EP0432626B1 - Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals mittels Gleichspannungen - Google Patents

Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals mittels Gleichspannungen Download PDF

Info

Publication number
EP0432626B1
EP0432626B1 EP90123332A EP90123332A EP0432626B1 EP 0432626 B1 EP0432626 B1 EP 0432626B1 EP 90123332 A EP90123332 A EP 90123332A EP 90123332 A EP90123332 A EP 90123332A EP 0432626 B1 EP0432626 B1 EP 0432626B1
Authority
EP
European Patent Office
Prior art keywords
signal
lamp
signal lamp
monitoring
signal lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123332A
Other languages
English (en)
French (fr)
Other versions
EP0432626A2 (de
EP0432626A3 (en
Inventor
Hellmuth Fricke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0432626A2 publication Critical patent/EP0432626A2/de
Publication of EP0432626A3 publication Critical patent/EP0432626A3/de
Application granted granted Critical
Publication of EP0432626B1 publication Critical patent/EP0432626B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/097Supervising of traffic control systems, e.g. by giving an alarm if two crossing streets have green light simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • B61L7/08Circuitry
    • B61L7/10Circuitry for light signals, e.g. for supervision, back-signalling
    • B61L7/103Electric control of the setting of signals

Definitions

  • the invention relates to a circuit according to the preamble of claim 1.
  • Such a circuit is known from DE-PS 35 16 612.
  • Contacts of monitoring relays arranged at the signal lamps are used to report the operating states of the individual signal lamps of a light signal to the signal box, wherein in each monitoring circuit both contacts of the monitoring relay assigned to the stop signal lamp and contacts of at least one monitoring relay assigned to a travel signal lamp are arranged.
  • this requires individual wiring of the monitoring circuits on the light signal, depending on the signal terms to be displayed, and for the modules assigned to the individual signal lamps, the inclusion of switching means which are controlled by other modules.
  • the object of the invention is to provide a circuit designed according to the preamble of claim 1, which manages in the assemblies assigned to the individual light signals without control and monitoring switching means of other assemblies.
  • the particular advantage of the circuit according to the invention lies in the fact that uniformly designed switching modules can be used for the control as well as for the monitoring of the stop and drive signal lamps on the light signal, so that no individual wiring of the individual modules with switching means of other modules is required is.
  • Fig. 1 shows schematically the control and monitoring circuits of a light signal with a stop signal lamp H and a single drive signal lamp F1.
  • the two signal lamps are connected via two feed lines LH and LF1 to an AC power supply device, not shown, in the signal box; they are switched via switch contacts S0 and S1. It is assumed that the stop signal lamp H is switched on.
  • a monitoring device IG0 assigned to the stop signal lamp for example controlled by the lamp current via a current transformer, derives a DC voltage from the lamp current flowing via the signal lamp, the level of which is analogous to the lamp current and applies this as a monitoring polarity voltage in a predetermined polarity to one of its supply lines LH and via one Line L1 to one of the feed lines LF1 of the drive signal lamp F1.
  • a detector M1 is connected to the feed lines of the two signal lamps and, because of the direct voltage present at its inputs E1M1 and E2M1 in the predetermined polarity, has, for example, positive output potential at its output.
  • the amplitude of the output signal is regarded as a sign that the stop signal lamp lights up correctly. If the lamp burns out, the DC voltage at the inputs of the detector disappears and the downstream evaluation device recognizes the presence of a fault from this.
  • a monitoring device IG1 assigned to this signal lamp derives a DC voltage from the lamp current flowing via the drive signal lamp and leads it in phase opposition to the monitoring DC voltage that can be applied by the monitoring device IG0 via one of its own supply lines and the line L0 and one of the supply lines of the switched off stop signal lamp to the detector M1 in the signal box.
  • the travel signal lamp F1 has a lamp current-controlled switch (not shown in the drawing), for example a relay, which reverses its switching contacts K1.1 and K1.2 when the lamp current is sufficiently high.
  • the contact K1.1 disconnects the connection between the positive pole of the monitoring device IG1 assigned to the travel signal lamp F1 and the feed lines of the stop signal lamp H, while the contact K1.2 connects the positive pole of the monitoring device IG1 to the feed lines of its own signal lamp.
  • the negative pole of the monitoring device IG1 of the drive signal lamp is connected via line L0 to one of the feed lines leading to the stop signal lamp.
  • the subordinate evaluation logic recognizes that a sufficiently high supply current is now flowing via the travel signal lamp F1 of the light signal monitored by it.
  • An amplitude evaluation of the detector output potentials is only necessary if the lamp current-controlled switch already responds to a lamp current flowing through the travel signal lamp which does not yet lead to the lamp filament lighting up. If the lamp current-controlled switch only switches when the associated signal lamp lights up, the amplitude evaluation is already carried out in the lamp current-controlled one Switch instead of and no longer needs to be made by the evaluation logic.
  • two detectors connected in series on the input side can also be provided, one of which in one phase position and the other in the other Phase position of the applied DC voltage leads to output potential. If there is no monitoring voltage on the supply lines of the signal lamps in the event of a fault, the detector or detectors also have no output potential; this is recognized as a malfunction by the downstream evaluation logic.
  • the switching means near the lamp for feeding and monitoring the individual signal lamps are accommodated in associated switching modules Mo0 and Mol, which are connected to one another via the two lines L0 and L1 and to the signal box via the feed lines LH and LF1.
  • switching modules Mo0 and Mol which are connected to one another via the two lines L0 and L1 and to the signal box via the feed lines LH and LF1.
  • the two switching modules there are only those switching means which are assigned to the associated signal lamp; an individual linkage of switching means, which are assigned to different signal lamps as in the prior art, does not take place in the individual modules.
  • FIG. 2 shows a light signal with a stop signal lamp H and two travel signal lamps F1 and F2, which can be switched on individually or together as required; dashed lines indicate that the light signal can be equipped with additional signal lamps to represent further travel signal terms, the associated switching modules of which must be connected to associated feed lines and to the lines L0 and L1 routed via the other switching modules.
  • the reference symbols chosen in FIG. 1 have been retained for the corresponding components. It is assumed that the signal lamp F1 is switched on to represent a first travel signal term. The switch contact S1 is closed, while the switch contacts SO and S2 for the stop signal lamp H and the second Trip signal lamp F2 are open.
  • the associated lamp current-controlled monitoring device IG1 derives a corresponding DC monitoring voltage from the lamp current flowing via the signal lamp F1 and applies this in a predetermined polarity via the contact K1.2 of a lamp current-controlled switch, which is assumed to be set, not shown, to one of its feed lines LF1 and via the line L0 one of the feed lines LH leading to the stop signal.
  • the contact K1.1 interrupts the connection of the lamp current-controlled monitoring device IG0 assigned to the stop signal lamp to the line L1.
  • the detector M1 detects the positive potential present at its input E1M1 via the feed lines LF1 and the negative potential present at its input E2M1 via the feed lines LH and thereupon sets its output to negative potential. From this, the evaluation logic recognizes the lighting of the signal lamp F1.
  • the switching module Mo1 assigned to the travel signal lamp F1 has a monitoring device UG1 controlled by the lamp voltage, which derives a direct voltage from the lamp voltage and switches this to the two lines L0 and L1 between the individual modules Mo to Mo2.
  • the polarity of this DC voltage is different from the polarity of the DC voltages that can be applied to these lines by the lamp current-controlled monitoring devices IG0 and IG1.
  • This DC voltage derived from the lamp voltage of the travel signal lamp switched on is connected via lines L0 and L1 to one of the feed lines LH leading to the switched off stop signal lamp and to one of the feed lines leading to all switched off travel signal lamps and is used in the signal box to uniquely identify the signal lamp or signal lamps of the light signal which are respectively switched on.
  • the one input E1M2 of the detector M2 is connected to the supply lines LF2 leading to the switched off signal lamp F2 and the line L1 to the negative pole of the activated monitoring device UG1, while the second input E2M2 of the detector M2 is connected to one of the supply lines LH leading to the switched off stop signal lamp and the line L0 at the positive pole of the monitoring device UG1 of the activated drive signal lamp F1.
  • the detector M2 then provides positive potential at its output; from this the downstream evaluation device recognizes the current operating state of the light signal to be monitored.
  • the detectors assigned to these signal lamps would also have positive potential on the output side, as long as the associated signal lamps are dark, ie the evaluation logic would recognize the glow of the drive signal lamp F1 only from the polarity of the detector output signals.
  • the travel signal lamp F2 is switched on; the travel signal lamp F1 should be switched off. If the lamp current is sufficiently high, the lamp current-controlled switch associated with the connected drive signal lamp F2 changes its switch contacts K2.1 and K2.2 and thus switches a connection between the positive pole of the associated current-controlled monitoring device IG2 and the input E1M2 of the associated detector M2; the negative pole of the monitoring device IG2 is connected via line L0 and one of the lines LH of the switched-off stop signal lamp to the other input E2M2 of detector M2; this detector then outputs negative potential at its output.
  • a monitoring device UG2 which is controlled by the supply voltage to the signal lamp F2, derives a direct voltage from the supply voltage and switches it in phase opposition to the direct monitoring voltage derived from the lamp current on lines L0 and L1. From there, positive potential passes via L0 and one of the supply lines LH leading to the deactivated stop signal lamp to one input E2M1 of detector M1, while negative potential via line L1 and the now closed contact K1.1 of the switch in the switching module Mo1 of the deactivated trip Signal lamp F1 is present at the other input E1M1 of detector M1. This detector emits positive potential at its output. The detectors of other travel signal lamps included in the light signal would also emit a positive output potential when the travel signal lamp F2 was switched on. as long as the associated signal lamps themselves are dark. From this, the evaluation device determines the operating state of the light signal monitored by it.
  • the lamp current-controlled monitoring device IG0 assigned to it initiates via line L1 and the contacts K1.1 and K2.1 in the basic position of the lamp current-controlled switches in the switching modules Mo1 and Mo2 of the switched-off drive signal lamps and one of its own signal lamp leading feed lines LH that all detectors M1, M2 have positive potential on the output side.
  • the associated current-controlled monitoring devices cause the detectors assigned to these travel signal lamps in the signal box to emit negative output potential.
  • the detectors of any other travel signal lamps that are not switched on have positive output potential on the output side; the detectors derive this potential from the voltages applied to the lines Lo and L1 by the voltage-controlled monitoring devices of the connected drive signal lamps.
