EP0415952B1 - Procede et dispositif permettant de commencer une nouvelle filee dans un dispositif de filage open-end - Google Patents

Procede et dispositif permettant de commencer une nouvelle filee dans un dispositif de filage open-end Download PDF

Info

Publication number
EP0415952B1
EP0415952B1 EP89905051A EP89905051A EP0415952B1 EP 0415952 B1 EP0415952 B1 EP 0415952B1 EP 89905051 A EP89905051 A EP 89905051A EP 89905051 A EP89905051 A EP 89905051A EP 0415952 B1 EP0415952 B1 EP 0415952B1
Authority
EP
European Patent Office
Prior art keywords
take
yarn
fibre
acceleration
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89905051A
Other languages
German (de)
English (en)
Other versions
EP0415952A1 (fr
Inventor
Anthony Ball
Rupert Karl
Erwin Braun
Ulrich Roediger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Ingolstadt Spinnereimaschinenbau AG
Original Assignee
Rieter Ingolstadt Spinnereimaschinenbau AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Ingolstadt Spinnereimaschinenbau AG filed Critical Rieter Ingolstadt Spinnereimaschinenbau AG
Publication of EP0415952A1 publication Critical patent/EP0415952A1/fr
Application granted granted Critical
Publication of EP0415952B1 publication Critical patent/EP0415952B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/48Piecing arrangements; Control therefor
    • D01H4/50Piecing arrangements; Control therefor for rotor spinning

