eugen Knobel Durchlaufofen fuer warenbahnen
SE8106875L (sv) * 1981-11-19 1983-05-20 Svecia Silkscreen Maskiner Ab Torkanleggning
FI75008C (fi) * 1986-03-14 1992-02-17 Valmet Oy Svaevtork och foerfarande foer effektivering av dess funktion.
US4727655A (en) * 1987-02-02 1988-03-01 Amjo Infra Red Dryers, Inc. Heat lamp assembly with air duct
US4981433A (en) * 1988-10-15 1991-01-01 Brother Kogyo Kabushiki Kaisha Sheet heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072895A1 (de) * 2009-12-17 2011-06-23 Koenig & Bauer Aktiengesellschaft Trockner

Also Published As

Publication number Publication date
US5159763A (en) 1992-11-03
JPH04502887A (ja) 1992-05-28
WO1990003888A1 (de) 1990-04-19
DE3835000A1 (de) 1990-04-19
DE58903419D1 (de) 1993-03-11
EP0438410A1 (de) 1991-07-31

Similar Documents

Publication Publication Date Title
EP0438410B1 (de) Trocknerelement
EP1058805B1 (de) Verfahren und vorrichtung zum trocknen eines schnell geförderten trocknungsgutes, insbesondere zum druckfarbentrocknen
DE4436713B4 (de) Vorrichtung zur Trocknung der Oberflächen eines Gegenstandes
EP0741272B1 (de) UV-Strahler
EP3720716B1 (de) Verfahren zum trocknen eines substrats, trocknermodul zur durchführung des verfahrens sowie trocknersystem
EP0070390B1 (de) Vorrichtung zum Trocknen von band- oder blattförmigen, fotografischen Schichtträgern
EP1321720B1 (de) Wärmetauschereinrichtung
DE10109061A1 (de) Lampenanordnung
DE2453098A1 (de) Vorrichtung zur thermischen reinigung von abgasen
EP1262726A1 (de) Vorrichtung zur Behandlung von textilen Warenbahnen
EP0971191B1 (de) Verfahren und Vorrichtung zum Behandeln von Gütern mittels eines erwärmten Gases
DE1579906A1 (de) Einrichtung zur Strahlungsheizung bzw.-kuehlung
DE3839554C2 (de)
EP3287711A1 (de) Warmluftheizung
EP0355347A2 (de) Vorrichtung zum Verschweissen mehrlagiger Bahnen aus thermoplastischem Kunststoff
DE2422873B2 (de) Vorrichtung zum Trocknen bedruckter Bahnen
EP1847388A2 (de) Trocknereinheit sowie Trockner mit einer Mehrzahl solcher Einheiten
DE19538701C2 (de) Warmlufterzeuger
DE102022124767A1 (de) Vorrichtung zum Trocknen von Bedruckstoff
DE1884006U (de) Elektrischer waermespeicherofen.
EP0431314B1 (de) Heizkessel zum Verbrennen flüssiger oder gasförmiger Brennstoffe
DE102021124799A1 (de) Luftreiniger zur UV-Bestrahlung von insbesondere mit Keimen oder Infektionserregern beladener strömender Luft
CH644199A5 (de) Boiler.
EP4228787A1 (de) Bestrahlungsvorrichtung zum dekontaminieren eines mediums
DE1909331A1 (de) Luftheizungsofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930127

Ref country code: FR

Effective date: 19930127

Ref country code: BE

Effective date: 19930127

REF Corresponds to:

Ref document number: 85002

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58903419

Country of ref document: DE

Date of ref document: 19930311

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930531

Ref country code: LI

Effective date: 19930531

Ref country code: CH

Effective date: 19930531

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940720

Year of fee payment: 6

EAL Se: european patent in force in sweden

Ref document number: 89906100.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 89906100.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050524