  • FIGS. 1 and 2 it is assumed that only messages about the lighting or non-lighting of the signal lamps are to be transmitted to the signal box. If, in addition to these messages, further messages are to be transmitted to the signal box, for example whether the main thread or the secondary thread lights up in a switched-on signal lamp, the circuits shown schematically in FIGS. 1 and 2 are also schematic in accordance with those in FIG. 3 to complete circuit parts shown. These circuit parts relate to the switching module Mo0 assigned to the stop signal lamp H and to the switching module Mo1 assigned to a travel signal lamp F1. These additional circuit parts are the same for all signal lamps; Any number of circuit parts for any number of switching modules can be connected to one another via the lines L2 to L4 connecting the circuit parts to one another.
  • Each additional circuit part contains a lamp thread monitor LÜH or LÜF1, the output of which is potential-free if and as long as the main thread of the associated signal lamp is lit and whose output carries potential of a certain value if the auxiliary thread of the relevant signal lamp is lit.
  • the arrangement can be such that the output of the lamp thread monitor is only potential-free if the associated secondary thread is functional; this must be determined by test procedures which are not to be explained in more detail here.
  • the absence of output potential at the lamp thread monitor leads via the line LH to the fact that the switch contacts U1, U2 of a changeover switch U reach the switch position shown in the drawing; in the presence of potential, i.e. when a switched main thread burns out or a lamp auxiliary thread is not ready to be switched on, the switch contacts U1, U2 change to the switch position (not shown).
  • Each signal lamp is also assigned a monitoring device UG0.1 or UG1.1 which is controlled by the lamp voltage present and which derives a DC voltage from the lamp voltage present and places this in the same phase on two lines L2 and L3 connecting the circuit parts to one another.
  • the lamp thread monitor LÜH has controlled the switch contacts U1, U2 via the line L4 in the switch position shown. In this switching position, the switching contact U1 connects the negative pole of the monitoring device UG0.1 to one of the feed lines LH leading to the stop signal lamp, while the other switching contact U2 connects the positive pole of this monitoring device to a separate connection V to the signal box.
  • This separate connection can be represented by ground connections in the signal box and in the outdoor area, as is known for this purpose, for example from DE-PS 35 16 612; there, however, it is only a question of monitoring the main / secondary threads of a total of only two signal lamps.
  • the detector M arranged in the signal box With the assumed switching position of the switching contacts and the assumed operating state of the stop signal lamp, the detector M arranged in the signal box outputs potential of a certain value at its output, from which the downstream evaluation device recognizes the correct operating state of the switched on stop signal lamp. If the main thread of the stop signal lamp burns out and the secondary thread of the signal lamp is then switched on by switching devices (not shown), the lamp thread monitor LÜH controls the switching contacts U1, U2 into the other switching position via line L4.
  • the positive pole of the voltage-controlled monitoring device UGO.1 is now connected via the switch contact U1 to one of the feed lines LH leading to the stop signal lamp, and the negative pole of the monitoring device is connected to the separate connection V via the switch contact U2.
  • the detector M is now driven in phase opposition to the previously assumed connection of the main thread of the stop signal lamp and changes the potential that can be tapped at its output. If the drive signal lamp F1 is switched on instead of the stop signal lamp H, the associated lamp thread monitor LÜF1 controls the two switch contacts U1, U2 in the same way as that of the stop signal lamp. The same applies to the monitoring device UG1.1 which is controlled by the supply voltage of the travel signal lamp F1 and which switches a DC voltage to the lines L2 and L3 when the signal lamp is switched on.
  • detector M If the main thread of the drive signal lamp lights up, detector M outputs the same potential as when the main thread of the stop signal lamp is switched on.
  • the switching contacts U1, U2 are controlled into the other switching position via the line L4 and the detector M outputs potential of the other value at its output. If, in addition to the identification of the respectively switched on signal lamp, the identification of the respectively switched on lamp filament is also to take place, the circuits according to FIGS. 1 and 2 are to be supplemented by the circuit parts shown in FIG.
  • the monitoring device UGO.1 of the stop signal lamp which is controlled by the supply voltage, uses the monitoring DC voltage it provides in phase opposition to the DC voltages switched by the corresponding monitoring devices UG1.1 of the travel signal lamps on lines L2 and L3.
  • each change from stop to travel and vice versa leads to a change in the output potential of detector M and thus to a functional check of this detector.
  • the evaluation of the output potential of the detector is then to be made dependent on the actual operating state of the switched-on signal lamp detected by the circuits according to FIGS. 1 and 2 or on the target operating state of this lamp given by the switching state of the actuators.
  • FIG. 4 shows a technical implementation of the circuit according to the invention using a light signal with a stop signal lamp H and a drive signal lamp F1; the light signal can contain any number of drive signal lamps; a corresponding number of switching modules are then to be strung together via the associated connecting lines L0 to L4.
  • Each switching module contains the switching means that are required on the light signal in order to report the signal signal that is currently switched on to the signal box, and each switching module also contains the switching means that indicate in the signal box whether the signal signal that is switched on is via the main or secondary thread Representation arrives, or whether the auxiliary threads of all connected signal lamps operated via their main threads are functional.
  • the reference symbols known from FIGS. 1 to 3 were used further for the elements shown in detail in FIG. 4.
  • the signal lamps are switched on in the signal box via isolating transformers TH1 and TF1.1, which are connected to AC voltage on the primary side via switch contacts S0, S1.
  • the secondary windings of these isolating transformers are connected via the feed lines LH and LF1 to the primary windings of isolating transformers TH2 and TF1.2 arranged in the vicinity of the signal lamps.
  • These isolating transformers are components of the switching modules Mo0 and Mo1 assigned to the individual signal lamps.
  • the signal lamps H to be switched are located on the secondary windings of the latter isolating transformers or F1.
  • Each switching module has a feed current-controlled monitoring device IG0 or IG1, which consists of a current transformer connected to the lamp circuit on the primary side and a two-way rectifier on the secondary side.
  • the positive pole of the monitoring device IG0 assigned to the stop signal lamp H is connected to the line L0, the negative pole to the line L1.
  • the current-controlled monitoring devices IG1 assigned to the drive signal lamps this is exactly the opposite; there, the negative pole of the rectifier connected to a voltage dependent on the lamp current is connected to line L0 and the positive pole is connected to line L1 via a contact K1.1 of a current-controlled switch K1 which is closed when the signal lamp is switched on and lights up.
  • each switching module has a monitoring device UG0.1 or UG1.1 controlled by the applied lamp voltage.
  • these monitoring devices feed in the specified polarity onto the lines L2 and L3.
  • These monitoring devices are used to provide the voltage required to report the respectively connected main or secondary thread to the detector M via the changeover switch U.
  • Each travel signal lamp is also assigned a monitoring device UG1.2 which is controlled by the supply voltage present and which also consists of a Secondary winding of the associated isolating transformer TF1.2 and a two-way rectifier is formed. This two-way rectifier feeds on the lines L0 and L1 and in the same polarity as the current-controlled monitoring device IG0 of the stop signal lamp.
  • the voltage-dependent monitoring devices UG1.2 assigned to the travel signal lamps are used to apply voltage to the switching modules of further non-switched travel signal lamps via lines L0 and L1 when the signal lamp is switched on, and thus to influence the associated detectors in a predetermined manner.
  • the contact K1.2 of the switch K1 which responds when a sufficient lamp current flows, decouples the line L1 from the current-controlled monitoring device IG1; the contact of switch K1 causes positive potential to be applied to the feed lines leading to detector M1.
  • the detector M1 assumes a switching state which is different from that of the other drive signal lamps.
  • an electronic switch T1 designed as a field effect transistor is provided. This switch is connected to line L1 with its source and to line L0 with its drain.
  • the current-controlled monitoring device IG1 provides a sufficient monitoring voltage
  • its gate becomes positive with respect to the source and switches a connection between the first line L0 and the negative pole of the current-controlled monitoring device IG1 via the drain-source path.
  • the positive potential present on the first line L0 goes there from the positive pole of the lamp current-controlled monitoring device IG1 via the primary winding of the isolating transformer TF1.2, the feed lines LF1, the secondary winding of the interlocking transformer TF1.1 (in FIG.
  • the monitoring DC voltage which can be tapped off when the stop signal lamp is switched on at the associated lamp current-controlled monitoring device IG0 (in FIG. 4) then drives a monitoring DC current via detector M1, which leads to the output of positive output potential.
  • the monitoring circuit closes from the positive pole of the lamp current-controlled monitoring device IGO (in FIG. 4) of the stop signal lamp, the isolating transformers and the feed lines of the stop signal lamp, the detector M1, the isolating transformers and the feed lines of the drive signal lamp F1, a resistor R and the line L1 to the negative pole of the monitoring device IGO.
  • the resistance R is much lower than the internal resistance of the detector M1, so that there is a sufficiently high voltage for switching the detector.
  • the electronic switch T1 remains blocked because, owing to the high internal resistance of the detector M1 at the resistor R, there is no voltage drop sufficient to control the switch.
  • the detector M1 of the non-switched on travel signal lamp F1 is switched on in the same way as when the stop signal lamp is switched on a corresponding DC monitoring voltage is controlled, which is applied to the lines L0 and L1 by the lamp voltage-fed monitoring device UG2 (in FIG. 2) of the connected drive signal lamp F2.
  • a monitoring circuit is formed from the positive pole of the monitoring device UG2 via the line L0 to the stop signal lamp, from there via the associated isolating transformers and the feed lines of the stop signal lamp to the detector M1 and from there via the isolating transformers and the feed lines of the switched off trip Sinalamp F1, the resistor R and the line L1 to the negative pole of the monitoring device UG2 of the connected drive signal lamp F2.
  • the detector M1 carries positive potential on the output side.
  • the detector M2 of the connected drive signal lamp F2 on the other hand, has negative potential on the output side; the monitoring circuit for this detector leads from the positive pole of the associated current-controlled monitoring device IG2 (in FIG.
  • detectors of the type used in the exemplary embodiments which have a negative potential on the output side when the associated lamp lights up
  • detectors which then have a positive output potential two detectors can also be used advantageously. It is only important that the detectors have a positive or negative output potential depending on the direction of the current flowing through them or a resistor connected in parallel with their inputs and, in the absence of such a current, a different output potential or zero output potential and that the evaluation logic is based on the detector type used is taught.
  • the invention is not limited to light signals with only a single stop signal lamp. If there are several stop signal lamps that can be connected separately or together, the circuits for the detectors close in the manner described above, instead of only one stop signal lamp via the feed lines via the feed lines of several stop signal lamps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