Definitions

  • the present invention relates to a method for piecing an open-end spinning device, in which the supply of fibers to a fiber collecting surface which has been interrupted while the open-end spinning device is at a standstill is switched on again, a thread end is hereby returned to a fiber collecting surface and the fiber supply to the fiber collecting surface and the speed at which the previously returned thread is drawn off again, including the fibers fed in, can be increased to their respective production value, and a device for carrying out this method.
  • the control of the fiber feed in adaptation to the run-up curve of the spinning rotor also requires a complicated drive and control device for the fiber feed. Moreover, switching on the supply twice and maintaining a fixed downtime between switching off and switching on again results in a considerable amount of time for piecing.
  • the object of the present invention is to provide a simple method and a simple device which allow piezers of the same quality to be made in a time-saving manner despite different downtimes of the fiber feed before a piecing process.
  • this object is achieved in that, for spinning, the state of combing out of the fiber beard given at the time the piecing program is switched on, the fiber feeding is switched on and switched to full production speed and the speed of the thread take-off is adapted to the effect of the feeding on the fiber collecting surface .
  • the fiber beard can have different combing states.
  • the piecing program changes accordingly.
  • the fiber beard is combed more or less strongly and / or removed, so that after the supply device is switched on again, the fiber flow increases correspondingly faster or slower, until finally through the feed device a piece of the sliver unaffected during the previous idle time passes through the opening roller is gripped and dissolved into fibers.
  • This process saves time, since it is not necessary to produce a specific shape of fiber before the piecing process. Nevertheless, piecing is produced which is always of the same quality in terms of strength and appearance, since the different properties of the fiber beard are taken into account at the moment of the piecing process.
  • the acceleration of the thread take-off is expediently controlled as a function of the combed state of the fiber beard so that the thread take-off speed is increased more slowly when the fiber beard is severely impaired than when there is little impairment. If the fiber beard has only been slightly affected because, for example, after a failed piecing attempt, another piecing process is initiated immediately, the fiber beard which is exposed to the action of the opening roller by the feed device is only slightly removed and is therefore back to its full extent within a very short time ready. Accordingly, the thread take-off is very quickly brought up to the production take-off speed. If, on the other hand, the fiber beard is more combed out, only a few fibers can be combed out by the opening device and fed to the spinning device.
  • the thread take-off speed is also increased more slowly in accordance with the present invention, so that a synchronous run-up of the fiber feed and the thread take-off is achieved by this adaptation to the condition of the fiber beard.
  • the period between the switching on of the fiber feed and the beginning of the thread take-off is dimensioned in dependence on the impairment of the fiber beard so that this period is chosen to be greater in the case of severe impairment than in the case of minor impairment. It has been shown that, depending on the impairment of the fiber beard, not only is the increase in the fiber flow influenced, but also the point in time at which the start-up of the fiber feed begins. If this impairment was only very slight, such as in the event of a failed thread break repair, the fiber beard is not only less combed or worn out, but this relatively slightly influenced fiber beard also extends to the opening roller, so that the fiber supply starts again very early.
  • the procedure is such that either the fiber supply is switched on at the same time interval from the switch-on time of the piecing program, regardless of the combed state of the fiber beard, and the adaptation of the period by changing the time for the start of the thread take-off compared to the switch-on time for the fiber feed or that the thread take-off is always switched on at the same time interval from the switch-on time of the piecing program, regardless of the state of combing of the fiber beard, and the adjustment of the time period by changing the time for The fiber feed is switched on compared to the start of the thread take-off.
  • the state of combing out the mustache can be determined in various ways. Since the fiber beard is impaired the longer it is exposed to the action of the dissolving device when the delivery device is stopped, it is provided according to an advantageous development of the method according to the invention that the condition of the fiber beard due to the downtime of the sliver with the dissolving device running before the fiber supply is switched on the fiber collection area is determined.
  • a vacuum of a certain height can be generated on one side of it to determine the combed state of the fiber beard, and the vacuum drop measured on the other side of the fiber beard.
  • the thread with a slight impairment of the fiber beard, with a short delay compared to the release of the fiber sliver quickly, possibly erratically, to the production take-off speed is brought, with a medium impairment after an increased compared to the low impairment accelerated so that the thread reaches the full production value substantially simultaneously with the fiber feed caused by the release of the sliver, and with a severe impairment after an increased compared to the medium impairment
  • Delay compared to the release of the sliver is initially greatly accelerated until the take-off speed, based on the respective production values, reaches the same percentage value as the fiber feed, to then be drawn off with a pull-off acceleration such that the further increase in the pull-off speed and the fiber feed take place essentially synchronously.
  • the start and / or the acceleration of the thread take-off during piecing for the purpose of eliminating thread breakage is determined as a function of the impairment of the fiber beard and when piecing in connection with a bobbin change, as in the case of a severe impairment, the piecing device generated in connection with a bobbin change before the start of the bobbin assembly is separated from the subsequent thread and removed.
  • the thread break removal in which the piecer reaches the bobbin, a piecer is produced which meets high requirements both in terms of strength and appearance, the appearance does not matter for the piecer produced in connection with a bobbin change, since it does not gets onto the coil or is removed from the sleeve before the coil build-up begins.
  • this piecing device produced in connection with a bobbin change it is therefore sufficient if sufficient strength is taken care of, which leads to a further increase in piecing security, in particular with some materials and with very fine yarns.
  • the thread is subjected, according to the invention, to several phases of the acceleration of the withdrawal, the first phase of the withdrawal acceleration being coordinated with the incorporation of fibers into the returned thread end and the at least one further phase of the withdrawal acceleration achieving and / or maintaining the desired fiber mass in the newly created thread.
  • the first phase of the withdrawal acceleration being coordinated with the incorporation of fibers into the returned thread end and the at least one further phase of the withdrawal acceleration achieving and / or maintaining the desired fiber mass in the newly created thread.
  • a further expedient embodiment of the method according to the invention provides that the first phase of the take-off acceleration is only ended after the previously returned thread end has left the fiber collecting surface again.
  • the pull-off acceleration of the first phase is adapted to the rotation propagation to the fiber collecting surface in such a way that the lower the rotational propagation to the fiber collecting surface, the lower this acceleration of the first phase.
  • Such a method is not only advantageous if the fiber sliver has stopped and coarse thread numbers are generated. Regardless of a measurement of the standstill time of the fiber sliver, it is advantageous in a further development of this method if, after switching on the fiber feed, the fibers are first prevented from reaching the fiber collecting surface by deflecting and removing them, and the fiber feed to the fiber collecting surface is only released by removing this deflection of the fiber flow, whereby after removing the deflection of the fiber flow, the thread in the second Pull-off acceleration phase is suddenly increased to the production pull-off acceleration.
  • the first phase of the take-off acceleration already begins before the deflection of the fiber flow is canceled, so that the thread take-off already starts before the first fibers reach the fiber collecting surface. In this case, the returned thread end does not need to open a fiber ring.
  • the take-off acceleration and the feed rate of the fiber feed are increased substantially synchronously up to their production values. In this way, the desired thread mass is achieved and maintained at an early stage.
  • the acceleration of the thread in several phases can in principle be achieved in different ways. It has proven to be advantageous if the thread is exposed to the action of a controllable pair of take-off rollers from the moment of application, which pull the thread with the desired take-off acceleration. This can be done in various ways, for example by driving the pair of draw-off rollers with appropriate acceleration. In machines with a large number of similar open-end spinning devices, however, this means that an individually drivable one for each spinning device Draw-off roller pair is provided, since only then can individual spinning on each spinning device be carried out without influencing the neighboring spinning devices. In order to avoid such a complex construction, it is expedient if a draw-off roller of the pair of draw-off rollers is driven continuously at full production take-off speed, but that this production take-off speed is only transferred to the thread in a controlled manner.
  • the controlled transfer of the production take-off speed from the driven take-off roller to the thread advantageously takes place in that the slip between the take-off rollers and the thread is changed by controlling the distance between the take-off rollers of the pair of take-off rollers.
  • the non-driven take-off roller of the pair of take-off rollers is braked in a controlled manner.
  • the coil on this side of the drive on opposite sides of the action is exposed to two drives and / or that for tensioning the thread supplied by the draw-off roller pair, it is temporarily stored between the draw-off roller pair and the bobbin.
  • Optimal piecing in terms of strength and appearance are achieved according to the invention in that the thread pull-in begins even before the fiber ring has reached its desired strength again after the fiber feed has been switched on, in that the thread is first pulled off the fiber collecting surface with so little acceleration that the strength of the fiber ring increases , however, up to the point in time at which the previously returned thread end has left the fiber collecting surface again, has not yet exceeded the nominal strength, that the thread take-off, after the thread end has left the fiber collecting surface, is now accelerated so quickly that the speeds of thread pulling and Fiber feed attain the same percentage value, based on its production values, at the latest when a thread length corresponding to the circumference of the spinning rotor has been subtracted from the fiber collecting surface and then maintain its synchronous ratio.
  • the number of twists in the finished yarn depends on the relationship between the speed of rotation of the spinning element and the speed of thread withdrawal.
  • the spinning element can be designed as a spinning rotor so that the spinning rotor is first brought to a rotational speed below the production speed for the spinning that the thread is then returned to the fiber collecting surface at this rotational speed, connected there with fibers and then subjected to a multiphase take-off acceleration with simultaneous acceleration of the spinning rotor to its production speed. Without anyone Regulation of the speed of the spinning rotor is required, a certain adjustment of the rotor speed to the low thread take-off speed is achieved in this way.
  • the fibers can get into the rotor before the end of the thread is returned to the fiber collecting surface. If a device is used, by which the fibers are initially prevented from entering the rotor after the fiber supply has been switched on, and the full fiber flow suddenly enters the rotor by switching the fiber stream, it can also be provided that the thread end in the rotor is returned and only then is the fiber flow released into the rotor.
  • the spinning rotor moves from a position below the production Rotational speed at such a time and is accelerated to the full production speed in such a way that it reaches this substantially simultaneously with the time at which the thread also reaches its production take-off speed.
  • optimum piecing results from the fact that, depending on the time for increasing the fiber feed up to the full production value of the thread, after the first phase of the take-off acceleration one or two further phases of the take-off acceleration go through in such a way that with a rapid increase in the fiber flow the thread in a second phase is suddenly brought up to the production take-off speed, with a moderate increase in the fiber flow the thread is accelerated in a second phase so that it reaches the full production value substantially simultaneously with the fiber flow, and with a slow increase in the Fiber flow of the thread is first strongly accelerated in a second phase of the take-off acceleration until the take-off speed, based on the respective production values, reaches the same percentage value as the fiber flow, and then in a third phase with such a take-off ugsacceleration to be deducted that the further increase in the withdrawal speed and the fiber flow take place essentially synchronously.
  • the thread end to be returned is expediently subjected to a pretreatment before it is returned to the spinning element, so that the thread end acquires an essentially wedge-shaped shape.
  • a device for spinning on an open-end spinning device which has a fiber collecting surface, a fiber feeding device, a take-off device for the thread and a control device controlling the piecing process
  • the control device is connected to a device, which determines the combed state of the fiber beard at the time of piecing and controls the acceleration of the thread draw-off as a function of this combed state.
  • This device for determining the condition of the fiber beard can have different designs.
  • it is designed as a computer unit to which the thread monitor and the control device controlling the piecing process are connected in terms of control.
  • the computer unit is not provided for each spinning station or piecing device, but it is entirely sufficient if this computer unit is assigned to at least one spinning machine.
  • Such a research unit can, however, also be jointly assigned to several spinning machines.
  • control device has a time control unit for determining the time period between switching on the fiber supply on the fiber collecting surface until the thread take-off is inserted.
  • the device for determining the combed state of the fiber beard can also be designed as a surface supporting the fiber beard with an opening with which a pressure gauge is connected.
  • This opening is expediently arranged in the feed trough. It may be advantageous to cover this opening with a sieve which retains the fiber beard in order to prevent the fiber beard from getting into the opening.
  • At least two thread acceleration devices are provided, which can be selected by the control device.
  • the first thread acceleration device is used to accelerate the thread take-off in adaptation to the incorporation of fibers into the returned thread end, while the at least one further thread acceleration device has the task of bringing the thread to the desired thread mass and / or holding it on this thread mass.
  • Such a device is advantageous both in connection with a device in which the acceleration behavior of the thread take-off is controlled as a function of the nature of the fiber beard at the time of piecing, and independently of this.
  • the first thread acceleration device is designed as a drive device which can be driven at a controllable speed for a bobbin located in the winding device, while the second thread acceleration device is designed as a pair of take-off rollers driven at the production take-off speed.
  • this take-off device has a pair of take-off rolls with a first take-off roll that can be driven at production take-off speed and a second take-off roll that can be lifted off the drivable take-off roll, and the control device, through which the second thread acceleration device can be brought into effect, is connected in terms of control to a lifting device for the second take-off roller.
  • the control device is connected in terms of control with an insertion device for inserting the thread into the clamping line of the pair of draw-off rollers.
  • a drive device connected to the control device for controlling the speed of the pair of draw-off rollers can be provided.
  • This alternative embodiment of the subject matter of the invention can also be used in conjunction with or independently of a device in which the acceleration behavior of the thread take-off is controlled as a function of the nature of the fiber beard.
  • Yet another alternative embodiment of the subject matter of the invention which can also be used in conjunction with or independently of a device in which the acceleration behavior is controlled as a function of the condition of the fiber beard at the time of piecing, provides that the pair of take-off rollers has a first that can be driven at the production take-off speed Draw roller and a second draw roller which can be driven by this first draw roller and the draw behavior of the draw roller pair can be changed by the control device.
  • a pair of lifting devices for the second draw-off roller for changing the slip between the two draw-off rollers or, alternatively, a controllable braking device which can be brought into action on the second draw-off roller is preferably assigned to the pair of draw-off rollers.
  • the subject matter of the invention is expediently designed such that the control device is connected in terms of control to the device for selectively removing or feeding the fibers. This allows the thread draw to be matched to the fiber flow in a simple manner.
  • the control device contains a time control device, which can advantageously be switched on when the first phase of the trigger acceleration is brought into effect.
  • the time control device can have an adjusting device. This can e.g. Ensure that the next acceleration phase of the thread take-off does not start until the end of the thread has left the fiber collecting surface and the risk of thread breaks is thus significantly reduced.