  • Die Erfindung bezieht sich auf eine Schaltung nach dem Oberbegriff des Patentanspruches 1.
  • Eine derartige Schaltung ist aus der DE-PS 35 16 612 bekannt. Zum Rückmelden der Betriebszustände der einzelnen Signallampen eines Lichtsignals an das Stellwerk dienen Kontakte von bei den Signallampen angeordneten Überwacherrelais, wobei in jedem Überwachungskreis sowohl Kontakte des der Halt-Signallampe zugeordneten Überwacherrelais als auch Kontakte mindestens eines einer Fahrt-Signallampe zugeordneten Überwacherrelais angeordnet sind. Dies verlangt für die einzelnen Lichtsignale abhängig von den jeweils darzustellenden Signalbegriffen individuelle Beschaltungen der Überwachungskreise am Lichtsignal und für die den einzelnen Signallampen zugeordneten Baugruppen am Lichtsignal die Einbeziehung von Schaltmitteln, die von anderen Baugruppen aus gesteuert werden.
  • Aufgabe der Erfindung ist es,eine nach dem Oberbegriff des Patentanspruches 1 ausgestaltete Schaltung anzugeben, die in den den einzelnen Lichtsignalen zugeordneten Baugruppen ohne Steuer- und Überwachungsschaltmittel anderer Baugruppen auskommt.
  • Die Erfindung löst diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruches 1.
  • Der besondere Vorteil der erfindungsgemäßen Schaltung liegt darin, daß sowohl für die Ansteuerung als auch für die Überwachung der Halt- und der Fahrt-Signallampen am Lichtsignal jeweils einheitlich ausgebildete Schaltmoduln verwendet werden können, daß also keine individuelle Beschaltung der einzelnen Moduln mit Schaltmitteln anderer Moduln erforderlich ist.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Schaltung sind in den Unteransprüchen angegeben.
  • Die Erfindung ist nachstehend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Die Zeichnung zeigt:
  • in Fig. 1
    das Prinzip der erfindungsgemäßen Schaltung bei einem Lichtsignal mit einer Halt- und einer Fahrt-Signallampe,
    in Fig. 2
    das Prinzip der erfindungsgemäßen Schaltung bei einem Lichtsignal mit mehreren Fahrt-Signallampen,
    in Fig. 3
    das Prinzip einer zusätzlichen Schaltung zum Übertragen weiterer Betriebszustandsmeldungen,
    in Fig. 4
    eine technische Ausgestaltung der erfindungsgemäßen Schaltung und
    in Fig. 5
    eine Abwandlung der Schaltung nach Fig. 4.
  • Fig. 1 zeigt schematisch die Steuer- und Überwachungskreise eines Lichtsignals mit einer Halt-Signallampe H und einer einzigen Fahrt-Signallampe F1. Die beiden Signallampen sind über je zwei Speiseleitungen LH und LF1 an eine nicht dargestellte Wechselstromversorgungseinrichtung im Stellwerk angeschlossen; geschaltet werden sie über Anschaltkontakte S0 und S1. Es ist angenommen daß die Halt-Signallampe H angeschaltet ist. Eine der Halt-Signallampe zugeordnete, beispielsweise über einen Stromwandler vom Lampenstrom gesteuerte Überwachungseinrichtung IG0 leitet aus dem über die Signallampe fließenden Lampenstrom eine Gleichspannung ab, deren Höhe analog zum Lampenstrom ist und legt diese als Überwachungsgleichspannung in vorgegebener Polarität an eine ihrer Speiseleitungen LH sowie über eine Leitung L1 an eine der Speiseleitungen LF1 der Fahrt-Signallampe F1. Im Stellwerk ist an die Speiseleitungen der beiden Signallampen ein Melder M1 angeschlossen, der aufgrund der an seinen Eingängen E1M1 und E2M1 in der vorgegebenen Polarität anliegenden Gleichspannung an seinem Ausgang beispielsweise positives Ausgangspotential führt. Die Phasenlage und die Amplitude dieses Ausgangspotentials wird von einer nachgeordneten nicht dargestellten Bewertungslogik bewertet und von dieser bei genügend hohem Lampenstrom = genügender Amplitude des Ausgangssignals als Zeichen für das ordnungsgerechte Aufleuchten der Halt-Signallampe angesehen. Brennt die Lampe durch, so verschwindet die Gleichspannung an den Eingängen des Melders und die nachgeschaltete Bewertungseinrichtung erkennt hieraus das Vorliegen einer Störung.
    Wird statt der Halt- die Fahrt-Signallampe F1 angeschaltet, so leitet eine dieser Signallampe zugeordnete Überwachungeinrichtung IG1 aus dem über die Fahrt- Signallampe fließenden Lampenstrom eine Gleichspannung ab und führt diese gegenphasig zu der von der Überwachungseinrichtung IG0 anlegbaren Überwachungsgleichspannung über eine ihrer eigenen Speiseleitungen sowie die Leitung L0 und eine der Speiseleitungen der abgeschalteten Halt-Signallampe dem Melder M1 im Stellwerk zu. Hierzu weist die Fahrt-Signallampe F1 einen in der Zeichnung nicht dargestellten lampenstromgesteuerten Schalter, beispielsweise ein Relais, auf, der bei einem ausreichend hohen Lampenstrom seine Schalt-kontakte K1.1 und K1.2 umsteuert. Dabei trennt der Kontakt K1.1 die Verbindung auf zwischen dem Pluspol der der Fahrt-Signallampe F1 zugeordneten Überwachungseinrichtung IG1 und den Speiseleitungen der Halt-Signallampe H, während der Kontakt K1.2 den Pluspol der Überwachungseinrichtung IG1 auf die Speiseleitungen der eigenen Signallampe aufschaltet. Der Minuspol der Überwachungseinrichtung IG1 der Fahrt-Signallampe liegt über die Leitung L0 an einer der zur Halt-Signallampe führenden Speiseleitungen. Bei ordnungsgerechtem Betriebszustand der Fahrt-Signallampe hat damit die Polarität der an den Eingängen E1M1 und E2M1 des Melders M1 anliegenden Gleichspannung gegenüber der bei angeschalteter Halt-Signallampe gewechselt; daraufhin wechselt auch das Ausgangspotential des Melders M1. Hieraus erkennt die nachgeordnete Bewertungslogik, daß nunmehr ein ausreichend hoher Speisestrom über die Fahrt-Signallampe F1 des von ihr überwachten Lichtsignals fließt. Eine Amplitudenbewertung der Melderausgangspotentiale ist nur dann erforderlich, wenn der lampenstromgesteuerte Schalter bereits bei einem über die Fahrt-Signallampe fließenden Lampenstrom anspricht, der noch nicht zum Aufleuchten des Lampenfadens führt. Schaltet der lampenstromgesteuerte Schalter erst bei einem die zugehörige Signallampe zum Aufleuchten bringenden Lampenstrom, so findet die Amplitudenbewertung bereits im lampenstromgesteuerten Schalter statt und braucht nicht mehr von der Bewertungslogik vorgenommen werden.
  • Anstelle eines einzigen Melders M1, der ausgangsseitig in Abhängigkeit von der Phasenlage der ihm zugeführten Überwachungsgleichspannung Potential der einen oder anderen Wertigkeit führt, können auch zwei eingangsseitig in Reihe geschaltete Melder vorgesehen sein, von denen der eine bei der einen Phasenlage und der andere bei der anderen Phasenlage der anliegenden Gleichspannung Ausgangspotential führt. Ist an den Speiseleitungen der Signallampen im Störungsfall keine Uberwachungsspannung vorhanden, führen der oder die Melder auch kein Ausgangspotential; dies wird von der nachgeordneten Bewertungslogik als Störung erkannt.
  • Die lampennahen Schaltmittel zum Speisen und Überwachen der einzelnen Signallampen sind in zugehörigen Schaltmoduln Mo0 und Mol untergebracht, die untereinander über die beiden Leitungen L0 und L1 und mit dem Stellwerk über die Speiseleitungen LH und LF1 verbunden sind. In den beiden Schaltmoduln gibt es nur solche Schaltmittel, die der zugehörigen Signallampe zugeordnet sind; eine individuelle Verknüpfung von Schaltmitteln, die verschiedenen Signallampen zugeordnet sind wie beim Stand der Technik, findet in den einzelnen Moduln nicht statt.