  • the open-end spinning element is assigned a drive device which has a switchover device in order to drive the open-end spinning element either at one of two fixed speeds , wherein the switchover device is connected to the control device controlling the take-off acceleration in order to bring the open-end spinning element to its higher speed as a function of the switchover from the first phase of the take-off acceleration to the subsequent higher take-off acceleration.
  • the winding device has a continuously driven drive device and a device for increasing the contact pressure between a coil located in the winding device and the continuously driven drive device is provided and is connected in terms of control to the control device for controlling the take-off acceleration.
  • This device for increasing the Contact pressure preferably has a pressure roller which can be brought to bear against the coil on the side facing away from the continuously driven drive device.
  • the pressure roller can be driven at a controllable speed.
  • control device is arranged on this maintenance device when it is designed with a maintenance device which can be moved along these spinning positions.
  • a program memory can also be provided for the simultaneous storage of several different piecing programs, which can be selected according to different spinning conditions.
  • a bobbin changing device can have a control connection with the program memory, in which a program can be defined which can be selected for carrying out a piecing process associated with a bobbin change.
  • the device is simple in construction and, in the preferred embodiment, is formed by components which are generally provided in any case on open-end spinning devices, but which, thanks to a novel control, allow piecing to be adapted better to the particular circumstances.
  • the device according to the invention can thus be retrofitted to existing open-end spinning devices without great difficulty. For the control, the exchange of a few switching disks, switching cams or chips is sufficient. It is therefore possible with simple means with high piecing security to optimize the piecing process, with the method according to the invention achieving short and inconspicuous piecing of good quality in a time-saving manner.
  • Each spinning station 10 has an open-end spinning device 11 and a winding device 12.
  • Each open-end spinning device 11 has a fiber feeding or delivery device 110 and a dissolving device 116.
  • the delivery device 110 consists of a delivery roller 111, with which a feed trough 112 cooperates elastically.
  • the feed trough 112 is pivotable on an axis 113 mounted, which also carries a clamping lever 114, which is designed as a guide element for a sliver 2 and can be brought into contact with the feed trough 112 by means of an electromagnet 115 or can be lifted off the latter.
  • the opening device 116 is essentially designed as a opening roller arranged in a housing 117.
  • a fiber feed channel 118 extends from it to a spinning element, not shown in FIG. is designed as a spinning rotor 16 (FIG. 28) or as a friction roller 18 (FIG. 31) - from which the spun thread 20 is drawn off through a thread take-off tube 119.
  • a threading roller pair 13 with a threading roller 130 driven at production speed and a threading roller 131 which rests elastically on and is carried by the threading threading roller 130 serves for the thread 20.
  • the thread 20 On its way between the open-end spinning device 11 and the threading roller pair 13, the thread 20 becomes 20th monitored by a thread monitor 14.
  • the thread 20 then passes to the winding device 12, which has a driven winding roller 120.
  • the spooler 12 further includes a pair of pivotable spool arms 121 that rotatably hold a spool 122 between them.
  • the bobbin 122 lies on the winding roller 120 during the undisturbed spinning process and is consequently driven by it.
  • the thread 20 to be wound onto the bobbin 122 is inserted into a traversing thread guide 123, which is moved back and forth along the bobbin 122 and thereby ensures a uniform distribution of the thread 20 on the bobbin 122.
  • the thread monitor 14 and the electromagnet 115 are connected via lines 140 and 156, 157 for control purposes to a computer unit or control device 15 with a program memory in which a plurality of programs 150, 151, 152, ... are stored. These programs are related to turning on the delivery device 110 the re-spinning with the help of - possibly electronically trained - switches 153, 154, 155, ... selectable depending on the time between the response of the thread monitor 14 due to the occurrence of a thread break and the response of the electromagnet and possibly different other spinning conditions such as material , Thread count etc.
  • a maintenance device 3 can be moved along the open-end spinning machine, which has a control device 30, which is connected in terms of control to the computer unit or control device 15 for controlling the piecing process.
  • the control device 30 is also connected to the swivel drive 310 of a swivel arm 31 which carries an auxiliary drive roller 311 at its free end.
  • the auxiliary drive roller 311 is driven by a drive motor 312, which is also connected to the control device 30 for control purposes.
  • Swivel arms 32 can be delivered to the spool arms 121, which are likewise pivotably mounted on the maintenance device 3 and whose swivel drive 320 is in a control connection with the control device 30.
  • the aforementioned elements of the maintenance device 3 are in control connection with the control device 30, namely swivel drive 310 via line 300, drive motor 312 via line 301 and swivel drive 320 via line 302.
  • the control device 30 of the maintenance device 3 is also connected via lines 303 and 304 to the machine side Control device 15 in terms of control.
  • the delivery roller 111 for stopping the sliver 2 is not controlled. Instead, by pivoting the clamping lever 114, the upper end thereof is brought into contact with the feed trough 112, the sliver 2 being clamped between the clamp lever 114 and the feed trough 112 and the feed trough 112 being pivoted away from the delivery roller 111.
  • the clamping line K is formed here by the line on which the clamping lever 114 presses the sliver 2 against the feed trough 112.
  • the electromagnet 115 and the clamping lever 114 can also be dispensed with and instead a clutch (not shown) can be assigned to the delivery roller 111.
  • the clamping line K is formed by the line in which the feed trough 112 presses the sliver 2 against the delivery roller 111.
  • the opening device 116 (in FIGS. 1 a) to c) acts from the right to the line A on the fiber beard 21 and combs fibers 22 from it out, which are then fed through the fiber feed channel 118 to the spinning element, not shown.
  • the fibers 22 partially extend far beyond line A into the working area of the opening device 116, while other fibers 22 only extend into the area between the clamping line K and line A.
  • the fiber beard 21 looks similar when the delivery device 110 is at a short standstill.
  • the delivery device 110 has a longer standstill and the dissolving device 116 continues to run, this further combs fibers 22 out of the fiber beard 21.
  • the fiber beard 21 then has only a few fibers 22 which extend beyond line A (FIG. 1b)).
  • the longer the downtime of the delivery device 110 (always with the dissolving device 116 running), the shorter the fiber beard 21 until, during a long downtime, no fibers 22 protrude into the working area of the dissolving device 116, i.e. until the longest fibers 22 extend from the clamping line K at the longest to the line A (Fig. 1a)).
  • the sliver 2 is conveyed in the direction of the arrow f 1 and fed to the opening device 116.
  • t Sa very short downtime of the delivery device 110 (see FIG. 1a)
  • the fiber beard 21 practically has the shape as during the spinning process itself.
  • t Va which is due to the time required to generate a fiber stream again between the delivery device 110 and the open-end spinning element
  • the fiber feed ie that on the fiber collecting surface of the open-end spinning element, not shown, is reached incoming fiber stream, again its full value (100% - see ramp-up time t Fa ). This is shown in Fig. 2a), where the fiber feed F is shown as a solid continuous line.
  • FIG. 2 shows - highly schematized - the natural run-up curve of the fiber feed as it becomes effective in the spinning element.
  • This run-up curve arises after the delivery device 110 is switched on, if the drive of the delivery device 110 is not interfered with from the outside, but rather is switched on with only one of them Production speed running drive is connected or the delivery device 110 running at production speed is brought back into effect if this drive was not previously interrupted, but was only deactivated by lifting the feed trough 112 from the delivery roller 111.
  • This natural run-up curve develops depending on the state of combing and thus varies accordingly.
  • FIG. 32 shows the fiber feed F as a surface which is enclosed by a hysteresis curve.
  • the hysteresis curve is formed by lines which represent the extreme fiber feeds.
  • a line which embodies the fiber feed F c , arises when the fiber beard 21 is only briefly attacked and combed out by the dissolving device 116 when the delivery device 110 is stopped.
  • the other line represents the fiber feed F c as it arises when the stationary fiber beard 21 is exposed to the combing action of the dissolving device 116 for a very long time.
  • the fiber feed F in the spinning element takes effect more quickly or more slowly, which - as mentioned above - depends on the duration of the combing action.
  • Such a hysteresis curve depends on certain predefined conditions and different combing times. If other parameters, such as sliver delivery speed, material etc., are changed, the hysteresis curve changes accordingly, for example by the fiber feeds F a and F c being closer to each other or further apart and the lines characterizing these fiber feeds F a and F c can have different slopes.
  • FIG. 5 shows the different types of start-up behavior of the fiber flow, with (as in FIG. 32) only the time from time t L (see FIG. 2) being shown here.
  • Fig. 5 also shows the Thread return G R and thread take-off G A , which are preset in the usual way. As can be seen from this figure, there are completely different conditions for piecing. The reason for this is explained below:
  • FIG. 5 contains in scale the times T1, T2 and T3, at which under the conditions chosen for the embodiment essentially the fiber flow in the spinning element, while the times T5, T6 and T7 indicate when essentially the full fiber flow in that Spinning element is reached.
  • the times T4 and T8 mark the beginning and end of the thread take-off acceleration.
  • a standstill time t Sa of the delivery device 110 of, for example, 30 seconds, there is a delay t Va until the start of the fiber flow F a for a certain material and under given conditions - which do not play a role in the explanation of the principle (see FIG. 2 and 5) 0.1 seconds.
  • the run-up curve Fa t is 0.9 seconds, that from the moment of switching on again of the feeder 110 until reaching the full fiber flow F passes a 1 second.
  • the thread take-off G A begins by default 0.35 seconds after the supply device 110 is switched on again and reaches its production speed after 1.1 seconds. Since the thread take-off G A and the fiber flow F a do not run synchronously, an excess of fiber is formed, which leads to a thick point in the thread 20.
  • the fiber beard has been affected even more.
  • it now takes about 0.3 seconds (T3) for the fiber feed F c to take effect in the spinning element.
  • the start-up of the fiber feed F c now also takes a little longer, namely 1.7 seconds (T7). Since the thread take-off G A already begins at the time T4, ie 0.35 seconds after the supply device 110 is switched on again, and thus 0.05 seconds after the fiber feed F c begins to take effect, only a very small fiber ring R F can accumulate.
  • the thread take-off G A is accelerated very quickly, so that the fiber ring R F becomes ever thinner. Under these circumstances, it is difficult, if at all, to start. As a rule, the piecing process will fail or the thread will tear.
  • FIG. 2 shows the downtime t Sa , t Sb and t Sc as the period between thread break B F and the time t c at which the delivery device 110 is put into operation again.
  • the downtime t Sa , t Sb and t Sc is actually the time period between thread break B F and switch-on time t E of the piecing device, which is arranged on the maintenance device 3 in the exemplary embodiment according to FIG. 4.
  • the delivery device 110 is switched on at a fixed time interval t K after the switch-on time t E , whereupon after a delay t Va , t Vb or t Vc (see FIG. 2), the fiber feed F a , F b or F c takes effect in the spinning element itself.
  • a waiting time t W which is matched to the duration of the downtime t Sa , t Sb or t Sc .
  • the thread draw G A is finally switched on at time t A, which starts up in a manner as will be described in detail below and reaches its full production value (100%) essentially simultaneously with the fiber feed F a , F b or F c .
  • the downtime t Sa , t Sb and t Sc is again measured (see FIG. 2).
  • the point in time t A for the start of the thread take-off G A is also determined over the constant time interval t K.
  • the time t L for switching on the delivery device 110 is now determined by a computer unit as a function of the downtime t Sa , t Sb or t Sc by appropriately determining the waiting time t W and / or the time for the expected delay t Va . This determination is made extremely quickly within the time period predetermined by the time constant (time interval t K ) so that the desired time sequence is ensured.
  • the time interval t K is relatively large since all the preparatory work required for piecing takes place in this period. These are usually the cleaning of the spinning element as well as the search, preparation and return of the thread end with all the related activities. 3 has been omitted for reasons of clarity.
  • the time difference (T4 - T1) or (T4 - T2) or (T4 - T3) indicates by how much the thread take-off G A starts later than the fiber feed F.
  • the larger this time difference the greater is the Spinning rotor 16 forming fiber ring R F , while the smaller this time difference, the smaller it is. This is clearly evident from Fig. 5.
  • the thread end E G is subjected to a thread draw G A , which also runs up to its production value (100%).
  • the thread end E G is tensioned and reaches the position Z G2 with its intermediate area Z G.
  • the thread end E G pulls on the fiber ring R F , so that, seen in the circumferential direction of the fiber collecting surface 160, on both sides of the Extension point P E extend fibers from thread end E G to fiber ring R F and form fiber bridges B F1 and B F2 .
  • the intermediate region Z G of the thread end E G reaches the position Z G3 .
  • the fiber bridges B F1 and B F2 tear and wind in the form of wild windings W around the thread end E G. This size of the fiber bridge B F2 and thus the size of the accumulation of turns W essentially depends on the rotor diameter and the length of the fibers processed.
  • FIG. 33 shows a piecer as it arises in a method according to FIG. 5.
  • the piecer P a (solid line) corresponds to the fiber feed F a
  • the piecer P b (dash-dotted line) the fiber feed F b
  • the piecer P c (dashed line) the fiber feed F c .
  • a piecing device generally has three longitudinal sections.
  • the piecing is particularly thick.
  • a second length portion A U piecing still generally has an increased cross-section which results from the fact that here the fiber ring R F has been mounted, the of the thread present on the fiber collection surface 160 prior to the return delivery G R, and in that new fibers had been deposited on this fiber ring R F and were also incorporated in this length section A U.
  • the two longitudinal sections A L and A U together have an overall length, which in the case of a spinning rotor 16 is predetermined by the circumference U of the fiber collecting surface 160.
  • the piecing device already has the desired thickness from the end of the length section A U (see piecing device P b ), so that the third length section mentioned is omitted in this case.
  • the length sections A L and A U are followed by a third length section A Ga or A Gc , which is either stronger or weaker than the thread and can have different lengths.
  • FIG. 7 and 8 show the piecer P with a fiber feed F a (FIG. 5). It can be seen that the thread end E G has deposited on part of the circumference U of the fiber collecting surface 160. From the start of the fiber feed F a , the fibers 22 are deposited in the spinning rotor 16 on the fiber collecting surface 160 and form a fiber ring R F , partly on the thread end E G.
  • the fiber ring R F is torn open, not only fibers are bound into the thread end E G , which with respect to the binding point P E are on the side facing the free end of the thread end E G (arrow f 2 - fiber bridge B F1 ), but also fibers on the other side of the tie-in point P E (fiber bridge B F2 ).
  • This fiber bridge B F2 thus reaches that point of the piecer P at which the fiber ring R F is blown open (FIG. 7 left).
  • the piecer P thus begins at the time T 1 with a very strong cross-sectional jump.
  • the fiber feed F a always leads the draw G A , based on the full production value, so that the fiber mass M F accumulating on the fiber collecting surface 160 increases .
  • the fiber mass M F which now collects on the fiber collecting surface 160, gradually decreases and finally reaches its normal value at the time T der, which corresponds to the desired mass of the thread 20.
  • the thread 20 thereby receives a mass distribution according to FIG. 8.
  • a thick point D 1 which is formed from the returned thread end E G , the fiber ring R F and the windings W, which are formed by the fibers of the fiber bridge B. F2 are formed.
  • the thick point D 1 initially weakens somewhat, since the effect of the fiber bridge B F2 decreases. Then the thick point D 1 increases again until the end of the returned thread end E G , only to suddenly decrease. Due to the increase in the fiber mass M F due to the delayed startup of the trigger G A , the thick point D 1 continues to increase until the time T5 and then decreases until the time T8. From here, the newly spun thread 20 has reached its target strength.
  • the piecer P which is formed when the fiber feed F c increases very slowly, is shown in FIGS. 10 and 11. It can build up from the time T3 to T poll only a very weak fiber ring R F. Up to the time T1 die the fiber mass M F increases, then to decrease again until the time T8. The fiber mass then increases again up to the time T7. From here the fiber mass corresponds to that of the normal thread 20. In this way, a short thick point D4 is created, followed by a long thin point D5, which begins before the fiber ring R F is fully integrated into the piecer P, and up to Time T7 lasts. The piecing P is therefore extremely weak and mostly fails.
  • the thread draw G A is adapted to the combed state of the fiber beard 21 (see FIG. 1). This means that the acceleration of the thread take-off G A is controlled in dependence on the combed state of the fiber beard Z 1 so that it is chosen larger if the impairment of the fiber beard 21 is small, and lower if the impairment of the fiber beard 21 is large.
  • a thread draw G Aa with strong acceleration is selected for a rapid fiber feed F a, a thread draw G Ab with moderate acceleration for a moderate fiber feed F b and a thread draw G Ac with low acceleration for a slow fiber feed F c . Since the fiber feed F a , F b and F c is used at different times T1, T2 and T3, the time T11, T12, T13 for inserting the thread take-off G Aa , G Ab and G Ac is chosen differently in such a way that a not too large, but sufficient for spinning, fiber beard R Fa , R Fb or R Fc is formed.
  • the thread take-off G A starts later when the fiber beard 21 is severely impaired - such as, for example, after a long downtime of the delivery device 110 with the dissolving device 116 running - than when the fiber beard 21 is slightly impaired.
  • the pull-off acceleration is selected such that the thread take-off G Aa , G Ab or G Ac reach their production values (100%) essentially simultaneously with the associated fiber feed F a , F b or F c .
  • the thread 20 is accelerated after a delay (see t12), which is greater than in the case of a slight impairment of the fiber beard 21, slower than there in such a way that, as in the first case, fiber feed and thread withdrawal are as possible at the same time the full production speed (100%) to reach.
  • t12 a delay
  • the start of the thread draw is delayed again compared to the start of the medium impairment (see t 1 3), the thread draw being brought to the same percentage speed value as the fiber feed F c as quickly as possible (see t 1), and then in synchronism with it to run up.
  • the transitions are fluid, as already explained in connection with FIG. 32.
  • the thick point D1 ' is less pronounced in comparison to the thick point D1, just as the thick point D2' and the thin point D3 'are less pronounced than the thick point D2 and the thin point D3' and the thick point D4 'and the thin section D5' are also less pronounced than the thick section D4 and the thin section D5.
  • This method is also shown in FIG. 13 in connection with the fiber feed F a , F b and F c .
  • the thread return G R has not been reproduced (just as in FIG. 20). It takes place after switching on the delivery device 110 at such a time that after a desired or also after an unavoidable dwell time on the fiber collecting surface 160, the thread draw G A can take place in the manner shown.
  • a thread take-off is provided according to FIG. 13 in the phases G Ab '- between the times T12 and T14 - and G Ab ''- between the times T13 and T15.
  • the strength of the piecing is essentially influenced by the strength of the thread end E G and the strength of the fiber ring R F.
  • the thickness of the thread end E G can be reduced by a pretreatment known per se, so that the thread end E G 'has a wedge shape.
  • the piecer P then has a shape according to FIG. 19, the length of the thick point D6 being the same size as the circumference U of the spinning rotor 16.
  • the piecing P begins with a very large increase in diameter compared to the returned thread end. This sudden jump in diameter is due and the fiber bridge B F2 on the fiber ring R F, which is caused by the breaking of the fiber ring F and R in the form of turns W about the yarn loops (see Fig. 5).
  • This strong thickness range of the piecing P is already a defect in the thread 20 in terms of its appearance.
  • this thick piecing P leads to higher centrifugal forces.
  • the thread take-off G A starts with a delay compared to the fiber feed F, as a result of which the fiber ring R F can form.
  • the thread draw begins with its phase G A1 , G A2 , or G A3 at a time T16, T17 or T18, at which the fiber ring R Fa ', R Fb ' or R Fc 'is still considerably smaller than the fiber ring R Fa , R Fb and R Fc shown in FIG. 13.
  • the fiber ring R F is broken open in rotor spinning devices.
  • the thread draw-off starts earlier, the faster the fiber flow increases, ie earlier with a slight impairment of the fiber beard 21 than with stronger or even severe impairment of the fiber beard.
  • the thread take-off is initially accelerated only very slowly until the fiber mass forming in the spinning rotor 16 has increased to such an extent that a secure incorporation of the fibers which continue to enter the spinning rotor 16 into the thread end E G is ensured.
  • This phase of slow withdrawal acceleration is required for such a period of time until the fibers 22 are spun into the returned thread end E G and the length section A L (see FIGS. 21 to 23) in which the thread end E G with the newly formed Thread overlaps, has left the fiber collecting surface 160. This completes the most delicate phase of the preparation.
  • the pull-off speed is then increased in the manner described, as quickly as possible due to the circumstances of the device. Since the take-off rollers 130, 131 have to be brought to a much higher speed than the delivery roller 111 because of the required distortion of the fiber material, it takes a correspondingly longer time in comparison to the delivery roller 111 until the removal speed reaches the same percentage value as the delivery roller 111.
  • the thread take-off is accelerated only very slowly in such a way that optimal conditions are created for the incorporation of the fibers 22 into the thread end E G.
  • the pull-off acceleration is so low that the tearing of the fiber ring R Fa ', R Fb ' or R Fc 'is not too violent. It has been shown that if the fiber ring is torn too violently by the fiber bridge B F2, large uncontrolled large fiber chunks are often torn out of the fiber ring R F from the thread end E G , so that a very pronounced thick point then arises at the beginning of the piecer.
  • the slow pulling of the thread end E G from the fiber collecting surface 160 moreover allows the rotations generated by the rotating spinning rotor 16 to propagate further to the binding point P E. Therefore, the lower the spin propagation to the fiber collecting surface 160, the lower the withdrawal acceleration in the first phase of the withdrawal acceleration.
  • a second phase G Aa ', G Ab ' or G Ac ' follows, in which the withdrawal acceleration follows the increase in Fiber flow should be adjusted.
  • the time T20, T21 or T22 is chosen so that the thread end E G has just left the fiber collecting surface 160.
  • the take-off acceleration is as high as the device effecting the thread take-off allows.
  • the length section A L has already left the fiber collecting surface 160 during this phase G Aa ', G Ab ' or G Ac ', so that new thread 20 is already being produced which is not as sensitive as the length section A L , so that it is higher Pull-off acceleration from the thread 20 is quite coped with.
  • FIG. 21 to 24 show the piecer P, which has been generated with the aid of the method shown in FIG. 20.
  • Fig. 24 shows the piecing of Fig. 22 in a different representation.
  • the increase in the fiber feed F depends not only on the impairment of the fiber beard 21 but also essentially on the distortion. E.g. produces a fine yarn, it is necessary to deliver 1 m of tape per minute at a thread take-off speed of 150 m / min and a draft of 1: 150. In the case of a coarse yarn, however, 3 m / min tape must be delivered at the same thread take-off speed and a delay of 1:50. However, since the fiber beard 21 fed to the disintegration device was combed out or possibly also removed during the previous downtime, it depends on the feed path of the fiber sliver until the fiber flow reaches its full value again (see FIG. 1).
  • the increase in fiber supply is consequently also determined by the delay, regardless of the downtime t Sa , t Sb , and t Sc previously discussed.
  • the take-off is accelerated quickly, possibly even suddenly, after the first phase to avoid thick spots in the yarn.
  • the described multi-phase piecing process leads to a high piecing reliability.
  • the piecing P have a higher strength than usual, which is why the success rate is extremely high.
  • the sliver 2 is fed to the dissolving device 116 by means of the delivery device 110, in the ideal case it is broken down into individual fibers and in this form is fed to the fiber collecting surface (not shown).
  • the fibers 22 are deposited briefly and then incorporated in a known manner into the end of a thread 20 which is drawn out of the open-end spinning device 11 through a thread take-off tube 119 with the aid of the pair of draw-off rollers 13.
  • the thread 20 leaving the draw-off roller pair 13 is fed to the winding device 12 and wound onto the bobbin 122.
  • the thread monitor 14 switches off the delivery device 110 via the lines 140 and 156 in a manner known per se. This is done in the device shown in Fig. 4 in that the electromagnet 115 is excited and thereby pivoting the clamping lever 114 so that the sliver 2 is pressed by the clamping lever 114 against the feed trough 112 and the feed trough 112 is pivoted away from the delivery roller 111.
  • the computer unit or control device 15 contains a timer, not shown, which begins to run when the thread break is reported. If another thread break occurs at another spinning station 10 while this one timing element is running, a further timing element begins to run.
  • the maintenance device 3 While the maintenance device 3 is running along the open-end spinning machine 1, it asks via line 303 whether the spinning station 10 which it reaches next is working properly or whether a thread break at this spinning station 10 is to be remedied. If, in order to remedy a thread break at this spinning position 10, the maintenance device 3 stops and initially carries out preparatory work. This includes, for example, braking the spinning rotor 16, cleaning the open-end spinning device 11 or some parts thereof, locating the end of the broken thread 20 on the spool 122, pulling off a thread length sufficient for piecing, preparing the thread end, inserting the thread end into the thread take-off tube 119 and starting up the spinning rotor 16 on production speed.
  • the control device can derive the standstill time t Sa , t Sb or t Sc from this, taking into account the point in time at which the thread monitor 14 was addressed, and accordingly determine the period of time between the switching on of the fiber feed and the onset of the thread take-off via a timer (not shown).
  • a suitable program 150, 151 or 152 is selected according to the downtime t Sa , t Sb or t Sc via one of the switches 153, 154 or 155, which is then communicated to the control device 30 of the maintenance device 3.
  • the maintenance device 3 chooses after that End of thread E G has been returned to the fiber collection surface of the open-end spinning device 11 at a time coordinated with the time t L for switching on the delivery device 110 and the delivery device 110 has been released again, the time t L for the start of the thread take-off and its ramp-up time t G (Fig. 5).
  • the thread take-off G A is carried out in a manner known per se by the auxiliary drive roller 311 and / or the pair of draw-off rollers 13.
  • the speed of the delivery device 110 cannot be controlled, so that the sliver 2 is either stopped by the ineffective delivery device 110 or is fed to the dissolving device 116 at production speed when the delivery device 110 is switched on again.
  • the control device 15 with its timing elements, not shown, form, inter alia, a device which determines the combed state of the fiber beard 21 and, as a function thereof, controls the thread draw G A via the control device 30 of the maintenance device 3.
  • the control device 15 can be provided together per machine or for a group of open-end spinning machines.
  • a fiber sliver 2 previously stopped when a yarn breakage occurs is released again for the piecing by the delivery device 110 and the downtime t Sa , t Sb or t Sc is registered.
  • This can be done indirectly by determining the time t L for switching on the delivery device 110 in the manner explained.
  • the time t L can also be recorded directly and a corresponding signal can be sent to the control device 15 by the reactivated delivery device 110 or its switch-on device, which then initiates the thread take-off G A.
  • the speed of the thread take-off becomes effective Adjusted fiber feed by controlling the acceleration of the thread take-off G A accordingly.
  • the ramp-up time is shorter, the shorter the downtime t Sa , t Sb or t Sc , and the longer, the longer the downtime t Sa , t Sb or t Sc .
  • the thread take-off speed is thus increased more rapidly with a short standstill time t Sa than with a long standstill time t Sc .
  • the waiting time t W for the start of the thread take-off G A is also shorter, the shorter the downtime t Sa , t Sb or t Sc .
  • the take-off acceleration with the aid of the auxiliary drive roller 311 in this case the spool 122 for the second and possibly third take-off phase is brought into contact with the winding roller 120 rotating at production speed, and the spool contact pressure 122 in this or these acceleration phases increased so that the usual loading device and the weight of the coil 122 do not act alone.
  • a device for increasing the contact pressure which presses the spool 122 against the spooling roller 120 with increased pressure, so that the slippage between the spooling roller 122 and its drive is reduced and better drive entrainment and thus better spool acceleration is brought about.
  • this device for increasing the contact pressure is formed by a pressure roller, which is identical to the auxiliary drive roller 311 in the exemplary embodiment shown.
  • This auxiliary drive roller 311 is pressed by the swivel arm 314 assigned to it in the piecing phase in the desired manner against the winding roller 120 with particularly high pressure.
  • the auxiliary drive roller 311 is driven at a correspondingly controlled speed, possibly also at production speed in order to achieve particularly rapid acceleration.
  • the spool 122 is thus subjected to the action of two drives (winding roller 120 and auxiliary drive roller 311) on opposite sides of the spool 122 while being driven with increased acceleration.
  • the pull-off acceleration achieved with the aid of the bobbin 122 is not yet sufficient to keep the thread 20 tensioned between the pair of draw-off rollers 13 and the bobbin 122, then the thread 20 is spooled during the first phase of the pull-off acceleration and then in the second and one possibly the third phase is drawn off by the pair of take-off rolls 13, by which at least the take-off roll 130 is driven at production speed.
  • the draw-off roller 131 can, as will be described later, first be driven at a lower speed if desired.
  • the fiber feed F a ' to the fiber collection surface of the open-end spinning device 11 can also be effected with the aid of a device which is designed and can be controlled in such a way that the fibers combed out of the fiber beard 21 either of the fiber collection surface 160 fed or redirected and removed on their way to the fiber collection surface, so that they do not get to the fiber collection surface 160 at all.
  • the fibers 22 of a previously released sliver 2 are first sucked off their transport path between the delivery device 110 and the fiber feed channel 118 before reaching the fiber collecting surface.
  • this suction is interrupted suddenly, so that the negative pressure prevailing in the open-end spinning device 11 feeds the fibers 22 to the fiber collecting surface.
  • this suction is interrupted suddenly, so that the negative pressure prevailing in the open-end spinning device 11 feeds the fibers 22 to the fiber collecting surface.
  • the fiber stream sweeps past the inlet mouth of the fiber feed channel 118 and suddenly comes into the fiber feed channel 118 and to the fiber collecting surface when the fiber suction is ended.
  • the thread 20 already reaches the nip line of the pair of draw-off rollers 13, the draw-off roller 131 (pressure roller) of which, during the return of the thread G R is first lifted off the driven take-off roller 130 and is put back onto the driven take-off roller 130 at the desired time for the insertion of the thread take-off G Aa , thus causing the jump-off acceleration.
  • the phase G A4 of the thread take-off can begin before the deflection of the fiber flow has ended and the fiber feed F d has started on the fiber collecting surface 10 (time T23).
  • the fiber feed F d has started on the fiber collecting surface 10 (time T23).
  • the fibers 22 get there, and the fiber feed F now increases very rapidly.
  • This rapid increase in the fiber supply F ensures that the piecing P still has a sufficiently large fiber mass in its length section A L , which also ensures the required strength.
  • the piecing P is not only very short, but even ends before the entire circumference U of the fiber collecting surface 160 is spun in the new thread.
  • the run-up time t Fb or t Fc of the fiber feed F b or F c is so slow that a controlled run-up of the thread take-off G Ab or G Ac leads to the run-up the fiber feed F b or F c can be adjusted.
  • the thread take-off G Ab takes place through the bobbin 122 (FIG. 4), which is correspondingly driven by means of the auxiliary drive roller 311.
  • the piecing P which are produced with the aid of one of the methods according to FIGS. 20 and 25, are distinguished by the fact that they have a relatively small deviation from the nominal size of the finished thread 20 and are relatively short, since the thread 20 is adjusted by the Thread take-off G A on the downtime of the delivery device 110 and thus of the sliver 2 quickly reaches the predetermined target strength (FIG. 26).
  • the overlap area (length section A L ) of the returned thread end E G and new fibers supplied on the fiber collecting surface 160 is particularly critical with regard to the integration and thus also the strength. For optical reasons, in normal piezers P, the piecer is made as thin as possible, as will be discussed in detail later.
  • this is done in that the start and / or the acceleration of the thread take-off G A during spinning in connection with a bobbin change are determined as in the case of a long idle time t Sc , ie as in the case of a severe impairment of the fiber beard 21
  • t Sc a long idle time
  • a severe impairment of the fiber beard 21 This results in a relatively thick piecing device P, which is fed to a suction opening 34 (FIG. 27), is separated from the thread 20, which is further drawn off by the draw-off roller pair 13 from the open-end spinning element, and is then removed, whereupon the thread 20 then contacts the empty sleeve to form a bobbin 122 is handed over.
  • the piecing device P can, however, first get onto the old coil 122, be unwound from it and be fed to the suction mouth 34 (FIG. 27). In the latter case, the thread 20 is then cut between piecer P and bobbin 122 and piecer P is removed. Then the bobbin 122 in the winding device 12 is replaced by an empty tube and - after the piecing P has been separated from the subsequent thread - the subsequent thread 20 is transferred to the newly inserted empty tube.
  • a bobbin changing device with a monitoring device is on the maintenance device 3 33 arranged to monitor the coil diameter.
  • This monitoring device 33 is connected via a line 305 to the control device 30 of the maintenance device 3 in terms of tax.
  • the monitoring device 33 issues a corresponding command to the control device 30, which then causes the yarn to break and triggers the bobbin change and the spinning of the yarn 20. Since the thread breakage is triggered by the maintenance device 3 in the course of its work in connection with the bobbin change and the new spinning, the downtime t Sa of the delivery device 110 is quite short. Nevertheless, the thread take-off G A is controlled with regard to the start and acceleration as in the case of a long standstill time t Sc , and a thick piecer is produced which, however, has a high strength.
  • a separate program can be stored in the control device 15 for the execution of the piecing process in connection with a bobbin change, or one of the programs 150, 151, 152 ... provided for thread breakage elimination is selected for the piecing in connection with a bobbin change.
  • the delivery roller 111 can also be assigned a monitoring device 158 (FIG. 4: broken line), which is then connected to the control device 15 via a line 159 (also shown in broken lines).