  • Fig. 2 zeigt ein Lichtsignal mit einer Halt-Signallampe H und zwei bedarfsweise einzeln oder gemeinsam anschaltbaren Fahrt-Signallampen F1 und F2; durch gestrichelte Linien ist angedeutet daß das Lichtsignal zur Darstellung weiterer Fahrt-Signalbegriffe bedarfsweise mit weiteren Signallampen bestückt werden kann, deren zugeordnete Schaltmoduln an zugehörige Speiseleitungen und an die über die anderen Schaltmoduln geführten Leitungen L0 und L1 anzuschließen sind. Für die einander entsprechenden Bauelemente wurden die in Fig. 1 gewählten Bezugszeichen beibehalten.
    Es ist angenommen, daß die Signallampe F1 zur Darstellung eines ersten Fahrt-Signalbegriffes angeschaltet ist. Dabei ist der Anschaltkontakt S1 geschlossen, während die Anschaltkontakte SO und S2 für die Halt-Signallampe H und die zweite Fahrt-Signallampe F2 geöffnet sind. Aus dem über die Signallampe F1 fließenden Lampenstrom leitet die zugehörige lampenstromgesteuerte Überwachungseinrichtung IG1 eine entsprechende Überwachungsgleichspannung ab und legt diese in vorgegebener Polarität über den Kontakt K1.2 eines als eingestellt angenommenen, nicht dargestellten lampenstromgesteuerten Schalters an eine ihrer Speiseleitungen LF1 und über die Leitung L0 an eine der zum Halt-Signal führenden Speiseleitungen LH. Gleichzeitig unterbricht der Kontakt K1.1 die Verbindung der der Halt-Signallampe zugeordneten lampenstromgesteuerten Überwachungseinrichtung IG0 zur Leitung L1. Der Melder M1 detektiert das an seinem Eingang E1M1 über die Speiseleitungen LF1 anliegende positive Potential und das an seinem Eingang E2M1 über die Speiseleitungen LH anliegende negative Potential und legt daraufhin seinen Ausgang auf negatives Potential. Hieraus erkennt die Bewertungslogik das Leuchten der Signallampe F1.
  • Neben der lampenstromgesteuerten Überwachungseinrichtung IG1 besitzt das der Fahrt-Signallampe F1 zugeordnete Schaltmodul Mo1 eine von der Lampenspannung gesteuerte Überwachungseinrichtung UG1, die aus der Lampenspannung eine Gleichspannung ableitet und diese auf die beiden Leitungen L0 und L1 zwischen den einzelnen Moduln Mo bis Mo2 schaltet. Die Polarität dieser Gleichspannung ist verschieden von der Polarität der Gleichspannungen, die von den lampenstromgesteuerten Überwachungseinrichtungen IG0 und IG1 an diese Leitungen angelegt werden können. Diese aus der Lampenspannung der jeweils angeschalteten Fahrt-Signallampe abgeleitete Gleichspannung liegt über die Leitungen L0 und L1 an einer der zur abgeschalteten Halt-Signallampe führenden Speiseleitungen LH und an einer der zu allen abgeschalteten Fahrt-Signallampen führenden Speiseleitungen und dient im Stellwerk zur eindeutigen Kennzeichnung der jeweils angeschalteten Signallampe bzw. Signallampen des Lichtsignals. In dem dargestellten Ausführungsbeispiel liegt der eine Eingang E1M2 des Melders M2 über die zur abgeschalteten Signallampe F2 führenden Speiseleitungen LF2 und die Leitung L1 am Minuspol der aktivierten Überwachungseinrichtung UG1, während der zweite Eingang E2M2 des Melders M2 über eine der zur abgeschalteten Halt-Signallampe führenden Speiseleitungen LH und die Leitung L0 am Pluspol der Überwachungseinrichtung UG1 der angesteuerten Fahrt-Signallampe F1 liegt. Der Melder M2 stellt daraufhin an seinem Ausgang positives Potential zur Verfügung; hieraus erkennt die nachgeordnete Bewertungseinrichtung den aktuellen Betriebszustand des zu überwachenden Lichtsignals. Bei entsprechend mehr Fahrt-Signallampen würden auch die diesen Signallampen zugeordneten Melder - solange die zugehörigen Signallampen dunkel sind - ausgangsseitig positives Potential führen, d.h. die Bewertungslogik würde aus der Polarität der Melderausgangssignale das Leuchten ausschließlich der Fahrt-Signallampe F1 erkennen.
  • Nachfolgend ist angenommen, daß die Fahrt-Signallampe F2 angeschaltet ist; die Fahrt-Signallampe F1 soll abgeschaltet sein. Bei einem ausreichend hohen Lampenstrom wechselt der der angeschalteten Fahrt-Signallampe F2 zugehörige lampenstromgesteuerte Schalter seine Schaltkontakte K2.1 und K2.2 und schaltet so eine Verbindung zwischen dem Pluspol der zugehörigen stromgesteuerten Überwachungseinrichtung IG2 und dem Eingang E1M2 des zugehörigen Melders M2; der Minuspol der Überwachungseinrichtung IG2 liegt über die Leitung L0 und eine der Leitungen LH der abgeschalteten Halt-Signallampe an dem anderen Eingang E2M2 des Melders M2; dieser Melder gibt daraufhin an seinem Ausgang negatives Potential ab. Eine von der an der Signallampe F2 liegenden Speisespannung gesteuerte Überwachungseinrichtung UG2 leitet aus der Speisespannung eine Gleichspannung ab und schaltet sie gegenphasig zu der aus dem Lampenstrom abgeleiteten Überwachungsgleichspannung auf die Leitungen L0 und L1. Von dort gelangt positives Potential über L0 und eine der zur abgeschalteten Halt-Signallampe führenden Speiseleitungen LH auf den einen Eingang E2M1 des Melders M1, während negatives Potential über die Leitung L1 und den inzwischen geschlossenen Kontakt K1.1 des Schalters im Schaltmodul Mo1 der abgeschalteten Fahrt-Signallampe F1 am anderen Eingang E1M1 des Melders M1 anliegt. Dieser Melder gibt an seinem Ausgang positives Potential ab. Auch die Melder weiterer in das Lichtsignal einbezogener Fahrt-Signallampen würden bei angeschalteter Fahrt-Signallampe F2 positives Ausgangspotential abgeben, solange die zugehörigen Signallampen selbst dunkel sind. Hieraus ermittelt die Bewertungseinrichtung den Betriebszustand des von ihr überwachten Lichtsignals.
  • Bei angeschalteter Halt-Signallampe H veranlaßt die dieser zugeordnete lampenstromgesteuerte Überwachungseinrichtung IG0 über die Leitung L1 und die in Grundstellung befindlichen Kontakte K1.1 und K2.1 der lampenstromgesteuerten Schalter in den Schaltmoduln Mo1 und Mo2 der abgeschalteten Fahrt-Signallampen und eine der zur eigenen Signallampe führenden Speiseleitungen LH, daß sämtliche Melder M1, M2 ausgangsseitig positives Potential führen.
  • Werden gleichzeitig mehrere Fahrt-Signallampen angeschaltet, so veranlassen die zugehörigen stromgesteuerten Überwachungseinrichtungen, daß die diesen Fahrt-Signallampen im Stellwerk zugeordneten Melder negatives Ausgangspotential abgeben. Die Melder eventueller weiterer, nicht angeschalteter Fahrt-Signallampen führen ausgangsseitig positives Ausgangspotential; dieses Potential leiten die Melder aus der von den spannungsgesteuerten Überwachungseinrichtungen der angeschalteten Fahrt-Signallampen auf die Leitungen Lo und L1 gelegten Spannungen ab.
  • Bei den Ausführungsbeispielen der Fig. 1 und 2 ist angenommen, daß an das Stellwerk lediglich Meldungen über das Leuchten bzw. Nichtleuchten der Signallampen zu übertragen sind. Wenn neben diesen Meldungen weitere Meldungen an das Stellwerk zu übertragen sind, beispielsweise ob in einer angeschalteten Signallampe der Haupt- oder der Nebenfaden leuchtet, so sind die in Fig. 1 und Fig. 2 schematisch dargestellten Schaltungen nach Maßgabe der in Fig. 3 ebenfalls schematisch dargestellten Schaltungsteile zu ergänzen. Diese Schaltungsteile beziehen sich auf das der Haltsignallampe H zugeordnete Schaltmodul Mo0 und das einer Fahrt-Signallampe F1 zugeordnete Schaltmodul Mo1. Diese zusätzlichen Schaltungsteile sind für alle Signallampen gleich; es können beliebig viele Schaltungsteile für beliebig viele Schaltmoduln über die die Schaltungsteile miteinander verbindenden Leitungen L2 bis L4 miteinander verbunden werden.