  • the delivery roller 111 which is generally designed as a shaft that extends over a plurality of spinning stations 10, has markings that are scanned (without contact) by the monitoring device 158 and reported to the control device 15. This has counters (not shown) which are considered separately for each spinning station any interruptions (thread breakage elimination) counts the number of revolutions of the delivery roller 111 and from this the yarn length located on the bobbin 122 is determined.
  • the control device 15 of the maintenance device 3 If the predetermined yarn length is reached, this is signaled by the control device 15 of the maintenance device 3, so that the next time it arrives at the relevant spinning station 10, it carries out the described bobbin change, wherein - as mentioned - it takes place during piecing as if a long downtime t Sc documents .
  • control device 15 can also be designed such that, depending on the length of the downtime t Sa , t Sb or t Sc , it also develops its program itself.
  • FIG. 27 shows an alternative embodiment of a device for carrying out the described methods.
  • An open-end spinning device 11 is accommodated in a housing 161 of each spinning station 10, of which, for reasons of illustration, only the spinning element designed as a spinning rotor 16 is shown in FIG. 27, while the delivery device 111 and the dissolving device 116 (see FIG. 4) have been omitted .
  • the spinning rotor 16 is driven via its shaft 162 optionally with the aid of a first drive belt 163 (during normal production) or a second drive belt 164 (during the piecing phase). With the aid of a switching device 17, which is only indicated schematically, the drive belt 163 or the drive belt 164 is brought to bear against the shaft 162.
  • both drive belts are separated from the shaft 162, wherein the shaft 162 can be subjected to the braking action of a brake, not shown.
  • the switching device 17 is connected by means of a line 170 to the control device 15 and via this control device 15 and the line 304 to the control device 30 for controlling the piecing process.
  • the device shown in FIG. 27 also has two thread acceleration devices 4 and 5, of which the first thread acceleration device 4 is formed by the winding device 12 and an associated control device and the second thread acceleration device 5 by the take-off roller pair 13 and an associated control device.
  • the first thread acceleration device 4 which is formed by the controllable speed controllable drive device and the spool 122 and with which the thread 20 is initially gradually accelerated, contains the controllable auxiliary drive roller 311 already mentioned in connection with FIG. 4. This is on a pivotable arm 31 arranged and can be driven by means of a drive motor 312 via a drive connection 313 in the desired manner after the auxiliary drive roller 311 has been brought into contact with the spool 122, for which purpose a swivel drive 314 is provided.
  • swivel arms 32 are provided, to which a swivel drive 321 is assigned.
  • the second thread acceleration device 5 has a controllable draw-off roller pair 13.
  • This is assigned as a control device a swivel arm 50 which can cooperate with a swivel lever 132 carrying the draw-off roller 131.
  • the swivel arm is connected to a swivel drive 51 and a lifting drive 52.
  • the drive motor 312, the swivel drive 314, the swivel drive 321, the swivel drive 51 and the lifting drive 52 are connected to the common control device 30, through which the individual drives are switched on at the specified time and driven at a specified speed.
  • the swivel drive 51 and the lifting drive 52 are connected for control purposes to the control device 30 via lines 510 and 520, which has an adjusting device 6 with two adjusting elements 60 and 61 for controlling a time control device, not shown.
  • the actuator 60 controls a timing device, not shown, and is used to adjust the time for switching from the gradual take-off acceleration (phase G A ') to the sudden take-off acceleration (phase G A ''in FIG. 24) depending on the desired yarn count while the setting of this changeover time as a function of the diameter of the fiber collecting surface 160 is determined by the actuating element 61. More details will be described later.
  • a large number of similar open-end spinning devices 11 are usually located next to one another on an open-end spinning machine 1. In order to avoid that the control and drive devices mentioned must be provided again for each spinning station 10, these devices are arranged according to FIG. 27 on the maintenance device 3, which can be moved along this plurality of spinning stations 10.
  • This maintenance device 3 also contains, in addition to other devices (not shown), a suction opening 34 and a thread detour guide 35, via which the thread 20 is first guided during the piecing and then released by it. For this purpose, the thread guide 35 is connected to the control device 30 for control purposes via a line 306.
  • the draw-off roller 131 is lifted off the draw-off roller 130, and the thread 20 is drawn off in the usual way from the bobbin 122, which at this point has already been lifted off the winding roller 120, and is returned to the spinning rotor 16.
  • the thread 20 is brought to a defined length and shape in a known manner.
  • the thread 20 arrives at the fiber collecting surface 160, where it integrates the fibers delivered by the delivery device 110 (FIG. 4).
  • the drive roller 311 previously brought into contact with the spool 122 is driven in the take-off direction.
  • the auxiliary drive roller 311 and thus also the spool 122 are gradually accelerated. Accordingly, the thread 20 is accelerated gently (phase G A ') in order to keep the thread tension forces within defined tolerance limits.
  • the take-off roller 131 pressure roller
  • the take-off roller 130 is brought into contact with the take-off roller 130 and the thread 20 is thus clamped between these two take-off rollers 130, 131 of the pair of draw-off rollers 13.
  • this pair of draw-off rollers 13 takes over the further draw-off of the thread 20.
  • the draw-off roller 130 is always driven at production speed
  • the thread 20 is also accelerated to this production take-off speed (100%).
  • the auxiliary drive roller 311 is also accelerated to the production speed and then the bobbin 122 is brought into contact with the bobbin roller 120. Any thread excess that may occur between the draw-off roller pair 13 and the winding device 12 is temporarily stored in the suction mouth 34.
  • the two-stage acceleration (phases G A ', G A '') of the pull-off speed of the thread 20 is intended on the one hand to ensure that the deviations of the thread 20 from the desired thickness are as small as possible, and on the other hand that the danger of thread breaks is reduced.
  • the first goal is achieved in that the acceleration of the phase G A ′′ is chosen so that the speed rate of the thread take-off G A reaches the rate of the fiber feed F as quickly as possible or, if both speed rates were already the same, maintain this synchronous ratio becomes.
  • the second goal is achieved in that in the overlap area of Thread end E G and fiber ring R F , ie in the area of the longitudinal section A L , a relatively low take-off acceleration is selected, this phase G A 'being taken into account, taking into account the circumference U of the fiber collecting surface 160.
  • the thread in the intermediate region Z G between the fiber collecting surface 160 and the entry opening into the thread take-off tube 119 has a particularly high tension due to the centrifugal force acting here, which is increased by a strong pull-off acceleration, as was previously the case. Because the thread is now subjected to a gradual acceleration of withdrawal in phase G A ', this tension is substantially reduced.
  • This dimension can be determined in a simple manner since it is in a certain relationship to the rotation of the auxiliary drive roller 311.
  • the rotor diameter and the size of the fiber collecting surface 160 are taken into account with the aid of the adjusting element 61.
  • the switchover from phase G A 'to phase G A '' should not only be tailored to the size of the fiber collecting surface 160, but also to the yarn count.
  • the rotor diameter determines the earliest possible time for the changeover from phase G A 'to G A '', while the yarn number determines the type of withdrawal acceleration with which the thread 20 is to be withdrawn from the spinning element from phase G A ''. This setting is made with the help of the control element 60 or 61.
  • the time control device, not shown, assigned to the control element 60 or 61 is switched on by bringing the first phase G A 'of the trigger acceleration into effect and effects the switchover after the preset time has elapsed to the phase G A '' of the withdrawal acceleration.
  • the placement of the bobbin 122 on the winding roller 120 must also be coordinated with the transition from the first phase G A 'to the second phase G A ''. As long as the bobbin 122 is only driven with the aid of the auxiliary drive roller 311, the thread 20 is also wound up only in the end region of the bobbin 122 in the form of parallel windings which are later disruptive during further processing. Therefore, the placement of the bobbin 122 on the winding drum 120 is carried out as early as possible to ensure that the thread 20 is laid as quickly as possible after the spinning.
  • the thread take-off G A begins at a point in time at which the fiber feed F is already switched on, but the fiber ring F newly formed by the fiber feed F has not yet reached its desired strength, which it usually requires for piecing. However, the thread take-off begins so gradually and the thread 20 is first drawn off from the fiber collecting surface 160 with so little acceleration that the strength of the fiber ring R F continues to increase even after the thread take-off has started. If the thread end E G, which has previously been returned, finally leaves the fiber collecting surface 160 again as a result of this thread draw-off, it has an ever larger size fiber ring R F does not yet exceed the target thickness for the trigger.
  • the take-off acceleration is now increased rapidly until the speeds of thread take-off G A and fiber feed reach the same percentage of their respective production speeds.
  • the aim is that this is the case if a thread length corresponding to the circumference U of the fiber collecting surface 160 has been drawn off from the spinning rotor 16.
  • the speeds of thread take-off G A and fiber feed F remain essentially synchronous, even if both have not yet reached their respective production speeds. This is done in the manner described by adapting the thread take-off G A to the combed state of the fiber beard 21, since the start-up behavior of the fiber feed F which becomes effective on the fiber collecting surface 160 depends on this combed state.
  • the thread receives in the piecing phase as little rotation 20 so that it can also be withdrawn at a low speed from the spinning rotor 16, this first of the switching device, with the aid 17 lying on a lower, ie below the production rotational speed n R rotational speed n 'R brought (Fig. 20), in which the spinning rotor 16 is driven by means of the drive belt 164.
  • the production rotational speed R lying rotational speed n n 'R is the thread returned to the fiber collecting surface area 160 20 (see yarn return delivery G R) and is connected there with the now again fed fibers.
  • the thread take-off G A in phase G A ' takes place at a gradually accelerated speed with the aid of the spool 122, until the thread take-off G A in phase G A ''is then accelerated more depending on the factors mentioned above.
  • the spinning rotor 16 is also accelerated again by the drive belt 164 being lifted off the shaft 162 with the aid of the switching device 17 and instead the drive belt 163 being in contact with the Shaft is brought so that, if possible, it reaches its production speed n R essentially at the same time that the thread 20 also reaches its production take-off speed.
  • FIG. 29 shows a take-off roller 131 to which a controllable brake 53 is assigned.
  • This brake 53 e.g. eddy current brake
  • This brake 53 is controlled in accordance with the desired acceleration behavior and brakes the take-off roller 131 accordingly, so that the thread 20 is drawn off from the spinning element at a speed which is lower than the production take-off speed.
  • corresponding control connections have not been shown in FIG. 29.
  • FIG. 30 An alternative embodiment, in which the multiphase take-off acceleration is also controlled with the aid of the take-off roller pair 13, is shown in FIG. 30.
  • the swivel arm 50 here has at its free end a fork 54 with which it can grip around the free end of the swivel lever 132.
  • the fork 54 brought into engagement with the free end of the pivot lever 132 can be controlled from the lifting drive 52 continuously or in very fine increments so that the distance between the two take-off rollers 130 and 131 changes and the slip between the take-off rollers 131 and 130 affects can be. This then also controls the take-off of the thread 20.
  • the take-off behavior of the take-off roller pair 13 is changed by the control device 30 and the production take-off speed in transferred to the thread 20 in a controlled manner, although the take-off roller 130 is always driven at production speed.
  • the described device can be modified in many ways by replacing individual features with equivalents or by using features in combinations other than those described.
  • a continuous drive shaft (not shown) is provided for the driven take-off roller 130, which, with the interposition of a torque clutch, e.g. Induction clutch, driven by this through drive shaft.
  • the torque clutch can be controlled accordingly by the control device 30 of the maintenance device 3, so that the drive behavior and thus the speed of the draw-off roller pair 13 can be influenced in the desired manner.
  • the two-phase take-off acceleration is to take place with the aid of the spool 122, in that the auxiliary drive roller 311 is driven in accordance with the desired take-off speed.
  • the thread 20 is kept away from the take-off roller apparatus 13 by two thread detour guides 35 and 350 until the thread 20 has received its production take-off speed by the winding device 12.
  • the take-off roller 131 lies on the take-off roller 130.
  • a pivotable thread guide 36 is provided which is arranged and movable so that it feeds the thread 20 to a stationary thread guide 133, which then introduces the thread 20 into the clamping line of the pair of draw-off rollers 13.
  • the pivotable thread guide 36 and the stationary thread guide 133 thus jointly form an insertion device for inserting the thread 20 into the clamping line of the draw-off roller pair 13.
  • This insertion device is connected in a control manner (not shown) to the control device 30 of the maintenance device 3.
  • each piecer P a , P b or P c can be divided into different length sections A L , A U and possibly A Ga or A Gc .
  • the thread draw G A must be controlled differently in each of these length sections.
  • the second length section A U becomes thinner when the fiber feed F and the thread take-off G A are brought into a synchronous speed ratio as quickly as possible, in each case based on the respective production values in percent.
  • the second phase of the thread take-off must be a phase of high take-off acceleration, but only until the thread take-off G A reaches the same percentage value, based on the production speed, as the fiber feed.
  • the third length section A Ga or A Gc has a thickness that corresponds to the desired yarn number when fiber feed F and thread take-off G A run synchronously. This can already be during the run-up phase of fiber feed F and thread take-off G A. The production speed of fiber feed F and thread take-off G A should be achieved at the same time.
  • the combed state of the fiber beard 21 (FIG. 1) at the time of the spinning is determined by measuring the time from the occurrence of a thread break until the fiber supply is switched on again by releasing the fiber ribbon 2.
  • the values for the control device are determined by testing and measuring the piecing. This determination is therefore carried out indirectly.
  • the fibers arriving on the fiber collecting surface are counted and measured before the start of the spinning process in the case of downtimes of different lengths, and conclusions are drawn from this about the state of combing of the fiber beard 21.
  • the values obtained in this way are input into the computer unit or control device 15 for determining the times and accelerations.
  • the respective state of the fiber beard 21 can also be determined directly.
  • the fiber beard 21 can extend through a light barrier, the amount of light arriving in the photodiode providing information about the impairment of the fiber beard 21.
  • FIG. 31 A further alternative to the direct determination of the condition of the fiber beard is shown in FIG. 31.
  • the fiber beard 21 (FIG. 1) is scanned by negative pressure measurement. It has been shown that when a negative pressure is measured through the fiber beard 21, the change in the negative pressure is essentially proportional to a change in the combed state of the fiber beard 21. For this purpose, a negative pressure of a certain height is generated on one side of the fiber beard 21, namely in the housing 117, and the negative pressure drop is measured on the other side of the fiber beard 21.
  • FIG. 31 shows an apparatus for performing such a method.
  • a pressure gauge 71 is connected to a pressure gauge 71.
  • the opening 70 can be covered by a sieve 72 or the like in order to avoid that the end of the fiber beard 21 can get into the opening 70.
  • a screen 72 is generally dispensed with, since the fiber beard 21 quickly leaves the opening 70 again due to the negative pressure acting in the opening device 116, should it actually have entered the opening 70 with individual fibers.
  • the pressure gauge 1 registers a correspondingly large negative pressure.
  • the manometer 71 is connected via the line 710 to the control device 15, where the control of the thread take-off G A with respect to the start and acceleration is determined as a function of the vacuum values and thus also as a function of the respective state of the fiber beard 21.
  • the control device 15 selects the corresponding program 150, 151, 152 etc.
  • the measurement of the fiber beard 21 can also be measured under production conditions, so that the changes in the vacuum compared to the production state can be determined in a simple manner.
  • the device according to FIG. 31 enables the actual combed state of the fiber beard 21 to be determined at each spinning position. This state is therefore not extrapolated as in the exemplary embodiment according to FIG. 4, so that this device with pressure gauge 71 also detects fluctuations from spinning position to spinning position and takes this into account when determining the piecing program.
  • the opening 70 can also be provided at another suitable location at the exit of the delivery device 110.
  • a spinning rotor 16 is shown as the spinning element, which has an annular fiber collecting surface 160, in the exemplary embodiment shown in FIG. 31, two friction rollers 18 serve as spinning elements, which form a wedge gap between them, to which the fibers pass via a fiber feed channel 180 are fed.
  • the fiber collecting surface is formed by the wedge gap (not shown) between the friction rollers 18.
  • the start of the thread draw is to be matched to the condition of the fiber beard. It is understood that this method can also be used if for some reason, e.g. for more intensive rotor cleaning, the fiber feed is switched on for a short time, the downtime then being the time from the end of the last fiber feed to the start of the fiber feed in connection with the piecing process itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Abstract

Afin de commencer une nouvelle filée avec un dispositif de filage open-end, l'alimentation en fibres interrompue pendant l'arrêt du dispositif de filage open-end est à nouveau branchée sur une surface collectrice de fibres et amenée immédiatement à la pleine vitesse de production. A cet effet, on détermine l'état de dépeignage de la barbe de fibres au moment du démarrage (tL). Le moment du démarrage et la vitesse de levée des fibres sont adaptés au moment où l'alimentation en fibres sur la surface collectrice de fibres devient effective. Le fil est soumis à une accélération de la levée à phases multiples. La première phase (GA3) de l'accélération de la levée est sychronisée avec la liaison des fibres à l'extrémité de la fibre qui est alimentée en retour. Au moins une phase additionnelle (GAc', GAc'') de l'accélération de la levée sert à atteindre et/ou à maintenir la masse voulue de fibres. Le dispositif de commande servant à appliquer ce procédé de démarrage d'une nouvelle filée est relié à un dispositif de détection de l'état de dépeignage de la barbe de fibres au moment du démarrage de la nouvelle filée et commande la levée des fibres en fonction de l'état de dépeignage ainsi détecté. Au moins deux dispositifs d'accélération de la fibre peuvent être sélectionnés par le dispositif de commande.

Claims (59)