  • Jedes zusätzliche Schaltungsteil beinhaltet einen Lampenfadenüberwacher LÜH bzw. LÜF1, dessen Ausgang potentialfrei ist, wenn und solange der Hauptfaden der zugehörigen Signallampe leuchtet und dessen Ausgang Potential einer bestimmten Wertigkeit führt, wenn der Nebenfaden der betreffenden Signallampe leuchtet. Dabei kann die Anordnung so getroffen sein, daß der Ausgang des Lampenfadenüberwachers nur dann potentialfrei ist, wenn der zugehörige Nebenfaden funktionsfähig ist; dies muß durch hier nicht näher zu erläuternde Prüfvorgänge ermittelt werden. Das Nichtvorhandensein von Ausgangspotential am Lampenfadenüberwacher führt über die Leitung LH dazu, daß die Schaltkontakte U1, U2 eines Umschalters U in die in der Zeichnung dargestellte Schaltstellung gelangen; beim Vorhandensein von Potential, d.h. beim Durchbrennen eines angeschalteten Hauptfadens oder bei fehlender Einschaltbereitschaft eines Lampennebenfadens wechseln die Schaltkontakte U1, U2 in die nicht dargestellte Schaltstellung.
  • Jeder Signallampe ist ferner eine von der anliegenden Lampenspannung gesteuerte Überwachungseinrichtung UG0.1 bzw. UG1.1 zugeordnet, welche aus der anliegenden Lampenspannung eine Gleichspannung ableitet und diese in jeweils gleicher Phasenlage auf zwei die Schaltungsteile miteinander verbindende Leitungen L2 und L3 legt. Bei dem Ausführungsbeispiel der Fig. 3 ist angenommen, daß die Halt-Signallampe H angeschaltet ist und leuchtet. Dabei hat der Lampenfadenüberwacher LÜH die Schaltkontakte U1, U2 über die Leitung L4 in die dargestellte Schaltstellung gesteuert. In dieser Schaltstellung verbindet der Schaltkontakt U1 den negativen Pol der Überwachungseinrichtung UG0.1 mit einer der zur Halt-Signallampe führenden Speiseleitungen LH, während der andere Schaltkontakt U2 den positiven Pol dieser Überwachungseinrichtung an eine gesonderte Verbindung V zum Stellwerk legt. Diese gesonderte Verbindung kann durch Masseanschlüsse im Stellwerk und in der Außenanlage dargestellt sein, wie es zu diesem Zweck z.B. aus der DE-PS 35 16 612 bekannt ist; dort geht es jedoch ausschließlich um die Überwachung der Haupt/Nebenfäden von insgesamt nur zwei Signallampen.
    Bei der angenommenen Schaltstellung der Schaltkontakte und dem angenommenen Betriebszustand der Halt-Signallampe gibt der im Stellwerk angeordnete Melder M an seinem Ausgang Potential einer bestimmten Wertigkeit ab, aus der die nachgeordnete Bewertungseinrichtung den ordnungsgerechten Betriebszustand der angeschalteten Halt-Signallampe erkennt. Brennt der Hauptfaden der Halt-Signallampe durch und wird daraufhin durch nicht dargestellte Umschalteinrichtungen der Nebenfaden der Signallampe angeschaltet, so steuert der Lampenfadenüberwacher LÜH über die Leitung L4 die Schaltkontakte U1, U2 in die andere Schaltstellung. Der Pluspol der spannungsgesteuerten Überwachungseinrichtung UGO.1 liegt nun über den Schaltkontakt U1 an einer der zur Halt-Signallampe führenden Speiseleitungen LH und der negative Pol der Überwachungseinrichtung ist über den Schaltkontakt U2 mit der gesonderten Verbindung V verbunden. Der Melder M wird nun gegenphasig zu der zuvor angenommenen Anschaltung des Hauptfadens der Halt-Signallampe angesteuert und wechselt das an seinem Ausgang abgreifbare Potential. Ist anstelle der Halt-Signallampe H die Fahrt-Signallampe F1 angeschaltet, so veranlaßt der zugehörige Lampenfadenüberwacher LÜF1 die Steuerung der beiden Schaltkontakte U1, U2 in gleicher Weise wie zuvor der der Halt-Signallampe. Das gleiche gilt für die von der Versorgungsspannung der Fahrt-Signallampe F1 gesteuerte Uberwachungseinrichtung UG1.1, die bei angeschalteter Signallampe eine Gleichspannung auf die Leitungen L2 und L3 schaltet. Leuchtet der Hauptfaden der Fahrt-Signallampe, so gibt der Melder M das gleiche Potential aus wie bei angeschaltetem Hauptfaden der Halt-Signallampe. Bei angeschaltetem Nebenfaden werden die Schaltkontakte U1, U2 über die Leitung L4 in die andere Schaltstellung gesteuert und der Melder M gibt an seinem Ausgang Potential der anderen Wertigkeit ab. Wenn neben der Kennzeichnung der jeweils angeschalteten Signallampe auch eine Kennzeichnung des jeweils angeschalteten Lampenfadens erfolgen soll, so sind die Schaltungen nach Fig. 1 und 2 um die in Fig. 3 dargestellten Schaltungsteile zu ergänzen.
  • Es kann von Vorteil sein, wenn die von der Versorgungsspannung gesteuerte Überwachungseinrichtung UGO.1 der Halt-Signallampe die von ihr zur Verfügung gestellte Überwachungsgleichspannung gegenphasig zu der von den entsprechenden Überwachungseinrichtungen UG1.1 der Fahrt-Signallampen geschalteten Gleichspannungen auf die Leitungen L2 und L3 legt. In diesem Falle führt jeder Wechsel von Halt auf Fahrt und umgekehrt (bei intakten Hauptfäden der beiden Signallampen) zu einem Wechsel im Ausgangspotential des Melders M und damit zu einer Funktionskontrolle dieses Melders. Die Bewertung des Ausgangspotentials des Melders ist dann abhängig zu machen von dem durch die Schaltungen nach Fig. 1 und 2 detektierten Ist-Betriebszustand der angeschalteten Signallampe oder von dem durch den Schaltzustand der Steller gegebenen Soll-Betriebszustand dieser Lampe.
  • Fig. 4 zeigt eine technische Realisierung der erfindungsgemäßen Schaltung anhand eines Lichtsignals mit einer Halt-Signallampe H und einer Fahrt-Signallampe F1; das Lichtsignal kann beliebig viele Fahrt-Signallampen beinhalten; es sind dann entsprechend viele Schaltmoduln über die zugehörigen Verbindungsleitungen L0 bis L4 aneinanderzureihen. Jedes Schaltmodul enthält die Schaltmittel, die am Lichtsignal erforderlich sind, um den jeweils angeschalteten Signalbegriff an das Stellwerk zu melden und jedes Schaltmodul enthält darüber hinaus die Schaltmittel, die im Stellwerk erkennen lassen, ob der jeweils angeschaltete Signalbegriff über den Haupt- oder den Nebenfaden zur Darstellung gelangt, bzw. ob die Nebenfäden aller angeschalteten, über ihre Hauptfäden betriebenen Signallampen funktionsfähig sind. Für die in Fig. 4 im einzelnen dargestellten Elemente wurden die aus den Fig. 1 bis 3 bekannten Bezugszeichen weiterverwendet.
  • Die Speisung der jeweils angeschalteten Signallampen erfolgt im Stellwerk über Trenntransformatoren TH1 bzw. TF1.1, die primärseitig über Anschaltkontakte S0, S1 an Wechselspannung liegen. Die Sekundärwicklungen dieser Trenntransformatoren sind über die Speiseleitungen LH bzw. LF1 mit den Primärwicklungen von in der Nähe der Signallampen angeordneten Trenntransformatoren TH2 bzw. TF1.2 verbunden. Diese Trenntransformatoren sind Bestandteile der den einzelnen Signallampen zugeordneten Schaltmoduln Mo0 bzw. Mo1. An den Sekundärwicklungen der letztgenannten Trenntransformatoren liegen die zu schaltenden Signallampen H bzw. F1. Jedes Schaltmodul weist eine speisestromgesteuerte Überwachungseinrichtung IG0 bzw. IG1 auf, die aus einem primärseitig in den Lampenstromkreis geschalteten Stromwandler und einem sekundärseitigen Zweiweggleichrichter besteht. Der Pluspol der der Halt-Signallampe H zugeordneten Überwachungseinrichtung IG0 ist an die Leitung L0, der negative Pol an die Leitung L1 angeschlossen. Bei den den Fahrt-Signallampen zugeordneten stromgesteuerten Überwachungseinrichtungen IG1 ist dies genau umgekehrt der Fall; dort ist der negative Pol des an einer vom Lampenstrom abhängigen Spannung liegenden Gleichrichters mit der Leitung L0 