  1. Procédé d'amorçage de filature ou de rattache d'un dispositif de filature à fibres libérées, dans lequel l'alimentation en fibres sur une surface de rassemblement de fibres, alimentation interrompue pendant l'arrêt du dispositif de filature à fibres libérées, est rétablie ; dans lequel, en synchronisme avec cette opération, une extrémité de fil est ramenée en arrière sur la surface de rassemblement de fibres et dans lequel l'alimentation en fibres sur la surface de rassemblement de fibres, ainsi que la vitesse de reprise de l'extraction du fil précédemment ramené en arrière,sont augmentées jusqu'à atteindre la valeur respective de production, en même temps que se produit la liaison des fibres apportées, procédé caractérisé en ce que, pour l'amorçage de la filature, ou la rattache, on détermine quel est l'état de défibrage de la mèche ou barbe de fibres au moment de la mise en marche, en ce que l'on met en marche l'alimentation en fibres et l'on passe ensuite à la plaine vitesse de production, et en ce que la vitesse d'extraction du fil est adaptée à la façon dont l'alimentation en fibres sur la surface de rassemblement de fibres devient effective.
  2. Procédé selon la revendication 1, caractérisé en ce qu'en fonction de l'état de peignage pour le défibrage de la mèche ou barbe de fibres, l'accélération de l'extraction du fil est commandée de manière telle que,dans le cas où la mèche de fibres est fortement sollicitée, on augmente la vitesse d'extraction du fil plus lentement que dans le cas où elle est moins sollicitée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que dans le cas où la mèche de fibres est fortement sollicitée, l'intervalle de temps entre la mise en marche de l'alimentation en fibres et le début de l'extraction du fil est choisi tel que cet intervalle soit plus long que dans le cas où la mèche de fibres est moins sollicitée.
  4. Procédé selon la revendication 3, caractérisé en ce que l'alimentation en fibres est mise en marche indépendamment de l'état de peignage et de défibrage de la mèche de fibres, avec toujours le même écart de temps à partir du moment de la mise en marche du programme d'amorce de filature ou de rattache, et en ce que l'intervalle de temps est adapté à l'état de défibrage de la mèche de fibres en modifiant le moment où a lieu le début de l'extraction du fil, par rapport à la mise en marche de l'alimentation en fibres.
  5. Procédé selon la revendication 3, caractérisé en ce que l'extraction du fil est mise en marche indépendamment de l'état de peignage et de défibrage de la mèche de fibres, avec toujours le même écart de temps à partir du moment de la mise en marche du programme d'amorce de filature et de rattache, et en ce que l'intervalle de temps est adapté à l'état de défibrage de la mèche de fibres, par modification du moment où a lieu le début de l'alimentation en fibres, par rapport au début de l'extraction du fil.
  6. Procédé selon une ou plusieurs des revendications 1 à 5, caractérisé en ce qu'on détermine quel est l'état de défibrage de la mèche de fibres sur la base du temps d'arrêt du ruban de fibres, le dispositif de défibrage fonctionnant avant la mise en marche de l'alimentation en fibres sur la surface de rassemblement de fibres.
  7. Procédé selon une ou plusieurs des revendications 1 à 5, caractérisé en ce qu'en vue de déterminer quel est l'état de défibrage de la mèche de fibres, on crée sur une face de celle-ci une dépression d'une ampleur déterminée, et en ce que l'on mesure la diminution de la dépression sur l'autre face de la mèche de fibres.
  8. Procédé selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que, dans le cas où la sollicitation de la mèche de fibres est faible, le fil est rapidement amené à la vitesse d'extraction de fil en production avec un faible retard par rapport à la libération du ruban de fibres; en ce que, dans le cas où la sollicitation est moyenne, le fil est, avec un retard accru par rapport au cas où la mèche de fibres est faiblement sollicitée, accéléré de façon telle que le fil atteint la pleine vitesse de production sensiblement simultanément avec l'alimentation en fibres provoquée par la libération du ruban de fibres; et en ce que, dans le cas où la sollicitation est forte, le fil est, après un retard accru par rapport au cas où la mèche de fibres est moyennement sollicitée, d'abord fortement accéléré jusqu'à ce que la vitesse d'extraction rapportée aux valeurs de production considérées atteigne le même pourcentage que l'alimentation en fibres, pour ensuite être extrait avec une accélération de l'extraction telle que l'augmentation ultérieure de la vitesse d'extraction et celle de l'alimentation en fibres s'effectuent sensiblement en synchronisme.
  9. Procédé selon une ou plusieurs des revendications 1 à 8, caractérisé en ce que le début et/ou l'accélération de l'extraction du fil est ou sont fixés lors de l'amorçage de la filature ou de la rattache en rapport avec un changement de bobine comme dans le cas d'une forte sollicitation de la mèche de fibres, et en ce que l'amorce produite lors du début de la filature en relation avec un changement de bobine est, avant le début de la constitution du bobinage de fil, séparée du fil qui suit et est évacuée.
  10. Procédé d'amorce de filature d'un dispositif de filature à fibres libérées dans lequel l'alimentation en fibres sur une surface de rassemblement de fibres, interrompue pendant l'arrêt du dispositif de filature à fibres libérées, est rétablie et dans lequel, en synchronisme avec cette opération, une extrémité de fil est ramenée sur la surface de rassemblement et dans lequel l'alimentation en fibres sur la surface de rassemblement de fibres ainsi que la vitesse de l'extraction rétablie du fil qui a été précédemment ramené en arrière, sont augmentées jusqu'à atteindre leur valeur respective de production en même temps que se produit la liaison des fibres apportées, en particulier selon une ou plusieurs des revendications 1 à 9, caractérisé en ce que le fil est soumis à une accélération de l'extraction en plusieurs phases, la première phase de l'accélération de l'extraction étant coordonnée avec la liaison des fibres sur l'extrémité du fil qui a été ramenée en arrière, et en ce que la phase ultérieure, au minimum unique, de l'accélération de l'extraction sert à l'obtention et/ou au maintien de la masse de fil souhaitée.
  11. Procédé selon la revendication 10, caractérisé en ce que la première phase de l'accélération de l'extraction commence d'autant plus tôt que le flux de fibres augmente rapidement.
  12. Procédé selon la revendication 10 ou 11, caractérisé en ce que la première phase de l'accélération de l'extraction n'est terminée qu'après que l'extrémité du fil, précédemment ramenée en arrière, a à nouveau quitté la surface de rassemblement de fibres.
  13. Procédé selon une ou plusieurs des revendications 10 à 12, caractérisé en ce que l'accélération de l'extraction durant la première phase est d'autant plus faible que le déplacement de l'implantation de la torsion, en direction de la surface de rassemblement de fibres, est plus faible.
  14. Procédé selon une ou plusieurs des revendications 10 à 13, caractérisé en ce que l'extraction du fil, dans la phase ultérieure qui fait suite à la première phase de l'accélération de l'extraction, est fortement accélérée en vue de l'obtention de la masse de fil souhaitée, jusqu'à ce que l'extraction du fil ainsi que l'alimentation en fibres, aient chacune atteint le même pourcentage par rapport à leurs valeurs en production.
  15. Procédé selon une ou plusieurs des revendications 10 à 14, caractérisé en ce que, dans les cas des gros numéros de fil, le fil est, dans la deuxième phase, accéléré brusquement jusqu'à ce que qu'il ait atteint la vitesse d'extraction en production.
  16. Procédé d'amorçage de la filature ou de rattache de fil dans un dispositif de filature à fibres libérées, procédé dans lequel l'alimentation en fibres sur une surface de rassemblement de fibres, interrompue pendant l'arrêt du dispositif de filature à fibres libérées, est rétablie ; dans lequel, en synchronisme avec cette opération, une extrémité de fil est ramenée en arrière sur la surface de rassemblement de fibres et dans lequel l'alimentation en fibres sur la surface de rassemblement, ainsi que la vitesse d'extraction, rétablie, du fil qui a été précédemment ramené en arrière, sont augmentées jusqu'à atteindre leur valeur respective de production en même temps que se produit l'incorporation par liaison des fibres apportées, en particulier selon une ou plusieurs des revendications 10 à 15, caractérisé en ce qu'après la mise en marche de l'alimentation en fibres, on empêche tout d'abord par déviation et par évacuation, les fibres d'atteindre la surface de rassemblement et en ce que l'alimentation en fibres sur la surface de rassemblement n'est autorisée que par la cessation de la déviation, et en ce qu'après la cessation de la déviation du flux de fibres, le fil est amené, dans la deuxième phase de l'accélération de l'extraction, brusquement jusqu'à la vitesse d'extraction en production.
  17. Procédé selon la revendication 16, caractérisé en ce que la première phase de l'accélération de l'extraction commence déjà avant que cesse la déviation du flux de fibres.
  18. Procédé selon une ou plusieurs des revendications 1 à 17, dans lequel, lorsque le fil atteint les valeurs correspondant à la production, ce fil est extrait au moyen d'une paire de rouleaux d'extraction et il est enroulé sur une bobine, procédé caractérisé en ce que le fil est extrait par la bobine pendant la première phase de l'accélération de l'extraction et, pendant la phase ultérieure, il est extrait au moyen de la paire de rouleaux d'extraction entraînés à la vitesse d'extraction en production.
  19. Procédé selon une ou plusieurs des revendications 1 à 18, caractérisé en ce que, lorsque la vitesse d'extraction du fil et l'alimentation en fibres atteignent le même pourcentage, avant d'avoir atteint leurs valeurs respectives en production, l'accélération de l'extraction et les débits de l'alimentation en fibres sont augmentés sensiblement au synchronisme jusqu'à ce que leurs valeurs de production soient atteintes.
  20. Procédé selon une ou plusieurs des revendications 1 à 19, caractérisé en ce que le fil est soumis, à partir du début de l'accélération de l'extraction, à l'action d'une paire de rouleaux d'extraction qu'il est possible de commander.
  21. Procédé selon la revendication 20, caractérisé en ce que l'un des rouleaux de la paire de rouleaux d'extraction est entraîné constamment à la pleine vitesse d'extraction en production, et en ce que cette vitesse d'extraction en production, est transmise au fil de manière commandée.
  22. Procédé selon la revendication 21, caractérisé en ce qu'en vue de transmettre au fil de manière commandée la vitesse d'extraction en production, on modifie le glissement en commandant la distance séparant les rouleaux de la paire de rouleaux d'extraction.
  23. Procédé selon la revendication 22, caractérisé en ce qu'en vue de transmettre au fil de manière commandée la vitesse d'extraction en production, le rouleau d'extraction, non entraîné, de la paire de rouleaux d'extraction est freiné de manière commandée.
  24. Procédé selon une ou plusieurs des revendications 1 à 23, caractérisé en ce que le fil est maintenu tendu entre la paire de rouleaux d'extraction et la bobine.
  25. Procédé selon la revendication 24, caractérisé en ce qu'en vue de tendre le fil délivré par les rouleaux d'extraction pendant la phase dans laquelle il est extrait avec une forte accélération, la bobine est également entraînée avec une accélération accrue.
  26. Procédé selon la revendication 25, caractérisé en ce que, pendant que la bobine est entraînée avec une accélération accrue, on réduit le glissement entre la bobine et son entraînement.
  27. Procédé selon la revendication 25 ou 26, caractérisé en ce que pendant que la bobine est entraînée avec une accélération accrue, la bobine est soumise sur des côtés opposés à l'action de deux entraînements.
  28. Procédé selon une ou plusieurs des revendications 24 à 27, caractérisé en ce qu'en vue de tendre le fil délivré par les rouleaux d'extraction, ce fil est emmagasiné de manière intermédiaire entre la paire de rouleaux d'extraction et la bobine.
  29. Procédé selon une ou plusieurs des revendications 1 à 28, dans lequel le fil se trouve filé du fait de la liaison d'un anneau de fibres qui se forme de manière continue sur la surface de rassemblement de fibres d'un rotor de filature, procédé caractérisé en ce que l'extraction du fil est mise en marche déjà avant que l'anneau de fibres ait à nouveau atteint son épaisseur prescrite après la mise en marche de l'alimentation; en ce que le fil est d'abord extrait à partir de la surface de rassemblement des fibres, avec une accélération assez faible pour que l'épaisseur de l'anneau de fibres augmente, mais cependant n'a pas excédé l'épaisseur prescrite jusqu'au moment où l'extrémité de fil précédemment ramenée en arrière à nouveau quitté la surface de rassemblement de fibres; en ce que l'extraction du fil, après que l'extrémité du fil ait quitté la surface de rassemblement de fibres, est alors accélérée si rapidement que les vitesses d'extraction du fil et d'alimentation en fibres atteignent le même pourcentage de leurs valeurs en production, au plus tard lorsqu'une longueur de fil correspondant à la circonférence du rotor de filature a été extraite de la surface de rassemblement de fibres, et en ce qu'elles sont ensuite maintenues dans un rapport synchrone.
  30. Procédé selon une ou plusieurs des revendications 1 à 29, dans lequel le fil est filé dans un rotor de filature, procédé caractérisé en ce qu'en vue de l'amorçage de la filature ou de la rattache de fil, le rotor de filature est d'abord amené à une vitesse de rotation inférieure à la vitesse de rotation en production, en ce qu'à cette vitesse de rotation du rotor, le fil est ramené sur la surface de rassemblement de fibres et s'y lie aux fibres, puis en ce que le fil est soumis à une accélération de l'extraction en plusieurs phases, avec une accélération simultanée du rotor de filature jusqu'à ce qu'il atteigne sa vitesse de rotation en production.
  31. Procédé selon la revendication 30, caractérisé en ce que le rotor de filature est accéléré jusqu'à la pleine vitesse de rotation de production, à partir d'une vitesse de rotation qui se situe en-dessous de la vitesse de rotation en production, de manière à ce que le rotor atteigne sa vitesse de rotation en production sensiblement au moment où le fil atteint sa vitesse d'extraction en production.
  32. Procédé selon une ou plusieurs des revendications 1 à 31, caractérisé en ce qu'en fonction du temps nécessaire pour l'augmentation de l'alimentation en fibres jusqu'à la pleine valeur en production, le fil, après la première phase d'accélération de l'extraction, traverse une ou deux phases ultérieures d'accélération de l'extraction de manière à ce que, dans le cas où il y a une augmentation rapide de l'alimentation en fibres, le fil soit amené brusquement au cours d'une seconde phase jusqu'à la vitesse d'extraction en production; en ce que, dans le cas où il y a une augmentation moyenne de l'alimentation en fibres, le fil soit accéléré au cours d'une deuxième phase de façon telle qu'il atteigne la pleine valeur de production sensiblement en même temps que l'alimentation en fibres atteint cette valeur; et en ce que, dans le cas d'une augmentation lente de l'alimentation en fibres, le fil est d'abord fortement accéléré au cours d'une seconde phase de l'accélération de l'extraction jusqu'à ce que la vitesse d'extraction, rapportée aux valeurs respectives de production, atteigne le même pourcentage que l'alimentation en fibres, pour ensuite être extrait, au cours d'une troisième phase, avec une telle accélération de l'extraction, que l'augmentation ultérieure de la vitesse d'extraction et celle de l'alimentation en fibres s'effectuent sensiblement en synchronisme.
  33. Procédé selon une ou plusieurs des revendications 1 à 32, caractérisé en ce que l'extrémité du fil qui doit être ramenée en arrière est, avant d'être ramenée en arrière, soumise à un prétraitement, de façon telle qu'elle reçoit une forme sensiblement conique.
  34. Dispositif pour amorcer la filature ou effectuer une rattache dans un dispositif de filature à fibres libérées, comportant une surface de rassemblement des fibres, un dispositif d'alimentation en fibres, un dispositif d'extraction pour le fil, ainsi qu'un dispositif de commande commandant le processus d'amorçage de la filature ou de rattachement de fil, dispositif destiné à l'exécution du procédé selon une ou plusieurs des revendications 1 à 33 et caractérisé en ce que le dispositif (30) de commande est relié à un dispositif (15, 6), qui détermine quel est l'état de défibrage de la mèche ou barbe (21) de fibres au moment de l'amorçage de la filature ou du rattachement de fil et qui commande l'extraction (GA) du fil en fonction de l'état de défibrage de la mèche (21) de fibres.
  35. Dispositif selon la revendication 34, comportant un dispositif de surveillance, qui surveille le fil produit, et grâce auquel le dispositif d'alimentation en fibres peut être mis à l'arrêt au cas où il se produit une casse du fil, dispositif caractérisé en ce que le dispositif qui détermine quel est l'état de défibrage de la mèche (21) de fibres au moment de l'amorçage de la filature ou du rattachement de fil, est constitué par une unité de calcul (15), à laquelle sont reliés, avec une liaison de commande d'une part le dispositif (14) de surveillance de fil, et d'autre part, le dispositif (30) de commande qui commande le processus d'amorçage de la filature ou de rattachement de fil.
  36. Dispositif selon la revendication 35, caractérisé en ce que l'unité de calcul (15) est associée à au moins une machine à filer.
  37. Dispositif selon une ou plusieurs des revendications 34 à 36, caractérisé en ce que le dispositif (30) de commande présente une unité d'horloge destinée à fixer l'intervalle de temps entre la mise en marche de l'alimentation en fibres sur la surface de rassemblement des fibres et la mise en marche de l'extraction du fil.
  38. Dispositif selon la revendication 34, comportant un corps logeant un rouleau de défibrage et une surface d'appui de la mèche ou barbe de fibres, dispositif caractérisé en ce que cette surface présente une ouverture (70) avec laquelle communique un manomètre (71).
  39. Dispositif selon la revendication 38, dans lequel le dispositif d'alimentation en fibres présente un rouleau délivreur et une auge d'alimentation mobile par rapport à ce rouleau, dispositif caractérisé en ce que l'ouverture (70) est prévue dans l'auge (112) d'alimentation.
  40. Dispositif selon la revendication 38 ou 39, caractérisé en ce que l'ouverture (70) est recouverte par un tamis (72) retenant la mèche ou barbe (21) de fibres.
  41. Dispositif pour l'amorçage de la filature ou le rattachement du fil dans un dispositif de filature à fibres libérées, comportant une surface de rassemblement des fibres, un dispositif d'alimentation en fibres, un dispositif d'extraction pour le fil, ainsi qu'un dispositif de commande du processus d'amorçage de la filature, ou de rattachement de fil, dispositif destiné à l'exécution du procédé selon une ou plusieurs des revendications 1 à 19 et 24 à 33, et caractérisé par la présence d'au moins deux dispositifs (4, 5) d'accélération du fil, qui sont susceptibles d'être sélectionnés par le dispositif (30) de commande.
  42. Dispositif selon la revendication 41, caractérisé en ce que le premier dispositif (4) d'accélération du fil est constitué par un dispositif susceptible d'être entraîné à une vitesse qu'il est possible de commander, destiné à entraîner une bobine (122) qui se trouve dans le dispositif (12) de bobinage, et en ce que le second dispositif (5) d'accélération du fil est constitué par une paire de rouleaux (13) d'extraction, entraînés à la vitesse d'extraction en production.
  43. Dispositif destiné à l'amorçage de la filature ou au rattachement de fil dans un dispositif de filature à fibres libérées, comportant une surface de rassemblement des fibres, un dispositif d'alimentation en fibres, un dispositif d'extraction pour le fil, ainsi qu'un dispositif de commande qui commande le processus d'amorçage de la filature ou de rattachement de fil, dispositif destiné à l'exécution du procédé selon une ou plusieurs des revendications 1 à 19 et 24 à 33 et caractérisé en ce que le dispositif d'extraction présente une paire (13) de rouleaux d'extraction comportant un premier rouleau (130) d'extraction susceptible d'être entraîné à une vitesse d'extraction en production et un second rouleau (131) d'extraction susceptible d'être séparé, par soulèvement, du rouleau (130) d'extraction, susceptible d'être entraîné, et en ce que le dispositif (30) de commande est relié, en ce qui concerne la commande, à un dispositif (52) de soulèvement du second rouleau (131) d'extraction.
  44. Dispositif selon la revendication 42 ou 43, caractérisé en ce que le dispositif (30) de commande est relié en ce qui concerne la commande à un dispositif (36, 133) de mise en place, destiné à mettre le fil (20) en place dans la ligne de pincement de la paire (13) de rouleaux d'extraction.
  45. Dispositif d'amorçage de filature ou de rattachement de fil dans un dispositif de filature à fibres libérées, comportant une surface de rassemblement de fibres, un dispositif d'alimentation en fibres, un dispositif d'extraction du fil, ainsi qu'un dispositif de commande commandant le processus d'amorçage de la filature ou de rattachement de fil, dispositif destiné à l'exécution du procédé selon une ou plusieurs des revendications 1 à 19 et 24 à 33, et caractérisé en ce qu'il comporte un dispositif d'entraînement relié au dispositif (30) de commande en vue de la commande de la vitesse de la paire (13) de rouleaux d'extraction.
  46. Dispositif d'amorçage de la filature ou de rattachement de fil dans un dispositif de filature à fibres libérées, comportant une surface de rassemblement des fibres, un dispositif d'alimentation en fibres, un dispositif d'extraction du fil, ainsi qu'un dispositif de commande commandant le processus d'amorçage de la filature, ou de rattachement du fil, dispositif destiné à l'exécution du procédé selon une ou plusieurs des revendications 1 à 19 et 24 à 33, et caractérisé en ce que la paire (13) de rouleaux d'extraction présente un premier rouleau (130) d'extraction, susceptible d'être entraîné à la vitesse en production, et un second rouleau (131) d'extraction susceptible d'être entraîné par le premier rouleau (130) d'extraction, et en ce que le régime ou comportement d'extraction réalisé par la paire (13) de rouleaux d'extraction peut être modifié par le dispositif (30) de commande.
  47. Dispositif selon la revendication 46, caractérisé en ce qu'en vue de la modification du comportement d'extraction, on associe à la paire (13) de rouleaux d'extraction un dispositif (52) destiné à soulever le deuxième rouleau (131) d'extraction en vue de faire varier le glissement entre les deux rouleaux (130, 131) d'extraction.
  48. Dispositif selon la revendication 46, caractérisé en ce qu'en vue de la modification du comportement d'extraction, on associe à la paire (13) de rouleaux d'extraction un dispositif (53) de freinage susceptible d'être commandé de façon à agir sur le deuxième rouleau (131) d'extraction.
  49. Dispositif selon une ou plusieurs des revendications 41 à 48, comportant un dispositif susceptible d'être commandé en vue, au choix, d'évacuer les fibres avant qu'elles atteignent la surface de rassemblement des fibres, ou d'amener les fibres sur la surface de rassemblement des fibres, dispositif caractérisé en ce que le dispositif (30) de commande est relié en ce qui concerne la commande au dispositif destiné au choix à évacuer les fibres (22) ou à les amener.
  50. Dispositif selon une ou plusieurs des revendications tions 34 à 39, caractérisé en ce que le dispositif (30) de commande contient un dispositif (6) d'horloge.
  51. Dispositif selon la revendication 50, caractérisé en ce que le dispositif (6) d'horloge peut être mis en marche par la mise en action de la première phase de l'accélération de l'extraction.
  52. Dispositif selon la revendication 50 ou 51, caractérisé en ce que le dispositif (6) d'horloge présente un dispositif de réglage.
  53. Dispositif selon une ou plusieurs des revendications 34 à 52, caractérisé en ce que l'on associe à l'élément (16) de filature à fibres libérées un dispositif d'entraînement qui présente un dispositif (17) de commutation destiné à entraîner l'élément (16) de filature à fibres libérées soit avec l'une, soit avec l'autre des deux vitesses fixées, et en ce que le dispositif (17) de commutation est relié au dispositif (30) de commande, en vue d'amener l'élément de filature à fibres libérées à sa vitesse plus élevée, en fonction de la commutation, à partir de la première phase de l'accélération de l'extraction pour parvenir à l'accélération d'extraction supérieure qui lui fait suite.
  54. Dispositif selon une ou plusieurs des revendications 34 à 53, caractérisé en ce que le dispositif (12) de bobinage présente un dispositif d'entraînement mené en continu et un dispositif destiné à augmenter la pression appliquée entre une bobine qui se trouve sur le dispositif de bobinage et le dispositif d'entraînement mené en continu, lequel est relié, en ce qui concerne sa commande, au dispositif (30) de commande.
  55. Dispositif selon la revendication 54, caractérisé en ce que le dispositif destiné à augmenter la pression appliquée présente un rouleau presseur, qui peut être amené en appui sur le côté de la bobine (122) qui se trouve à l'opposé du dispositif d'entraînement mené en continu.
  56. Dispositif selon la revendications 55, caractérisé en ce que le rouleau presseur peut être entraîné à une vitesse réglable.
  57. Dispositif selon une ou plusieurs des revendications 34 à 56, comportant un dispositif de surveillance susceptible d'être déplacé le long d'un grand nombre de postes de filature, dispositif caractérisé en ce que le dispositif (30) de commande est disposé sur le dispositif (3) de surveillance.
  58. Dispositif selon une ou plusieurs des revendications 34 à 57, caractérisé en ce qu'il comporte une mémoire de programme(s) destinée à mettre simultanément en mémoire plusieurs programmes différents d'amorçage de filature ou de raccordement de fil, qui peuvent être choisis en correspondance avec des conditions de filature différentes.
  59. Dispositif selon la revendication 58, comportant un dispositif de changement de bobine, dispositif caractérisé en ce que le dispositif de changement de bobine est relié, en ce qui concerne sa commande, à la mémoire de programme(s) dans laquelle on peut définir et mettre en mémoire un programme qui peut être choisi en vue de l'exécution d'un processus d'amorçage de la filature ou de rattachement de fil en relation avec un changement de bobine.
EP89905051A 1988-05-03 1989-04-28 Procede et dispositif permettant de commencer une nouvelle filee dans un dispositif de filage open-end Expired - Lifetime EP0415952B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3814966 1988-05-03
DE3814966A DE3814966A1 (de) 1988-05-03 1988-05-03 Verfahren und vorrichtung zum anspinnen einer offenend-spinnvorrichtung