und der positive Pol über einen bei angeschalteter, leuchtender Signallampe geschlossenen Kontakt K1.1 eines stromgesteuerten Schalters K1 an die Leitung L1 angelegt. Ferner weist jedes Schaltmodul eine von der anliegenden Lampenspannung gesteuerte Überwachungseinrichtung UG0.1 bzw. UG1.1 auf. Bei jeweils angeschalteter Signallampe speisen diese Überwachungseinrichtungen in vorgegebener Polarität auf die Leitungen L2 und L3 ein. Diese Überwachungseinrichtungen dienen der Bereitstellung der zum Melden des jeweils angeschalteten Haupt- bzw. Nebenfadens erforderlichen Spannung über den Umschalter U an den Melder M. Jeder Fahrt-Signallampe ist ferner eine von der jeweils anliegenden Speisespannung gesteuerte Überwachungseinrichtung UG1.2 zugeordnet, die ebenfalls aus einer Sekundärwicklung des zugehörigen Trenntransformators TF1.2 und einem Zweiweg-Gleichrichter gebildet wird. Dieser Zweiweg-Gleichrichter speist auf die Leitungen L0 und L1 aus und zwar in gleicher Polarität wie die stromgesteuerte Überwachungseinrichtung IG0 der Halt-Signallampe. Die den Fahrt-Signallampen zugeordneten spannungsabhängigen Überwachungseinrichtungen UG1.2 dienen dazu, bei angeschalteter Signallampe über die Leitungen L0 und L1 Spannung an die Schaltmoduln weiterer nicht angeschalteter Fahrt-Signallampen zu legen und so die zugehörigen Melder in vorgegebener Weise zu beeinflussen. Im Schaltmodul der jeweils angeschalteten Fahrt-Signallampe bewirkt der Kontakt K1.2 des beim Fließen eines ausreichenden Lampenstromes ansprechenden Schalters K1 die Entkopplung der Leitung L1 von der stromgesteuerten Überwachungseinrichtung IG1; der Kontakt des Schalters K1 veranlaßt das Aufschalten von positivem Potential auf die zum Melder M1 führenden Speiseleitungen. Der Melder M1 nimmt dabei einen Schaltzustand ein, der verschieden ist von dem der übrigen Fahrt-Signallampen.
  • Anstelle von Überwacherrelais, die beim Fließen eines ausreichend hohen Lampenstromes ansprechen und Schaltkontakte betätigen, ist es auch möglich, zum Schalten der Überwachungsgleichspannungen elektronische Schalter zu verwenden. Eine Ausführungsform eines derartig ausgebildeten Schaltmoduls Mo1* ist in Fig. 5 dargestellt.
  • Anstelle eines elektromechanischen Relais zum Detektieren eines ausreichend hohen Speisestromes und zum Aufschalten eines entsprechenden Überwachungspotentials auf die Leitungen L0 und L1 ist ein als Feldeffekttransistor ausgebildeter elektronischer Schalter T1 vorgesehen. Dieser Schalter liegt mit seiner Source an der Leitung L1 und mit seiner Drain an der Leitung L0. Sein Gate wird dann, wenn die stromgesteuerte Überwachungseinrichtung IG1 eine ausreichende Überwachungsspannung zur Verfügung stellt, positiv gegenüber der Source und schaltet über die Drain-Source-Strecke eine Verbindung zwischen der ersten Leitung L0 und dem negativen Pol der stromgesteuerten Überwachungseinrichtung IG1. Das auf der ersten Leitung L0 anstehende positive Potential gelangt dorthin vom Pluspol der lampenstromgesteuerten Überwachungseinrichtung IG1 über die Primärwicklung des Trenntransformators TF1.2, die Speiseleitungen LF1, die Sekundärwicklung des stellwerksseitigen Trenntransformators TF1.1 (in Fig. 4), den Melder M1 (in Fig. 4), die Sekundärwicklung des stellwerksseitigen Trenntransformators TH1 (in Fig. 4) für die Halt-Signallampe, die Speiseleitungen zu dieser Lampe und die Primärwicklung des die Halt-Signallampe speisenden Trenntransformators TH2 (in Fig. 4).
  • Bei einem zu niedrigen Speisestrom, insbesondere bei abgeschalteter Fahrt-Signallampe, bleibt die Drain-Source-Strecke des zugehörigen elektronischen Schalters hochohmig. Die bei angeschalteter Halt-Signallampe an der zugehörigen lampenstromgesteuerten überwachungseinrichtung IG0 (in Fig. 4) abgreifbare Überwachungsgleichspannung treibt dann einen Überwachungsgleichstrom über den Melder M1, der dort zur Ausgabe von positivem Ausgangspotential führt. Der Überwachungsstromkreis schließt sich dabei vom Pluspol der lampenstromgesteuerten Überwachungseinrichtung IGO (in Fig. 4) der Halt-Signallampe, die Trenntransformatoren und die Speiseleitungen der Halt-Signallampe, den Melder M1, die Trenntransformatoren und die Speiseleitungen der Fahrt-Signallampe F1, einen Widerstand R und die Leitung L1 zum Minuspol der Uberwachungseinrichtung IGO. Der Widerstand R ist dabei sehr viel niederohmiger als der Innenwiderstand des Melders M1, so daß dort eine genügend hohe Spannung zum Schalten des Melders zur Verfügung steht. Der elektronische Schalter T1 bleibt gesperrt, weil wegen des hohen Innenwiderstandes des Melders M1 am Widerstand R kein zum Durchsteuern des Schalters ausreichender Spannungsabfall auftritt.
  • Ist statt der Fahrt-Signallampe F1 eine andere Fahrt-Signallampe, z.B. die Fahrt-Signallampe F2 (in Fig. 2), angeschaltet, so wird der Melder M1 der nicht angeschalteten Fahrt-Signallampe F1 in gleicher Weise wie bei angeschalteter Halt-Signallampe durch eine entsprechende Uberwachungsgleichspannung gesteuert, die von der lampenspannungsgespeisten Überwachungseinrichtung UG2 (in Fig. 2) der angeschalteten Fahrt-Signallampe F2 an die Leitungen L0 und L1 angelegt wird. Es bildet sich dabei ein Überwachungsstromkreis aus vom Pluspol der Uberwachungseinrichtung UG2 über die Leitung L0 zur Halt-Signallampe, von dort über die zugehörigen Trenntransformatoren und die Speiseleitungen der Halt-Signallampe zum Melder M1 und von dort über die Trenntransformatoren und die Speiseleitungen der abgeschalteten Fahrt-Sinallampe F1, den Widerstand R und die Leitung L1 zum Minuspol der Überwachungseinrichtung UG2 der angeschalteten Fahrt-Signallampe F2. Der Melder M1 führt dabei ausgangsseitig positives Potential. Der Melder M2 der angeschalteten Fahrt-Signallampe F2 hingegen führt ausgangsseitig negatives Potential; der Überwachungsstromkreis für diesen Melder führt vom Pluspol der zugehörigen stromgesteuerten Überwachungseinrichtung IG2 (in Fig. 2) über die Trenntransformatoren und die Speiseleitungen der Fahrt-Signallampe F2 zum Melder M2 und von dort über die Trenntransformatoren und die Speiseleitungen der Halt-Signallampe sowie die Leitung L0 und die Drain-Source-Strecke des zugehörigen elektronischen Schalters auf den Minuspol der stromgesteuerten Überwachungseinrichtung IG2.
  • Anstelle von Meldern der in den Ausführungsbeispielen verwendeten Art, die beim Leuchten der zugehörigen Lampe ausgangsseitig negatives Potential führen, können selbstverständlich auch solche Melder verwendet sein, die dann positives Ausgangspotential führen; es können vorteilhaft auch jeweils zwei Melder verwendet sein. Wichtig ist nur, daß die Melder abhängig von der Richtung des über sie oder einen ihren Eingängen parallelgeschalteten Widerstand fließenden Stromes positives oder negatives Ausgangspotential und beim Fehlen eines solchen Stromes ein davon verschiedenes Ausgangspotential bzw. das Ausgangspotential null führen und daß die Bewertungslogik über den verwendeten Meldertyp unterrichtet ist.
  • Die Erfindung ist nicht beschränkt auf Lichtsignale mit nur einer einzigen Halt-Signallampe. Sind mehrere getrennt oder gemeinsam anschaltbare Halt-Signallampen vorhanden, so schließen sich die Stromkreise für die Melder in vorstehend beschriebener Weise statt über die Speiseleitungen nur einer Halt-Signallampe über die Speiseleitungen mehrerer Halt-Signallampen.

Claims (11)

  1. Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals von einer fernen Einspeise- und Überwachungsstelle aus mittels Gleichspannungen, die von in der Nähe der Signallampen angeordneten Überwachern an eine zu der jeweils angeschalteten Signallampe und an eine zu einer abgeschalteten Signallampe führende Speiseleitung oder an eine zur Halt-Signallampe führende Speiseleitung und an eine gesonderte Verbindung zum Stellwerk angelegt sind und deren Polarität den durch den Überwacher jeweils detektierten Betriebszustand der überwachten Signallampe angibt, dadurch gekennzeichnet, daß jedem Lichtsignal eine der Anzahl seiner Signallampen (H, F1 in Fig. 1) entsprechende Zahl von in der Nähe der Signallampen angeordneten, über Leitungen (L0, L1) untereinander verbundenen Schaltmoduln (Mo1, Mo1) zugeordnet sind,
    daß die Schaltmoduln aus dem über die jeweils zugehörige Signallampe fließenden Lampenstrom eine erste Gleichspannung ableiten und diese in jeweils gleicher Polarität an eine zur zugehörigen Signallampe führende Speiseleitung (LH, LF1) und - für die Fahrt-Signallampen (F1) - über eine erste Leitung (L0) an eine zu den Halt-Signallampen (H) führende Speiseleitung (LH) bzw. - für die Halt-Signallampen (H) - über eine zweite Leitung (L1) an eine zu den Fahrt-Signallampen (F1) führende Speiseleitung (LF1) anlegen, wobei die den Fahrt-Signallampen (F1) zugeordneten Schaltmoduln (M1) je einen lampenstromgesteuerten Schalter (K1.1, K1.2) aufweisen, der bei zu niedrigem oder fehlendem Lampenstrom die Verbindung zwischen seiner die erste Gleichspannung bildenden Überwachungseinrichtung (IG1) und den Speiseleitungen (LH) der Halt-Signallampe (H) auftrennt und der bei ausreichend hohem Speisestrom diese Verbindung wiederherstellt und die Verbindung zwischen der Speiseleitung (LF1) der Fahrt-Signallampe (F1) und den die erste Gleichspannung im Schaltmodul (Mo0) der Halt-Signallampen (H) ableitenden Überwachungseinrichtungen (IG0) auftrennt,
    daß im Stellwerk für jede Fahrt-Signallampe (F1) mindestens ein Melder (M1) vorgesehen ist, der mit seinem einen Pol an eine zu der betreffenden Signallampe (F1) führende Speiseleitung (LF1) und an eine zu den Halt-Signallampen (H) führende Speiseleitung (LH) angeschlossen ist und daß die Melder (M1) beim Vorhandensein einer mit ausreichender Höhe an ihren Eingängen anliegenden Überwachungsgleichspannung ein die Phasenlage dieser Spannung kennzeichnendes Ausgangspotential einer Bewertungslogik zuführen.
  2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß jeweils zwei in Reihe geschaltete Melder vorgesehen sind, von denen der eine bei der einen und der andere bei der anderen Phasenlage der anliegenden Überwachungsgleichspannung Ausgangspotential abgibt.
  3. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß bei Lichtsignalen mit mehreren Fahrt-Signallampen (F1, F2 in Fig. 2) die diesen zugeordneten Schaltmoduln (Mo1, Mo2) aus der jeweils anliegenden Versorgungsspannung eine Gleichspannung ableiten und diese gleichphasig zur ersten Gleichspannung der den Halt-Signallampen (H) zugeordneten Schaltmoduln (M0) an die erste und zweite Leitung (L0, L1) legen.
  4. Schaltung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet,
    daß die Speisung der Signallampen (H, F1 in Fig. 4) über Trenntransformatoren (TH1, TH2; TF1.1, TF1.2) erfolgt,
    daß die den Halt-Signallampen (H) zugeordneten Schaltmoduln (Mo0) die aus dem Lampenstrom abgeleitete erste Gleichspannung an die primärseitige Mittenanzapfung des die betreffende Halt-Signallampe einspeisenden Trenntransformators (TH2) und über die zweite Leitung (L1) an die primärseitige Mittenanzapfung der die Fahrt-Signallampen (F1) einspeisenden Trenntransformatoren (TF1.2) anlegt,
    daß die den Fahrt-Signallampen (F1) zugeordneten Schaltmoduln (Mo1) die aus dem Lampenstrom abgeleiteten ersten Gleichspannungen an die primärseitige Mittenanzapfung des die betreffende Fahrt-Signallampe (F1) einspeisenden Trenntransformators (TF1.2) und über die erste Leitung (L0) an die primärseitigen Mittenanzapfungen der die Halt-Signallampen (H) einspeisenden Trenntransformatoren (TH2) anlegt und
    daß im Stellwerk die Melder (M1) an die sekundärseitige Mittenanzapfung eines auf die jeweils zugeordnete Fahrt-Signallampe (F1) ausspeisenden Trenntransformators (TF1.1) und an die sekundärseitigen Mittenanzapfungen der auf die Halt-Signallampen (H) ausspeisenden Trenntransformatoren (TH1) angeschlossen sind.
  5. Schaltung nach Anspruch 1 , dadurch gekennzeichnet, daß der lampenstromgesteuerte Schalter (K1 in Fig. 4) als Relais ausgebildet ist, dessen Kontakte (K11, K1.2) bei einem ausreichend hohen Lampenstrom die Verbindung vom Speisekreis (LF1) der jeweils zugehörigen Fahrt-Signallampe (F1) zu dem die erste Gleichspannung ableitenden Überwachungseinrichtungen (IG1) dieser Fahrt-Signallampe (F1) und bei nicht ausreichend hohem Lampenstrom die Verbindung vom Speisekreis (LF1) der jeweils zugehörigen Fahrt-Signallampe (F1) über die zweite Leitung (L1) zu den die erste Gleichspannung bildenden Überwachungseinrichtungen (IG0) der Halt-Signallampen (H) schalten.
  6. Schaltung nach Anspruch 1 , dadurch gekennzeichnet, daß der lampenstromgesteuerte Schalter als Feldeffekttransistor (T1 in Fig. 5) ausgebildet ist, der mit seiner Source an die zweite (L1) und mit seiner Drain an die erste Leitung (L0) angeschlossen ist und dessen Gate über einen Spannungsteiler parallel zu einem im Verhältnis zum Innenwiderstand des zugehörigen Melders niederohmigen Widerstand (R) an den Klemmen der die erste Gleichspannung ableitenden überwachungseinrichtung (IG1) der betreffenden Fahrt-Signallampe (F1) liegt.
  7. Schaltung nach Anspruch 1 , dadurch gekennzeichnet,
    daß die Schaltmoduln (Mo0, Mo1 in Fig. 3) aus der jeweils anliegenden Lampenspannung eine weitere Gleichspannung bilden,
    daß die Plus- und die Minuspole der diese Gleichspannung bildenden Überwachungseinrichtungen (UG0.1, UG1.1) aller Schaltmoduln (Mo0, Mo1) untereinander verbunden und auf die beiden Eingänge eines Umschalters (U1) geführt sind, dessen Ausgang an die Speiseleitung (LH) einer ausgewählten Signallampe (H) angeschlossen ist,
    daß ein die dem ersten Umschalter (U1) zugeführten Potentiale invertierender zweiter Schalter (U2) vorgesehen ist, dessen Ausgang auf eine gesonderte Verbindung (V) zum Stellwerk gelegt ist,
    daß die beiden Umschalter gemeinsam, abhängig vom Ausgangssignal eines Haupt/Nebenfadenüberwachers (LÜH, LÜF1) der jeweils angeschalteten Signallampe (H, F1) bzw. Signallampen in die eine oder andere Schaltstellung steuerbar sind
    und daß im Stellwerk ein gesonderter Melder (M) vorgesehen ist, der an die gesonderte Verbindung (V) und an eine der zur ausgewählten Signallampe (H) führenden Speiseleitungen (LH) angeschlossen ist.
  8. Schaltung nach Anspruch 7 , dadurch gekennzeichnet, daß die Haupt/Nebenfadenüberwacher (LÜH) der Halt-Signallampen (H) bei einander entsprechenden Betriebszuständen der zugehörigen Signallampen ein von den Haupt/Nebenfadenüberwachern (LÜF1) der Fahrt-Signallampen (F1) verschiedenes Ausgangssignal abgeben.
  9. Schaltung nach Anspruch 7 oder 8 , dadurch gekennzeichnet , daß die Haupt/Nebenfadenüberwacher (LÜH; LÜF1) der Signallampen (H, F1) aus dem zugehörigen Lampenstromkreis gespeist und ausgangsseitig einander parallelgeschaltet sind, daß die Steuereingänge der beiden Umschalter bei ordnungsgerechtem Betriebszustand der von den Haupt/Nebenfadenumschaltern (LÜH, LÜF1) überwachten Signallampen (H, F1) potentialfrei oder auf einem ersten Potential liegen und daß der Haupt/Nebenfadenumschalter jeder der Signallampen beim Feststellen einer Lampenstörung die Steuereingänge der beiden Umschalter (U1, U2) auf das jeweils andere Potential zieht.
  10. Schaltung nach Anspruch 7, 8 oder 9 , dadurch gekennzeichnet, daß die Haupt/Nebenfadenüberwacher neben dem Haupt- auch den Nebenfaden der betreffenden Signallampe überwachen und daß sie die Ausgabe eines den ordnungsgerechten Betriebszustand der zugehörigen angeschalteten Signallampe kennzeichnenden Ausgangspotentials abhängig machen sowohl vom Vorhandensein eines intakten Hauptals aus eines intakten Nebenfadens dieser Signallampe.
  11. Schaltung nach Anspruch 1 oder 6 , dadurch gekennzeichnet, daß die die Gleichspannungen ableitenden Überwachungseinrichtungen (IG1, UG1.1, UG1.2) als an die Sekundärwicklungen von Strom- oder Spannungswandlern angeschlossene Zweiweggleichrichter ausgebildet sind.
EP90123332A 1989-12-14 1990-12-05 Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals mittels Gleichspannungen Expired - Lifetime EP0432626B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941329 1989-12-14
DE3941329A DE3941329A1 (de) 1989-12-14 1989-12-14 Schaltung zum ueberwachen eines wechselstromgespeisten lichtsignals mittels gleichspannungen