Publications (2)

Publication Number Publication Date
EP0415952A1 EP0415952A1 (fr) 1991-03-13
EP0415952B1 true EP0415952B1 (fr) 1993-05-05

Family

ID=6353470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89905051A Expired - Lifetime EP0415952B1 (fr) 1988-05-03 1989-04-28 Procede et dispositif permettant de commencer une nouvelle filee dans un dispositif de filage open-end

Country Status (7)

Country Link
US (2) US5331798A (fr)
EP (1) EP0415952B1 (fr)
JP (1) JPH03505237A (fr)
BR (1) BR8906909A (fr)
CS (1) CS272989A2 (fr)
DE (2) DE3814966A1 (fr)
WO (1) WO1989010990A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903782C2 (de) * 1989-02-09 1994-02-24 Rieter Ingolstadt Spinnerei Verfahren zum Anspinnen einer Offenend-Spinnvorrichtung und Offenend-Spinnmaschine mit einer Einrichtung zum Anspinnen einzelner oder mehrerer Spinnvorrichtungen
DE4106556C2 (de) * 1991-03-01 1995-11-16 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum kurzzeitigen Ändern der Faserzufuhr bei einer Offenend-Spinnvorrichtung
DE4404538C1 (de) * 1994-02-12 1995-04-27 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
CZ290275B6 (cs) * 1999-05-31 2002-06-12 Rieter Cz A. S. Způsob spotřebování smyčky příze po zapředení příze na rotorovém dopřádacím stroji
DE10041973A1 (de) * 2000-08-25 2002-03-07 Rieter Ingolstadt Spinnerei Offenend-Spinnvorrichtung sowie Verfahren zur vorübergehenden Aufnahme eines Fadens mit Hilfe einer derartigen Offenend-Spinnvorrichtung
CZ299471B6 (cs) * 2001-10-11 2008-08-06 Oerlikon Czech S.R.O. Zpusob ochrany konce pramene vlákenného materiáluproti jeho poškozování a zarízení k provádení tohoto zpusobu
CZ299541B6 (cs) * 2001-10-11 2008-08-27 Oerlikon Czech S.R.O. Zpusob zaprádání na bezvretenových doprádacích strojích a zarízení k jeho provádení
DE102013009998A1 (de) * 2013-06-14 2014-12-18 Saurer Germany Gmbh & Co. Kg Verfahren zum Betreiben einer Arbeitsstelle einer Offenend-Rotorspinnmaschine sowie zugehörige Arbeitsstelle
CZ2015817A3 (cs) 2015-11-16 2017-05-10 Rieter Cz S.R.O. Způsob obnovení předení na tryskovém dopřádacím stroji
DE102016109682A1 (de) * 2016-05-25 2017-11-30 Rieter Ingolstadt Gmbh Verfahren zum Anspinnen eines Fadens in einer Offenend-Spinnvorrichtung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH526646A (de) * 1970-07-23 1972-08-15 Rieter Ag Maschf Verfahren und Vorrichtung zum selbsttätigen Unterbrechen der Fasergutzufuhr zu einem oder mehreren Spinnrotoren von OE-Spinnmaschinen
FR2115180B1 (fr) * 1970-11-28 1974-06-07 Schubert & Salzer Maschinen
DE2221316B1 (de) * 1972-04-29 1973-09-13 Skf Kugellagerfabriken Gmbh Vorrichtung zum Zwischenspeichern einer ueberschuessigen Fadenlaenge an einer Offen-End-Spinnmaschine
US3842579A (en) * 1972-04-29 1974-10-22 Skf Kugellagerfabriken Gmbh Apparatus for temporarily storing thread in a spindleless spinning machine
JPS5059532A (fr) * 1973-09-29 1975-05-22
DE2458042C2 (de) * 1974-12-07 1985-06-05 Stahlecker, Fritz, 7347 Bad Überkingen Offenend-Spinnmaschine mit einer Vielzahl von Spinnstellen und einem verfahrbaren Wartungsgerät zum Anspinnen nach einem Fadenbruch
DE2507199C2 (de) * 1975-02-20 1986-01-30 W. Schlafhorst & Co, 4050 Mönchengladbach Vorrichtung zum Steuern des Anspinnvorgangs bei Rotor-Spinnmaschinen
US4047371A (en) * 1975-12-13 1977-09-13 Hans Stahlecker Spinning machine facility with a plurality of open end spinning machines and at least one servicing instrument
DE2725105C2 (de) * 1977-06-03 1994-07-07 Fritz 7347 Bad Überkingen Stahlecker Verfahren zum Durchführen eines Anspinnvorganges und Vorrichtung zum Durchführen des Verfahrens
DE2728003C2 (de) * 1977-06-22 1986-12-18 Stahlecker, Fritz, 7347 Bad Überkingen Entlang einer Offenend-Spinnmaschine verfahrbare Anspinneinrichtung
DE2850729C2 (de) * 1978-11-23 1986-03-13 W. Schlafhorst & Co, 4050 Mönchengladbach Verfahren und Vorrichtung zum Anspinnen eines Fadens
DE3023959C2 (de) * 1980-06-26 1986-06-26 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und Vorrichtung zum Anspinnen eines Fadens in einem Spinnrotor einer Offenend-Spinnvorrichtung
DE3118382C2 (de) * 1981-05-09 1983-06-16 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und Vorrichtung zum Unterbrechen und Beginnen des Spinnvorganges an einer Offenend-Spinnstelle
DE3202428C2 (de) * 1982-01-26 1986-06-05 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und Vorrichtung zum Anspinnen eines Fadens in einer Offenend-Spinnvorrichtung
JPS5930922A (ja) * 1982-08-12 1984-02-18 Toyoda Autom Loom Works Ltd オ−プンエンド精紡機における糸継方法
JPS5971433A (ja) * 1982-10-13 1984-04-23 Toyoda Autom Loom Works Ltd オ−プンエンド精紡機における糸継方法
DE3246993C2 (de) * 1982-12-18 1992-01-02 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
DE3425345A1 (de) * 1984-07-10 1986-01-30 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und vorrichtung zum erzeugen einer gleichmaessigen, kontinuierlichen fasermenge
DE3428890A1 (de) * 1984-08-04 1986-02-13 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und vorrichtung zum wiederanspinnen einer offenend-friktionsspinnvorrichtung
DE3441677C3 (de) * 1984-08-08 1994-02-24 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
DE3440009C2 (de) * 1984-11-02 1994-07-07 Schlafhorst & Co W Verfahren und Vorrichtung zum Bilden eines Anspinners
DE3447428A1 (de) * 1984-12-24 1986-07-03 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Vorrichtung zum anspinnen eines fadens an einer spinnstelle einer offenend-spinnmaschine
DE3516120C2 (de) * 1985-05-04 1993-10-28 Fritz Stahlecker Verfahren zum automatischen Anspinnen und automatische Anspinnvorrichtung
US5191760A (en) * 1989-01-18 1993-03-09 Schubert & Salzer Maschinenfabrik Ag Process and device for piecing on an open-end spinning device

Also Published As

Publication number Publication date
DE58904292D1 (de) 1993-06-09
DE3814966A1 (de) 1989-11-16
EP0415952A1 (fr) 1991-03-13
JPH03505237A (ja) 1991-11-14
BR8906909A (pt) 1990-09-11
CS272989A2 (en) 1991-11-12
WO1989010990A1 (fr) 1989-11-16
US5331798A (en) 1994-07-26
US5423171A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
DE2725105C3 (de) Verfahren zum Durchführen eines Anspinnvorganges und Vorrichtung zum Durchführen des Verfahrens
EP0274016B2 (fr) Procédé et dispositif de rattache pour machine de filature à bout libre
EP2122022B1 (fr) Métiers continus à filer avec dispositif d'amenée de flammes
DE4404538C1 (de) Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
EP0296546A1 (fr) Métier à filer pour la production de fils d'un ruban de fibres discontinues
EP2017376A1 (fr) Procédé destiné au fonctionnement d'un métier à tisser
EP0415952B1 (fr) Procede et dispositif permettant de commencer une nouvelle filee dans un dispositif de filage open-end
DE3338833A1 (de) Verfahren und vorrichtung zum anspinnen eines garnes an einem spinnaggregat einer oe-friktions-spinnmaschine
EP0381995B1 (fr) Procédé et dispositif de rattache pour un métier à filer à bout libre
EP1071837B1 (fr) Procede et dispositif de filage avec suppression du ballon de fil
WO2007065506A1 (fr) Procede pour rattacher un fil ainsi que machine de filature a rotor pour la mise en œuvre du procede
EP0395880B1 (fr) Procédé et dispositif pour le rattachement de fil dans un métier à filer à bout libre ayant un rotor de filage
DE4321440C2 (de) Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
DE102007038871B4 (de) Verfahren zum Anspinnen an Textilmaschinen mit einer Mehrzahl von Spinnstellen
DE3410471A1 (de) Oe-friktionsspinnmaschine mit einer vielzahl von spinnaggregaten und einem verfahrbaren wartungsgeraet
DE3318266A1 (de) Verfahren und vorrichtung zum anspinnen eines garnes an einem spinnaggregat einer oe-friktionsspinnmaschine
DE2558419A1 (de) Offen-end-spinnvorrichtung
EP0258248B1 (fr) Procede et dispositif pour rattacher les fils sur une installation de filage a fibres liberees a friction
WO2001055490A2 (fr) Procede de filature a fibres liberees, au moyen d"un rotor
CH699497B1 (de) Verfahren zur Steuerung einer Spulstelle sowie Spulstelle.
EP0531507A1 (fr) Procede et dispositif de jonction de fils dans un dispositif de filage open-end
EP3255183B1 (fr) Procédé de rattachement d'un fil dans un métier à filer à bout libre
DE2054627A1 (de) Verfahren und "Vorrichtung zum Uberkopfwickeln von Garnkorpern
DE3246993C2 (de) Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung
DE3605829A1 (de) Verfahren zum steuern des garnabzugs beim anspinnen eines spinnaggregates einer oe-spinnmaschine

Legal Events

Date Code Title Description
ITCL It: translation for ep claims filed

Representative=s name: ZINI MARANESI

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19920325

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETER INGOLSTADT SPINNEREIMASCHINENBAU AKTIENGESE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 58904292

Country of ref document: DE

Date of ref document: 19930609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930517

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940511

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950430

Ref country code: CH

Effective date: 19950430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950517

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050428