Publications (3)

Publication Number Publication Date
EP0432626A2 EP0432626A2 (de) 1991-06-19
EP0432626A3 EP0432626A3 (en) 1992-12-16
EP0432626B1 true EP0432626B1 (de) 1996-03-27

Family

ID=6395471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123332A Expired - Lifetime EP0432626B1 (de) 1989-12-14 1990-12-05 Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals mittels Gleichspannungen

Country Status (6)

Country Link
EP (1) EP0432626B1 (de)
AT (1) ATE136143T1 (de)
DE (2) DE3941329A1 (de)
DK (1) DK0432626T3 (de)
ES (1) ES2084638T3 (de)
FI (1) FI100087B (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516612A1 (de) * 1985-05-08 1986-11-13 Siemens AG, 1000 Berlin und 8000 München Schaltung zum fernueberwachen eines lichtsignales
DE9012640U1 (de) * 1989-12-14 1990-11-08 Siemens Ag, 8000 Muenchen, De

Also Published As

Publication number Publication date
ES2084638T3 (es) 1996-05-16
FI100087B (fi) 1997-09-15
EP0432626A2 (de) 1991-06-19
FI906153A (fi) 1991-06-15
ATE136143T1 (de) 1996-04-15
EP0432626A3 (en) 1992-12-16
DE3941329A1 (de) 1991-06-20
DK0432626T3 (da) 1996-08-12
DE59010242D1 (de) 1996-05-02
FI906153A0 (fi) 1990-12-13

Similar Documents

Publication Publication Date Title
DE4140587A1 (de) Elektronische steuereinrichtung zum schalten mehrerer elektrischer lasten
EP0172454B1 (de) Überwachungseinrichtung für Verkehrssignalanlagen
EP0432626B1 (de) Schaltung zum Überwachen eines wechselstromgespeisten Lichtsignals mittels Gleichspannungen
DE19606894C2 (de) Einrichtung zur signaltechnisch sicheren Steuerung und Überwachung elektrischer Verbraucher im Eisenbahnwesen
EP0165464B1 (de) Schaltungsanordnung zum Betrieb eines Lichtsignales in einer Eisenbahnanlage
DE3516612A1 (de) Schaltung zum fernueberwachen eines lichtsignales
DE3420087C2 (de)
DE4105477A1 (de) Schaltung zum ueberwachen wechselstromgespeister signallampen
DE19606896C2 (de) Schaltung zum Stellen und Überwachen von Lichtsignalen
DE3643755C1 (en) Switching fault protection device
DE4329238A1 (de) Schaltung zum Wirksam- und Unwirksamschalten punktförmiger Zugbeeinflussungseinrichtungen im Eisenbahnwesen
DE917678C (de) Schaltungsanordnung zum Verschliessen, Steuern und UEberwachen von Weichen, Gleissperren u. dgl., insbesondere in Stellwerken mit elektrischen Verschlussregistern
EP0500200B1 (de) Schaltung zum Fernüberwachen mehrbegriffiger Lichtsignale
DE3538311C2 (de)
EP0404143A1 (de) Schaltungsanordnung zur Überwachung von Wechselstromverbrauchern in Eisenbahnsignalanlagen
DE654599C (de) UEberwachungseinrichtung fuer Leuchtschaltbilder
DE2209403C3 (de) Schaltungsanordnung zum bedarfsweisen An- bzw. Abschalten von Relais über eine begrenzte Anzahl von Adern, insbesondere in Lichtsignalstromkreisen
DE1540628C3 (de) Abfrageeinrichtung für die Kontaktstellung von Meldeschaltern
DE904188C (de) Lampenschaltung fuer Eisenbahnsignale, insbesondere fuer Relaissignale
DE4329235A1 (de) Schaltung zum Wirksam- und Unwirksamschalten punktförmiger Zugbeeinflussungseinrichtungen im Eisenbahnwesen
DE3331614A1 (de) Schaltungsanordnung zum wahlweisen, unterbrechungsfreien anschalten einer tag- oder nacht-wechselspannung fuer lichtsignalstromkreise
DE1210363B (de) Anordnung zur Verhinderung sich gegenseitig ausschliessender Signalzustaende, insbesondere fuer Strassenverkehrs-Signalanlagen
DE1100676B (de) Schaltungsanordnung in elektrischen Eisenbahnstellwerken mit einem akustischen Stoerungsmelder
DE1128884B (de) Schaltungsanordnung zum UEberpruefen richtiger Tastenbedienung in elektrischen Stellwerksanlagen
DE2115509B2 (de) Schaltungsanordnung zur ueberwachung des betriebszustandes elektrischer schaltanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE DK ES FR GB IT LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE DK ES FR GB IT LI LU NL

17Q First examination report despatched

Effective date: 19950327

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: GB

Effective date: 19960327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: FR

Effective date: 19960327

REF Corresponds to:

Ref document number: 136143

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59010242

Country of ref document: DE

Date of ref document: 19960502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2084638

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19961205

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030307

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19980113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL