EP0415156B1 - Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine - Google Patents

Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine Download PDF

Info

Publication number
EP0415156B1
EP0415156B1 EP90115424A EP90115424A EP0415156B1 EP 0415156 B1 EP0415156 B1 EP 0415156B1 EP 90115424 A EP90115424 A EP 90115424A EP 90115424 A EP90115424 A EP 90115424A EP 0415156 B1 EP0415156 B1 EP 0415156B1
Authority
EP
European Patent Office
Prior art keywords
bale
bales
take
row
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115424A
Other languages
English (en)
French (fr)
Other versions
EP0415156A1 (de
Inventor
Thomas Gloor
Jost Aebli
Jürg Faas
Heinz Biber
Christoph Staeheli
Martin Kyburz
Peter Anderegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19893926482 external-priority patent/DE3926482A1/de
Priority claimed from DE19893943322 external-priority patent/DE3943322A1/de
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0415156A1 publication Critical patent/EP0415156A1/de
Application granted granted Critical
Publication of EP0415156B1 publication Critical patent/EP0415156B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G7/00Breaking or opening fibre bales
    • D01G7/06Details of apparatus or machines
    • D01G7/10Arrangements for discharging fibres

Definitions

  • the present invention relates to a method for operating a bale removal machine with a removal member, in which the height profile of a row of bales is determined by means of at least one sensor directed at the bale surface and used to control the position of the removal member during the subsequent bale removal, and a device for carrying out this method .
  • a method or a device of this type has already been described in DE-PS 31 53 246.
  • three sensors in the form of optical proximity switches are attached to the boom carrying the removal member. This is moved manually over the first bale in the row of bales. After pressing a start button, the boom drops. As soon as the first sensor emits a signal, the current meter reading is transferred to a memory. The same thing happens for every additional sensor. When the last sensor has also given its signal, the downward movement is stopped, the tower with the boom starts to move along the row of bales at a slow speed and the boom is adjusted to the measurement determined by the first responsive sensor plus a certain one Amount raised. When it arrives there, the boom drops again and the height is determined as above.
  • the aim of this first pass is to bring the row of bales to a uniform height so that subsequent removal operations can always be carried out with fixed delivery depths. This procedure does not take into account the different hardness of the different bales or the different components of the bale row.
  • a similar bale removal machine of the same type is known from DE-A-31 35 272.
  • European application 85 115 579 (publication number 193 647) of the present applicant describes a method for removing fiber flakes from textile fiber bales, in which the infeed for each removal movement along the row of bales is selected according to the bale hardness in the different areas of the bale.
  • This version takes into account the fact that bales have a different density, ie hardness, and in such a way that the hardness in the upper and lower area of the bale is lower than in the middle area, so that the infeed depth in the upper and lower area may be greater than in middle range.
  • this document also does not describe the determination of the hardness of the bales.
  • bale removal machine In practice, however, this is of greater importance, at least if you always want to operate a bale removal machine at the upper limits of performance in order to economically maintain maximum production. You can work with empirical values for the hardness of the individual bales, but in many cases this is not very accurate. For example, when creating a row of bales from bales of different origins (called components), some of the higher bales of a component are manually removed and placed on lower bales of the same component. This falsifies the assumed hardness distribution for the individual bales. Furthermore, bales of different provenances come from different areas by definition, they are therefore pressed together with different systems and have different fiber properties, so that the hardness distribution of the bales of different origins is also different.
  • components some of the higher bales of a component are manually removed and placed on lower bales of the same component. This falsifies the assumed hardness distribution for the individual bales.
  • bales of different provenances come from different areas by definition, they are therefore
  • the conceptual division of the bales into superimposed layers of different densities is carried out before the bale is removed, depending on the type of fibers involved, their origin, etc., and it is possible from the start to provide more than the three layers shown in the example shown.
  • the selected number of layers with different degrees of density corresponds to the number of detectors to be mounted on the guide rail, the mutual spacing of the detectors, preferably implemented as microswitches, corresponding to the thickness of the individual fiber material layers.
  • the detectors are position sensors which are arranged in such a way that they determine the previously defined, successively vertical working zones on the bales for the movable carriage of the bale removal machine.
  • the object of the present invention is to improve the method or the device of the type mentioned at the outset in such a way that overall one can work more economically, taking into account the hardness of the individual bales or components of the bale row, this hardness preferably already during the Determination of the height profile should be determined at the same time.
  • the received signal of the preferably optical, acoustic or radar wave sensor is processed to obtain a signal corresponding to the bale hardness, and that the infeed and possibly also the penetration depth of the removal member is controlled or regulated in accordance with this hardness signal .
  • the invention therefore works with a measuring sensor, which is also attached to the boom or the tower supporting the boom and is moved over the bale row at a uniform height during the height sensing.
  • the signals thus generated are then also evaluated according to the invention for determining the bale hardness in the surface area immediately below the measuring sensor, in which case the infeed can also be determined precisely using this relatively precise information, with a view to the desire to achieve the highest possible production or maintain.
  • the infeed i.e. the amount by which the entire removal member is moved down for the next processing of the row of bales, but also the depth of penetration of the removal member, i.e.
  • the amount by which the working elements, for example teeth of the removal member, move through the assigned grate stretching depends on the hardness of the bale to be removed, so that the present invention makes it possible to optimally adapt both the infeed and the penetration depth to the respective bale hardness.
  • the sensor signal into a hardness signal. If the hardness of the surface areas of the bale is high, the sound energy density recovered is greater than if it were a softer bale surface.
  • the hardness of the surface area can thus be derived from the amplitude of the received signal, the decrease in amplitude having to be taken into account with increasing distance between the measuring sensor and the bale surface.
  • the hardness signal is preferably determined from the fluctuations, in particular from the amplitude fluctuations of the sensor signals.
  • This can take place, for example, in that the hardness signal is determined by summing the deviations of the sensor signal from the mean value of this signal which are provided with positive signs.
  • Also generally applicable mathematical algorithms are known which make it possible to obtain the mean amplitude fluctuations of the sensor signals from these signals, the sensor signal being sampled at a frequency higher than the fundamental frequency of the signal, ie the fundamental frequency of the fluctuating or sensor signals.
  • the bale surface is scanned at various successive points. This is necessary because the time interval between successive measurements must be chosen to be long enough to take into account the transit time of the ultrasound signal and the transit time of the electronic signals. There must also be a certain safety margin between successive measurements so that the ultrasonic vibrations of one measurement can subside before the next measurement is made.
  • the hardness can be determined separately for each bale or for each component of the bale row. Thus, in the subsequent processing of the bales, a different infeed depth or reach-through depth can be selected for each bale or for each component.
  • the transfer of parts of one bale to another bale does not lead to any particular disruption to the working process, since the hardness of the bale surface is always measured up to date.
  • both the height profile and the hardness profile can be determined according to the invention with each pass.
  • bale removal machines in which bale rows are arranged on both sides of the bale removal machine, it is also possible to determine the height profile and the hardness profile of the one bale row while the other bale row is being removed.
  • the height profile scanned during a first pass of the removal member along a row of bales is preferably read into a computer which, on the basis of this height profile and the calculated hardness profile, calculates a delivery profile which changes over the length of the row of bales and in which the production takes into account the desired mixing ratio the provenance of the individual bales is kept almost at a maximum.
  • the computer is preferably programmed in such a way that, in the case of several passes, it endeavors to remove all bales in accordance with the hardness measured and the desired mixing ratio in such a way that at the end of the removal the whole row is removed without any significant bale residues.
  • Such a method facilitates the subsequent installation of a new row of bales and simplifies the subsequent removal of the new row of bales; this avoids unnecessary restrictions on the height and hardness of the new bale row.
  • the computer works in such a way that with each pass it always strives for a depth of infeed or a depth of infeed profile that is increasingly approximated to a horizontal line. To achieve this, of course, certain small losses in production must be accepted. However, these are overall less than the losses that occur without the inventive method.
  • a further increase in the utilization of the bale removal machine can be achieved in that the removal of the bale row already takes place in the first pass with simultaneous detection of the height profile, the removal member being constantly adjusted to the bale height in the first pass.
  • the determination of the height of the bale simultaneously with the detachment of fiber flakes from the bale surface is known per se from DE-PS 33 35 793.
  • two sensors are used there, which are arranged at different heights and parallel to the surface of the bale row. These sensors neither allow a very precise determination of the height profile of the fiber bales nor a determination of the hardness of the bales.
  • the procedure according to the invention is preferably such that the actual value of the flake flow is determined on the basis of the infeed depth and the respective hardness signal and the infeed depth in order to comply with the specified value or a maximum flocculation is regulated.
  • the actual value of the flake flow corresponds to the product of the infeed depth with the hardness signal, whereby of course geometric constants, such as the width of the bale row and the speed of movement of the bale removal machine along the bale row, must be taken into account.
  • the accuracy of the fiber mixture resulting from the various components is improved, particularly in those spinning mills in which the mixing ratios are primarily determined by the work of the bale removal machine.
  • the method according to the invention also offers the possibility of determining the beginning or the end of the bale row and, if appropriate, the presence and the length of gaps between the bales of the row by means of the sensor signal.
  • the sensor signal is reflected from the ground or from the bale carrier, which is at a known distance from the measuring sensor and can therefore be easily recognized by the sensor signal.
  • the ground or a bale carrier are very hard objects compared to the bales, so that the amplitude fluctuations of the Sensor signal are low, whereby the presence of the soil or the bale carrier and also the vertical bale boundaries can or can be determined from the sensor signal.
  • the acoustic signal emitted by the measuring sensor reflects with relatively small losses on the floor or on the carrier, reflects again on the measuring sensor or on the boom and then is received again by the measuring sensor after being reflected again on the ground.
  • the double signal i.e. the reception signal after the first reflection and the reception signal after the second reflection on the ground represent a special identifier for the ground or bale carrier.
  • the method according to the invention is preferably characterized in such a way that a signal proportional to the travel path of the removal member along the row of bales is generated and used by the computer when calculating the height profile or the infeed depth profile or the hardness profile is taken into account.
  • the corresponding signal which is proportional to the travel path of the removal member, can be generated by the drive itself in the case of a form-fitting and slip-free drive of the tower along the row of bales, for example by means of chains and sprockets.
  • a gear wheel or a perforated disk can be coupled to the shaft of the drive motor for the travel movement, the gear wheel or the perforated disk serving as a counting wheel and functioning together with an initiator as a pulse generator, the pulses of which are fed to the microprocessor via a line.
  • impulses indicate the path of the removal device, ie they are proportional to it.
  • the microprocessor or the controller is thus informed at all times of the exact position of the removal member in the longitudinal direction of the bale removal machine.
  • the necessary signals can be reliably determined by means of a path determination device that is independent of the slippage.
  • a path determination device that is independent of the slippage.
  • known guideway measuring devices in the form of magnetic strips and linear measuring devices, such as are used in the guides of machine tools, can be used here.
  • Such known magnetic stripe or linear measuring devices are, however, relatively complex, so that their use in bale removal machines in which the tower can be moved over a considerable distance, for example 20 m or more, can lead to considerable costs. It is therefore a further object of the present application to provide a guideway measuring device, in particular for a bale removal machine, which determines the current longitudinal position of the movable part, for example the tower, on the bale removal machine independently of any slippage of the drive system, the guideway measuring device being robust, reliable, maintenance-free and should be inexpensive and insensitive to dirt and interference.
  • the present invention provides a travel path measuring device, in particular for a bale removal machine with a non-slip-free drive system and with a mobile tower which can be moved along a row of bales by means of the drive system, characterized by an elongated part which extends along the row of bales and which is either fixedly arranged or connected to the tower and moves with it, by a scanning device which, depending on the arrangement of the elongated part, either along the mobile tower or at a specific point the bale row is arranged, the elongated part scans slip-free during the movement of the tower and every time the tower emits a pulse, and by a counting device which counts the pulses and generates a signal proportional to the route.
  • the elongated part consists of a rail and the scanning device consists of a wheel which, arranged on the tower, rolls along the rail without slippage, a pulse generator for delivering pulses being coupled to the wheel.
  • the scanning device consists of a wheel which, arranged on the tower, rolls along the rail without slippage, a pulse generator for delivering pulses being coupled to the wheel.
  • the rail can be designed as a toothed rack and the wheel as a toothed wheel meshing with it.
  • Another possibility is to form the elongated part by a chain which is attached to the tower and can be deflected around deflection devices at both ends of the bale row during a circular movement caused by the movement of the tower along the row of bales.
  • a scanning device is used, which is formed by a chain wheel which can be driven by the chain, a pulse generator for delivering pulses with the a fixed point of the row of bales arranged sprocket is coupled.
  • a very economical arrangement is achieved if the chain wheel is formed by one of the deflection devices.
  • Another possibility is to form the elongated part by means of a structure having regularly repeating narrower and wider areas, for example by means of a perforated rail or a tightly tensioned chain or an elongated structure having teeth and gaps, this structure being provided by a light barrier or inductive scanning device, or can be scanned by a mechanical switch device whose receiving circuit emits the pulses.
  • An elongated structure of this type which modulates the output signal of the scanning device, can in particular extend along the flock transport channel (suction channel) of a bale removal machine and be fastened thereon.
  • Such attachment of the elongated structure saves space and is generally possible, without causing disturbing restrictions, with respect to the other necessary parts of a bale removal machine.
  • a travel path measuring device according to the invention can be retrofitted to an existing bale removal machine in this way.
  • a particularly preferred embodiment of the travel path measuring device is characterized in that the repetition length of the structure is relatively large, for example more than about 10 cm, and that at a known, preferably constant driving speed, longitudinal measurements in the area between two successive pulses can be carried out by an interpolating device.
  • this structure can be produced very inexpensively, but the invention makes it possible Measurement of length units that are much smaller than the repetition length.
  • a device monitoring the time interval between the pulses is preferably provided. If, for example, the tower runs at a known constant speed along the row of bales, this monitoring device must determine the same time interval between two successive pulses. If the device determines that this time interval is not constant, then it is known that the validity of interpolated longitudinal measurements between the two points of the structure which generated the assigned impulses is suspect. You can therefore ignore these values or weight them differently depending on the intended use of the measurements so that the inaccuracy is taken into account.
  • a device of this type has the advantage that the measurement can be carried out again with the expected accuracy with the next pulses, since the rigid assignment between the pulses and the parts of the structure generating the pulses limits the extent of the incorrect measurements which occur due to interpolation errors.
  • the counting device and / or the interpolating device and / or the monitoring device is formed by a microprocessor or are.
  • the counting, interpolating and monitoring functions can then be implemented by appropriate programming of the microprocessor, preferably the microprocessor which is responsible for controlling the entire bale removal machine, the available information being able to be evaluated in the best possible way.
  • the microprocessor preferably the microprocessor which is responsible for controlling the entire bale removal machine, the available information being able to be evaluated in the best possible way.
  • an interpolation device implemented by the microprocessor will always know whether acceleration or deceleration of the tower movement has been initiated and take these different operating states into account when carrying out the interpolation.
  • a machine 1 for removing fiber flakes comprises a removal member 2, a machine frame 3 and a flake transport 4.
  • the removal member 2 itself comprises a boom or a housing construction 5, in which a rotating removal roller 6 is drivably mounted.
  • this housing construction 5 the fiber flakes removed from the fiber bales 7 by the removal roller 6 are further picked up and further conveyed into the flake transport 4 by ways not shown.
  • the housing construction 5 can be moved up and down in the direction of the arrow A by means of rollers 9 rotatably fastened to it and guided in guide rails 8 of the machine frame 3. In the figure, however, only one pair of rollers and only one rail 8 is shown; the rollers and rails provided on the opposite side in the same way are not visible.
  • the housing construction 5 has a driver 10 which is firmly connected to a chain 11 of a chain drive 12.
  • the chain drive 12 further comprises an upper, rotatable mounted sprocket 13 for the deflection of the chain 11 and a lower sprocket 14 for driving this chain 11.
  • the lower sprocket 14 is rotatably mounted on a drive shaft 15 of a transmission 16.
  • the chain drive 12, the transmission 16 and the electric motor 17 are referred to as a whole as a lifting device.
  • a gear 19 is rotatably mounted, which functions as a counting wheel together with an initiator 20 as a pulse generator, the pulses of which are fed to a microprocessor 22 via a line 21, which is particularly the case in FIG is shown.
  • the initiator 20 is commercially available and emits a pulse for each tooth of the gear 19 passing by.
  • the initiator 20 is provided to be stationary.
  • An upper limit switch 23 and a lower limit switch 24 are provided on the machine frame 3 for scanning the upper and lower end positions of the removal member.
  • the upper limit switch 23 is actuated by an upper surface 25 and the lower limit switch 24 by a lower surface 26 of the driver 10.
  • the upper limit switch 23 inputs its pulse via a line 27 and the lower limit switch 24 via a line 28 into the microprocessor 22.
  • a distance measuring sensor 30 is attached to the front side, ie the right side of the boom in FIG. 2. This consists of combined transmitter / receiver units and works in the present example on an ultrasound basis.
  • This distance measuring sensor can be, for example, a sensor of the Siemens type Act Sonar / Bero 3RG6044 / 3 MMOO. However, it can also be a sensor that works with a different measuring principle, for example an optical sensor or a sensor that works with radar waves.
  • the measuring beam 31 is directed onto the surface 32 of the bale row 7, ie perpendicular to it, the measuring beam detecting a 15 to 20 cm wide strip of the surface which, as shown in FIG. 3, is arranged approximately in the middle of the bale row.
  • Another line 34 connects the electric motor 17 to the microprocessor 22.
  • the machine frame 3 is arranged by means of wheels 35 fastened to it and drivable on rails 36, which are fastened on the spinning floor 37, along the fiber bale row 7 (not shown) and can be moved over the flock transport 4. Since the wheels 35 are not slip-free working elements, a special device is provided in this example to determine the exact longitudinal position of the tower 3 along the bale row 7.
  • This is the light barrier 38, which consists of transmitter and receiver parts which are arranged on opposite sides on a perforated rail 39.
  • the perforated rail 39 has a plurality of holes at the same distance from one another, the light barrier emitting a signal pulse as it passes through each hole, which is fed to the microprocessor 22 via the line 41.
  • the microprocessor 22 is able to determine the exact position of the tower along the row of bales.
  • grate 40 with individual grate bars 42 located between the individual toothed disks 81 of the removal roller 6.
  • Such grate bars are well known and are described, for example, in the German patent applications P 38 20 427.4 and P 38 27 517.1 of the applicant.
  • the bale row in the present example comprises five bales 43 to 47, which have different heights, the highest bale 47 on the right side of FIG. 2 and the lowest bale 43 on the left side of FIG 2 is arranged.
  • the bales 44 and 45 are of the same height and somewhat higher than the bale 43 and the bale 46 has a height which lies between those of the bales 45 and 47.
  • a gap 48 is shown between the bales 45 and 46, so that vertical bale boundaries 49 to 52 are provided at the beginning of the bale row, on both sides of the gap 48 and at the end of the bale row 7.
  • Fig. 3 shows that a similar bale row can be arranged on the other side of the bale removal machine, provided that the tower 3 is a rotatable tower that can also work on the second side of the bale row.
  • Reference number 30.1 also makes it clear here that a height sensor can also be arranged on the side of the tower opposite the boom 5, so that during the removal of fiber flakes from the one in FIG. 3 lower row with the sensor 30.1 the height profile and also the hardness profile of the bales of the upper row can be determined in a time-saving manner.
  • FIG. 4A shows the distance measurement signal of the measurement sensor 30 (or 30.1) during a measurement run above the row of the bales set up.
  • the measuring sensor 30 determines the distance to the opposite surface by measuring the transit times of ultrasonic waves from it to the opposite surface (floor 37 or bale surface 32 and back.
  • the cantilever with sensor 30 is in this example at a constant height H above the 4 and the output signal of the distance measuring sensor is subtracted from this height H, so that the fluctuating signal of Fig. 4A finally represents the height of the bale surface above the ground.
  • the sensor 30 easily Determine the height profile of the bales to be removed at the end of the bale removal.
  • 30.2 denotes a further sensor corresponding to sensor 30, which can measure the height profile after removal.
  • FIG. 4A is drawn on the same scale as FIG. 2, so that the association between the individual bales and the amplitude of the output signal of the distance measuring sensor 30 (or 30.1, 30.2) can be clearly seen.
  • the distance measuring sensor is located at the height H above the ground, and the actual output signal of the measuring sensor indicates the height H.
  • the beam from the sensor 32 now reaches the vertical bale boundary 49, as a result of which the distance between the sensor 32 and the reflecting surface, here the surface of the bale 43, is suddenly shortened and the overall amplitude of the signal increases.
  • the surface 43.1 of the bale 43 is sound-soft and is also a rough surface, the signal from the distance sensor exhibits large fluctuations with a relatively high frequency.
  • the amplitude fluctuations are not caused solely by fluctuations in the roughness of the surface of the bale 43, but rather by the fact that the measurement sensor always tries to deliver a clear measurement result and, due to the imprecise reflection of the sound beam on the sound-free surface of the bale 43, always delivers fluctuating measurement results. These fluctuations take place at a frequency which is far higher than indicated in FIG. 4A purely for the sake of illustration.
  • the measuring beam from the sensor 30 has reached the boundary between the bale 43 and the bale 44 and there is an amplitude jump upwards, while the signal itself has similar amplitude fluctuations as with the bale 43. It can be seen that the transition to the same high bale 45 the mean value of the signal remains approximately the same as for bale 44, however the amplitudes of the fluctuations are somewhat smaller. These smaller fluctuations, for example at 45.1, indicate that the upper surface area of the Bale 45 is harder than the corresponding areas of bales 43 and 44.
  • the beam from sensor 30 strikes vertical bale boundary 50.1, ie the sensor measures the distance between it and ground 37 again, which is why the amplitude of the received signal falls back to zero at 57, ie to a level which corresponds to level 53.
  • the amplitude of the height signal rises again to a mean value that is even higher than the corresponding mean value of the signal in the area of the bale 45.
  • the signal shows considerable Amplitude fluctuations 46.1, which indicate that the bale 46 is also relatively soft here.
  • the boundary between the bale 46 and the bale 47 has been reached and the amplitude of the distance sensor rises again, which is also correct because the bale 47 is the highest of the bale row 7.
  • the amplitude of the height signal lowers again at the vertical bale boundary 52, which is identified by 52.1 in FIG. 4a.
  • the computer 22 determines an average value from the distance signal of FIG. 4a and the result of this averaging is shown in FIG. 4b.
  • Averaging using a computer is very well known in itself, which is why this is not described separately here. It can be seen that the mean signal represents a very good reproduction of the height profile of the bale row 7 in FIG. 2, which is also intended.
  • the distance signal is also further processed by the computer 22 in order to obtain the hardness profile according to FIG. 4C.
  • This evaluation is carried out in such a way that the algebraic sum of the amplitude fluctuations from the mean is determined in a number of adjacent areas and then the reciprocal ones Values are formed. These reciprocal values then represent the hardness of the individual areas. It can be seen that in areas 53, 57 and 59, where the distance measurement signal shows hardly any fluctuations, since the floor 37 reflects well, this is determined as a hard object, which is why the hardness signal is applied these points have a high amplitude 53.3, 57.3 and 59.3.
  • the bales 43 and 44 and 46 have roughly the same hardness and, as already explained, this hardness is low, which is why the hardness is relatively low in the corresponding areas 43.3, 44.3, 46.3 of the hardness profile according to FIG. 4C.
  • the bales 45 and 47 have a greater hardness, which is comparatively high in both cases, which is why in these areas 45.3 and 47.3 the hardness signal has a higher amplitude.
  • the infeed depth profile according to FIG. 4D is determined by the computer 22, taking into account the intended constants. It can be seen that for the bale areas 43.4, 44.4 the infeed is the same size (because the hardness is the same size) and has a relatively high amount of 10 mm. The delivery depth at 46.4 is also the same for bale 46. In contrast, the infeed depth in areas 45.4 and 47.4 is reduced to around 5 mm, since the surfaces of these bales are harder.
  • the infeed depth profile of FIG. 4D also includes areas 53.4, 57.4 and 59.4 where the infeed is zero because the floor is very hard and, in addition, no material is to be removed from the floor.
  • the penetration depth of the removal member 6 i.e. the distance between the radially lowermost points of the toothed disks 81 and the grate bars 42 should also be set according to the hardness of the bales, whereby the penetration depth should be smaller for harder bales and the penetration depth may be higher for softer bales.
  • the corresponding penetration depth profile for the bale row of FIG. 2 is shown in FIG. 4E, the individual segments of the profile having been brought into line with the individual bales by means of the numbering of the bale row and the addition .5.
  • the signals for the vertical position of the removal member or the boom 5 are, as already described, determined by the computer on the basis of the signals on the lines 27, 28 and 21, and the computer sends control commands for the height of the removal member to the motor 17 Line 34.
  • the signals from the longitudinal sensor 38 are read into the computer via line 41. If necessary, more values can be extrapolled to achieve a finer resolution.
  • the sensor system is activated by the computer in each case when the longitudinal sensor signal is either read in or when the value is extracted in advance in order to store the measured value immediately returned by the sensor.
  • the distance measuring sensor 30 carries out distance measurements at regularly repeated time intervals and temporarily stores these dimensions in a buffer memory 60.
  • the computer 22 reads the stored values at times at times which are determined by the signals from the longitudinal sensor 38 via the line 33. From the values read in the computer, the latter then determines the height profile 4B by averaging, the hardness profile 4C by the algebraic addition of the amplitude fluctuations, the infeed depth profile from the reciprocal values of the hardness profile and the penetration depth profile in accordance with the hardness profile and on the basis of constants recorded in the computer.
  • the profiles themselves are then stored in memories of the computer 22 and can be called up permanently if desired.
  • FIG. 6 finally shows how the height profile of the bale row 7 from FIG. 2 is removed by successive work.
  • Fig. 6 it is assumed that one ablates simultaneously with the dimension of the height profile and first tries to maintain a constant ablation height so that the computer can correctly record data in any case.
  • This first pass is identified by 62.
  • the constant removal depth is chosen so low that the removal machine cannot be overloaded.
  • the computer determines the desired infeed depth for each bale during the next pass and checks whether the height profile is changed in an undesirable manner if these infeed depths are observed, so that larger vertical jumps occur. If this is not the case, the row of bales is removed according to the calculated infeed depth according to lines 63 ... 67. If, however, larger jumps appear, the maximum is removed from the higher points and something from the other areas less so that the height profile gradually becomes smoother.
  • the goal is to reach a horizontal line 68 at the lower end of the bale at the end passage so that all bales or bale remnants are of the same height, which ensures a good prerequisite for the removal of the next row of bales to be set up.
  • a simplified embodiment of the machine is also conceivable.
  • the removal member is gradually brought up to the surface of the bale.
  • the removal device is now set to a constant height, the value of which is calculated by the computer in such a way that on the one hand a maximum removal depth is not exceeded, but on the other hand the production is already possible is held high.
  • a small production loss can be accepted in this area.
  • the bale group is leveled at the latest from the sixth pass (reference number 75). It is therefore no longer necessary to switch off the feed motor in order to change the height of the removal member.
  • this method depends in part on whether the mixing ratios of the fibers are determined by the bale removal machine itself or whether the individual components are removed separately and led to individual mixing shafts, with the mixing ratios of the flakes ultimately being in the mixing station and not be determined by the flake removal. If there are improper bale heights that in no way allow convergent removal, this can be done by Computers are displayed, which prompts the operator to manually remove or / or relocate the bales to create more favorable conditions.
  • a measuring system is preferred which ensures a slip-free measurement of the longitudinal position of the tower along the row of bales, regardless of whether slip occurs during operation of the tower when the tower is being driven.
  • a light barrier 38 which cooperates with a perforated rail 39, is mentioned as a concrete embodiment.
  • FIG. 8 Another possibility is shown in FIG. 8.
  • the rail 39 has been replaced by a rail 39.1 with an I-shaped cross section.
  • the rail 39.1 is fixedly attached to two flanges 82 and 84, for example by welding, in which a likewise vertically extending shaft is located in these flanges 86 is rotatably mounted.
  • a non-rotatable rubber wheel 88 is located on the shaft, which is pressed lightly against the longitudinal side 89 of one leg of the I-shaped rail 39.1. When the tower moves vertically to the plane of FIG. 8, the rubber wheel 88 therefore rolls on the longitudinal edge 89 and thus leads to a slip-free rotary movement of the shaft 86.
  • a perforated disk 90 ie a disk with a Row of holes in its circumferential area, so that a rotation of the rubber wheel drives to a rotation of the perforated disc 90, which is also connected to the shaft 86 in a rotationally fixed manner.
  • a light barrier 38.1 with transmitter and receiver parts encompasses the peripheral area of the perforated disk 90 and thus generates a pulse sequence corresponding to the sequence of holes and webs in the perforated disk when the perforated disk rotates on the shaft 86.
  • This pulse sequence is fed to the microprocessor 22 via line 41.1 and processed there, corresponding to signal 41 in FIGS. 1 to 5.
  • the gear 88.2 is rotatably attached to the shaft 86.2, which drives the perforated disk 90.2, which is also non-rotatably connected thereto.
  • a light barrier 38.2 generates a pulse sequence which is applied to the microprocessor 22 via the line 41.2.
  • FIG. 10 shows a side view of a bale removal machine, in which the tower 3 runs between two end positions 96 and 98.
  • the tower is driven by the wheels 35.
  • Above the floor 37 there is a revolving chain 100 which is attached to the tower 3 at one point and runs at both ends via respective deflection wheels 102, 104.
  • the deflection gear 102 is rotatably mounted on a shaft 106 which is rotatably mounted in a C-shaped receptacle 108.
  • the deflection gear 104 is rotatably mounted on a shaft 110 which is rotatably mounted in a receptacle 112.
  • the chain is in the 10 interrupted at a point 100.1. 8 and 9 there is a perforated disk 90.3 on the shaft 106, which is fixed to the shaft 106 in a rotationally fixed manner.
  • a light barrier 38.3 which, when the perforated disk rotates, supplies a pulse train via line 41.3 to the microprocessor 22. It can be seen that when the tower 3 moves along the row of bales, the corresponding movement of the chain leads to a rotary movement of the shaft 106, this rotary movement being determined without slippage by the light barrier 38.3.
  • FIG. 11 shows a further embodiment in which a perforated rail 39.4 is fastened to the fiber suction channel 4 via brackets 114. Circular holes 116 are arranged in the perforated rail 39.4 at a constant distance L. Since this fiber suction channel is very long, only its beginning is shown in FIG. 11. This figure also shows a hint of a displaceable cover 4.1 of the fiber suction channel, which ensures in a manner known per se that the fiber suction channel is closed, except where the tower feeds the removed fiber flakes into the channel.
  • an inductive proximity switch 38.4 is provided for scanning the row of holes 116, which is fastened to the machine frame 3 of the bale removal machine and thus with the tower of the bale removal machine along the perforated rail 39.4, i.e. is moved along the row of bales.
  • the inductive proximity switch passes one of the holes 116, it generates a pulse, and this pulse train is applied to the microprocessor 22 via line 41.4 in accordance with the other embodiments.
  • Fig. 11 also shows an alternative embodiment in which a rod 118 with a regular, ie depressions 120 having a constant spacing are also fastened to the brackets 114.
  • a mechanical button 122 which is fastened to the machine frame 3 of the tower of the bale removal machine and thus moves with it along the rod 118 and along the row of bales.
  • the mechanical pushbutton 122 has a plunger with a hemispherical end (not shown), which is pressed into the respective depression each time as it passes through the depressions 120 and is then pushed out again due to the relative movement and hemispherical surface. Every time the plunger moves into a recess, a mechanical switching process is triggered, which moves electrical switching contacts and applies a corresponding pulse train to the microprocessor 22 via the line 41.5.
  • FIG. 12 shows an even simpler arrangement, in which rectangular sheet metal parts 124 are welded onto the fiber suction channel 4 at regular intervals at 126, so that the sheet metal parts form teeth 128 and gaps 130 therebetween.
  • a scanning device 39.6 designed as a light barrier is fastened via a C-shaped holder 132, the light barrier here also consisting of transmitting and receiving parts and due to the light beam extending between these two parts the relative movement through the vertical edges of the teeth 128 is periodically interrupted and released again. This produces a pulse train which is applied to the microprocessor 22 via line 41.6 as before.
  • two adjacent holes can be formed into a longitudinal hole at both ends of the perforated rail, as a result of which the output signal of the corresponding scanning device is at a constant level and no longer switches on and off, as during a movement along the row of bales.
  • the box 140 represents an interpolating device, which consists of the signals read in via the line 41, 41.1, 41.2, 41.3, 41.4, 41.5 or 41.6 and the information available in the computer 22 about the speed or acceleration or deceleration of the movement of the tower along the bale row divides the time intervals between subsequent pulses so that the resulting time signals also serve as a measure of the longitudinal position of the tower along the bale row. If the speed of the movement is constant, the time intervals must be divided into constant units.
  • the computer 22 can have a monitoring device 142 which checks that, when the next pulse arrives via the line 41-41.6, the longitudinal position calculated by the interpolating device corresponds to the position correctly marked by these pulses. If this is not the case, the longitudinal positions calculated between the last two pulses from line 41-41.6 are to be regarded as faulty and should therefore be ignored.
  • Box 144 shows the counting device, which counts the pulses via line 41-41.6 and / or from interpolating device 142 and thereby generates a signal proportional to the travel path.
  • the interpolator 140, the monitor 142 and the counter 144 are integrated in the computer 22, i.e. implemented in software. However, they can also represent separate units, i.e. can be realized as hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan, bei dem mittels wenigstens eines auf die Ballenoberfläche gerichteten Sensors das Höhenprofil einer Ballenreihe ermittelt und zur Steuerung der Lage des Abtragorganes bei der nachfolgenden Ballenabtragung herangezogen wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
  • Ein Verfahren bzw. eine Vorrichtung dieser Art ist bereits in der DE-PS 31 53 246 beschrieben. Bei der bekannten Vorrichtung sind drei Sensoren in Form von optischen Näherungsschaltern auf dem das Abtragorgan tragenden Ausleger angebracht. Dieser wird von Hand über den ersten Ballen der Ballenreihe gefahren. Nach Betätigung einer Starttaste sinkt der Ausleger ab. Sobald der erste Sensor ein Signal abgibt, wird der momentane Zählerstand in einen Speicher übertragen. Gleiches passiert für jeden weiteren Sensor. Wenn auch der letzte Sensor sein Signal abgegeben hat, wird die Abwärtsbewegung gestoppt, der Turm mit dem Ausleger setzt sich mit einer langsamen Geschwindigkeit in Bewegung entlang der Ballenreihe und der Ausleger wird auf das Maß, das beim ersten ansprechenden Sensor ermittelt wurde, plus einem bestimmten Betrag nach oben gefahren. Ist er dort angekommen, sinkt der Ausleger wieder ab, und die Höhenermittlung erfolgt wie oben.
  • Auf die beschriebene Weise erhält man eine Vielzahl von Meßwerten, aus denen ein Mittelwert gebildet wird, der für den weiteren Abarbeitungsprozeß herangezogen wird. Dadurch, daß sich der Ausleger mit Abtragorgan bei der Durchführung der Messungen ständig auf und ab bewegt, geht relativ viel Zeit für die einmalige Ermittlung des Höhenprofiles der Ballenreihe verloren. Weiterhin beschreibt die Schrift nicht, wie man ausgehend vom Mittelwert die eigentliche Abtragung durchführt, die wohl wegen einer späteren Bewegung des Auslegers entlang der Ballenreihe erfolgt. Es wird vermutlich ausgehend vom Mittelwert eine vorbestimmte Zustellung vorgegeben, d.h. der Ausleger mit Abtragorgan wird um einen vorbestimmten Betrag unterhalb des Mittelwertes gesenkt und die Abtragung erfolgt mit dieser fest vorgegebenen Zustellung. Mit diesem ersten Durchgang wird darauf abgezielt, die Ballenreihe auf eine gleichmäßige Höhe zu bringen, damit bei nachfolgenden Abtragungen immer mit fest vorgegebenen Zustelltiefen gearbeitet werden kann. Dieses Verfahren berücksichtigt nicht die unterschiedliche Härte der unterschiedlichen Ballen bzw. der unterschiedlichen Komponenten der Ballenreihe. Eine ähnliche Ballenabstragmaschine der gleichen Gattung ist aus der DE-A-31 35 272 bekannt.
  • Die europäische Anmeldung 85 115 579 (Veröffentlichungsnummer 193 647) der vorliegenden Anmelderin beschreibt ein Verfahren zum Abtragen von Faserflocken von Textilfaserballen, bei dem die Zustellung für jede Abtragbewegung entlang der Ballenreihe entsprechend der Ballenhärte in den unterschiedlichen Bereichen der Ballen gewählt wird. Diese Ausführung berücksichtigt die Tatsache, daß Ballen eine unterschiedliche Dichte, d.h. Härte aufweisen und zwar so, daß die Härte im oberen und unteren Bereich der Ballen geringer ist als im mittleren Bereich, so daß die Zustelltiefe im oberen und unteren Bereich größer sein darf als im mittleren Bereich. Auch diese Schrift beschreibt jedoch nicht die Ermittlung der Härte der Ballen. Dies ist in der Praxis aber von größerer Bedeutung, zumindest dann, wenn man eine Ballenabtragmaschine stets an den oberen Grenzen der Leistung betreiben möchte, um hierdurch eine maximale Produktion wirtschaftlich zu erhalten. Man kann zwar mit Erfahrungswerten für die Härte der einzelnen Ballen arbeiten, dies ist jedoch in vielen Fällen nicht sehr genau. Beispielsweise wird häufig bei der Erstellung einer Ballenreihe aus Ballen verschiedener Provenienzen (Komponenten genannt) etwas von den höheren Ballen einer Komponente manuell abgenommen und auf niedrigere Ballen der gleichen Komponente gelegt. Hierdurch wird die angenommene Härteverteilung bei den einzelnen Ballen verfälscht. Weiterhin kommen Ballen unterschiedlicher Provenienzen per Definition aus unterschiedlichen Gebieten, sie werden daher mit unterschiedlichen Anlagen zusammengepreßt und haben unterschiedliche Fasereigenschaften, so daß die Härteverteilung bei den Ballen der unterschiedlichen Provenienzen auch unterschiedlich ausfällt.
  • Ein weiterer Vorschlag für eine Ballenabtragmaschine, welche die unterschiedliche Dichte der Ballen in verschiedenen Arbeitszonen berücksichtigt, ist der DE-OS 32 45 506 zu entnehmen.
  • Bei diesem Vorschlag wird die gedankliche Aufteilung der Ballen in übereinanderliegende Schichten unterschiedlicher Dichten vor der Ballenabtragung gemäß der Art der betroffenen Fasern, ihrer Herkunft usw. durchgeführt, wobei es möglich ist, von vornherein mehr als die bei dem dargestellten Beispiel gezeigten drei Schichten vorzusehen. Der gewählten Anzahl der Schichten mit verschiedenen Dichtegraden entspricht die Anzahl der auf der Führungsschiene anzubringenden Detektoren, wobei die gegenseitigen Abstände der vorzugsweise als Mikroschalter realisierten Detektoren der Dicke der einzelnen Fasermaterialschichten entsprechen. Dies bedeutet, wie in der entsprechenden Schrift nachzulesen ist, daß die Detektoren Positionssensoren sind, welche so angeordnet werden, daß sie für den bewegbaren Schlitten der Ballenabtragmaschine die vorher festgelegten, in senkrechter Richtung aufeinanderfolgenden Arbeitszonen auf den Ballen bestimmen.
  • Aufgabe der vorliegenden Erfindung ist es, das Verfahren bzw. die Vorrichtung der eingangs genannten Art so zu verbessern, daß man insgesamt wirtschaftlicher arbeiten kann, und zwar unter Berücksichtigung der Härte der einzelnen Ballen bzw. Komponenten der Ballenreihe, wobei diese Härte vorzugsweise bereits während der Ermittlung des Höhenprofils gleichzeitig ermittelt werden soll.
  • Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgesehen, daß das Empfangssignal des vorzugsweise optischen, akustischen oder mit Radarwellen arbeitenden Sensors zur Gewinnung eines der Ballenhärte entsprechenden Signals verarbeitet wird, und daß die Zustellung und ggf. auch die Durchgrifftiefe des Abtragorganes entsprechend diesem Härtesignal gesteuert oder geregelt wird.
  • Anstatt einen Näherungssensor zu verwenden, wird somit erfindungsgemäß mit einem Meßsensor gearbeitet, der ebenfalls auf dem Ausleger oder dem den Ausleger tragenden Turm angebracht ist und bei der Höhenabtastung in einer gleichmäßigen Höhe über die Ballenreihe bewegt wird. Die so entstehenden Signale werden dann erfindungsgemäß auch zur Ermittlung der Ballenhärte in dem unmittelbar unterhalb des Meßsensors gelegenen Oberflächenbereich ausgewertet, wobei dann die Zustellung unter Verwendung dieser relativ genauen Information auch genau ermittelt werden kann, im Hinblick auf den Wunsch, eine möglichst hohe Produktion zu erreichen bzw. aufrechtzuerhalten. Nicht nur die Zustellung, d.h. der Betrag, um den das gesamte Abtragorgan nach unten bewegt wird für das nächste Abarbeiten der Ballenreihe, sondern auch die Durchgrifftiefe des Abtragorganes, d.h. der Betrag, um den sich die Arbeitselemente, beispielsweise Zähne des Abtragorganes durch den zugeordneten Rost hindurcherstrecken, hängt von der Härte des jeweils abzutragenden Ballens ab, so daß es die vorliegende Erfindung ermöglicht, sowohl die Zustellung als auch die Durchgrifftiefe jeweils optimal der jeweiligen Ballenhärte anzupassen.
  • An dieser Stelle soll betont werden, daß die Detektoren der DE-A-32 45 506 keine Signale erzeugen, die zu Ballenhärtesignale der jeweiligen Schichten der Ballen verarbeitet werden, da es sich um reine Positionssensoren handelt. Eine derartige Verarbeitung wäre auch nicht möglich.
  • Es bestehen verschiedene Möglichkeiten, das Sensorsignal zu einem Härtesignal zu verarbeiten. Wenn die Härte der Oberflächenbereiche der Ballen hoch ist, so ist die wieder aufgefangene Schallenergiedichte größer als wenn es sich um eine weichere Ballenoberfläche handeln würde. Die Härte des Oberflächenbereiches läßt sich somit aus der Amplitude des Empfangssignals herleiten, wobei die Abnahme der Amplitude mit zunehmendem Abstand zwischen dem Meßsensor und der Ballenoberfläche berücksichtigt werden muß.
  • Erfindungsgemäß wird das Härtesignal aber vorzugsweise aus den Schwankungen, insbesondere aus den Amplitudenschwankungen der Sensorsignale ermittelt. Dies kann beispielsweise dadurch erfolgen, daß das Härtesignal durch das Summieren der mit positiven Vorzeichen versehenen Abweichungen des Sensorsignals vom Mittelwert dieses Signals ermittelt wird. Auch sind allgemeine verwendbare mathematische Algorithmen bekannt, die es ermöglichen, die mittleren Amplitudenschwankungen der Sensorsignale aus diesen Signalen zu gewinnen, wobei das Sensorsignal mit einer Häufigkeit höher als die Grundfrequenz des Signals, d.h. der Grundfrequenz der schwankenden oder Sensorsignale abgetastet wird.
  • Wenigstens bei Verwendung eines Abstandsmeßsensors auf Ultraschallbasis wird die Ballenoberfläche an verschiedenen nacheinanderfolgenden Punkten abgetastet. Dies ist erforderlich, weil der zeitliche Abstand zwischen aufeinanderfolgenden Messungen ausreichend lang gewählt werden muß, um die Laufzeit des Ultraschallsignals und die Laufzeit der elektronischen Signale zu berücksichtigen. Auch muß ein gewisser Sicherheitsabstand zwischen aufeinanderfolgenden Messungen gegeben sein, damit die Ultraschallschwingungen der einen Messung abklingen können bevor die nächste Messung vorgenommen wird.
  • Betrachtet man die Baumwolloberfläche modellhaft als Sinus, so müßte, um die Oberfläche rekonstruieren zu können, häufiger als alle 1 cm ein Meßwert aufgenommen werden.
  • In der Praxis genügt es aber, anhand einiger weniger Messungen schon eine Aussage über die Oberflächenbeschaffenheit zu erhalten (aus Gründen der statistischen Verteilung und des angewendeten Meßverfahrens).
  • Man geht vorzugsweise entsprechend dem Anspruch 3 vor.
  • Die Härte kann getrennt für jeden Ballen oder für jede Komponente der Ballenreihe ermittelt werden. Somit kann man bei dem nachfolgenden Abarbeiten der Ballen für jeden Ballen bzw. für jede Komponente eine unterschiedliche Zustelltiefe bzw. Durchgrifftiefe wählen. Das Umlegen von Teilen des einen Ballens auf andere Ballen führt hier zu keiner besonderen Störung des Arbeitsverfahrens, da die Härte der Ballenoberfläche immer aktuell gemessen wird. Im weiteren Gegensatz zu dem eingangs genannten Verfahren gemäß DE-PS 31 53 246 kann erfindungsgemäß bei jedem Durchgang sowohl das Höhenprofil als auch das Härteprofil ermitteln werden.
  • Es besteht grundsätzlich die Möglichkeit, das Höhenprofil der Ballenreihe während einer Leerfahrt des Abtragorganes oberhalb der Ballenreihe zu ermitteln. Dieses Verfahren ist weniger aufwendig als beim Stand der Technik, da ständige Auf- und Abbewegungen des Auslegers nicht erforderlich sind, wodurch Steuerungsaufwand und Zeit gespart werden kann.
  • Bei Ballenabtragmaschinen, bei denen Ballenreihen auf beiden Seiten der Ballenabtragmaschine angeordnet sind, besteht auch die Möglichkeit, das Höhenprofil und das Härteprofil der einen Ballenreihe während des Abtragens der anderen Ballenreihe zu ermitteln.
  • Bei diesem Verfahren wird das während eines ersten Durchganges des Abtragorganes entlang einer Ballenreihe abgetastete Höhenprofil vorzugsweise in einen Computer eingelesen, welcher aufgrund dieses Höhenprofils und des errechneten Härteprofils ein sich über die Länge der Ballenreihe änderndes Zustellprofil errechnet, bei dem die Produktion unter Berücksichtigung des erwünschten Mischungsverhältnisses der Provenienzen der einzelnen Ballen annähernd an einem Maximum gehalten wird.
  • Der Computer ist vorzugsweise so programmiert, daß er bestrebt ist, bei mehreren Durchgängen alle Ballen entsprechend den jeweils gemessenen Härten und dem erwünschten Mischungsverhältnis so abzutragen, daß am Ende des Abtragens die ganze Reihe ohne nennenswerte Ballenreste abgetragen ist. Ein derartiges Verfahren erleichtert die nachfolgende Aufstellung einer neuen Ballenreihe und vereinfacht das nachfolgende Abtragen der neuen Ballenreihe; dadurch lassen sich unnötige Höhen- und Härtebeschränkungen der neuen Ballenreihe vermeiden.
  • Der Computer arbeitet so, daß er bei jedem Durchgang stets eine Zustelltiefe bzw. ein Zustelltiefenprofil anstrebt, das immer weiter einer waagrechten Linie angenähert wird. Um dies zu erreichen, müssen natürlich gewisse kleine Einbußen bei der Produktion akzeptiert werden. Diese sind jedoch insgesamt geringer als die Einbußen, die ohne das erfindungsgemäße Verfahren eintreten.
  • Eine weitere Steigerung der Ausnutzung der Ballenabtragmaschine läßt sich dadurch erreichen, daß das Abtragen der Ballenreihe bereits bei dem ersten Durchgang bei gleichzeitigem Erfassen des Höhenprofils erfolgt, wobei das Abtragorgan im ersten Durchgang konstant der Ballenhöhe nachgesteuert wird.
  • Die Ermittlung der Höhe der Ballen gleichzeitig mit dem Ablösen von Faserflocken aus der Ballenoberfläche ist zwar für sich aus der DE-PS 33 35 793 bekannt. Zu diesem Zweck werden jedoch dort zwei Sensoren verwendet, welche in unterschiedlichen Höhen und parallel zur Oberfläche der Ballenreihe angeordnet sind. Diese Sensoren ermöglichen weder eine sehr genaue Bestimmung des Höhenprofils der Faserballen noch eine Ermittlung der Härte der Ballen.
  • Durch das Abtragen der Ballenreihe bereits beim ersten Durchgang entfällt die Leerzeit für eine Abtastung des Höhenprofils ohne gleichzeitige Abtragung von Faserflocken. Obwohl beim ersten Durchgang das Abtragorgan konstant der Ballenhöhe nachgesteuert wird, um zu vermeiden, daß plötzliche Höhenstufen zu einer Überbelastung der Abtragmaschine führen, gelingt es, unter Berücksichtigung des mit diesem ersten Durchgang ermittelten Höhenprofils und des entsprechenden Härteprofils für nachfolgende Durchgänge optimale Durchgangshöhenkurven zu ermitteln, um einerseits eine annähernd maximale Produktion zu erreichen und andererseits im letzten Durchgang auf einer minimalen Höhe angelangt zu sein.
  • Um den Sollwert für den Flockenstrom der Abtragmaschine vorzugeben und einzuhalten, was zugleich ein genaues Maß für die Produktion der Ballenabtragmaschine darstellt, wird vorzugsweise erfindungsgemäß so vorgegangen, daß der Istwert des Flockenstromes aufgrund der Zustelltiefe und des jeweiligen Härtesignals ermittelt und die Zustelltiefe zur Einhaltung des vorgegebenen bzw. eines maximalen Flockenstromes geregelt wird. Bei diesem Verfahren entspricht der Istwert des Flockenstromes dem Produkt der Zustelltiefe mit dem Härtesignal, wobei natürlich geometrische Konstanten, wie die Breite der Ballenreihe und die Bewegungsgeschwindigkeit der Ballenabtragmaschine entlang der Ballenreihe berücksichtigt werden müssen.
  • Dadurch, daß man mittels der Erfindung die Zustelltiefe entsprechend der jeweils vorhandenen Ballenhärte wählt, wird die Genauigkeit der aus den verschiedenen Komponenten entstehenden Fasermischung verbessert, insbesondere in solchen Spinnereien, bei denen die Mischungsverhältnisse in erster Linie durch die Arbeit der Ballenabtragmaschine bestimmt sind.
  • Das erfindungsgemäße Verfahren bietet auch die Möglichkeit, den Anfang bzw. das Ende der Ballenreihe und ggf. das Vorhandensein und die Länge von Lücken zwischen den Ballen der Reihe durch das Sensorsignal zu ermitteln. Am Anfang und am Ende einer Ballenreihe bzw. in Lücken wird nämlich das Sensorsignal vom Boden bzw. vom Ballenträger reflektiert, der bzw. die einen bekannten Abstand vom Meßsensor aufweisen und somit durch das Sensorsignal ohne weiteres erkannt werden können. Weiterhin stellen der Boden bzw. ein Ballenträger im Vergleich zu den Ballen sehr harte Gegenstände dar, so daß in diesem Bereich die Amplitudenschwankungen des Sensorsignals gering sind, wodurch das Vorhandensein des Bodens bzw. des Ballenträgers und auch die senkrechten Ballengrenzen aus dem Sensorsignal ermittelt werden kann bzw. können.
  • Wenigstens bei akustischen Meßsensoren führt auch ein sehr harter Gegenstand wie beispielsweise der Boden oder ein Ballenträger zu einem doppelten Signal, da das vom Meßsensor ausgestrahlte akustische Signal mit verhältnismäßig kleinen Verlusten am Boden bzw. am Träger reflektiert, am Meßsensor oder am Ausleger erneut reflektiert und anschließend nach nochmaliger Reflexion am Boden wieder vom Meßsensor empfangen wird. Das doppelte Signal, d.h. das Empfangssignal nach der ersten Reflexion und das Empfangssignal nach der zweiten Reflexion am Boden stellt ein besonderes Kennzeichen für den Boden bzw. Ballenträger dar.
  • Um das Höhenprofil bzw. das Härteprofil in Einklang mit der Lage des Abtragorganes entlang der Ballenreihe zu bringen, zeichnet sich das erfindungsgemäße Verfahren vorzugsweise so aus, daß ein dem Fahrweg des Abtragorganes entlang der Ballenreihe proportionales Signal erzeugt und vom Computer bei der Berechnung des Höhenprofils bzw. des Zustelltiefenprofils bzw. des Härteprofils berücksichtigt wird.
  • Das entsprechende, dem Fahrweg des Abtragorganes proportionale Signal kann im Falle eines formschlüssigen und schlupffreien Antriebes des Turmes entlang der Ballenreihe, beispielsweise mittels Ketten und Kettenrädern, vom Antrieb selbst erzeugt werden. Beispielsweise kann ein Zahnrad oder eine Lochscheibe mit der Welle des Antriebmotors für die Fahrbewegung gekoppelt sein, wobei das Zahnrad oder die Lochscheibe als Zählrad dient und zusammen mit einem Initiator als Impulsgeber funktioniert, dessen Impulse über eine Leitung dem Mikroprozessor zugeführt werden. Diese Impulse geben dann den Fahrweg des Abtragorganes an, d.h. sie sind diesem proportional. Damit ist der Mikroprozessor bzw. die Steuerung jederzeit über die genaue Lage des Abtragorganes in Längsrichtung der Ballenabtragmaschine informiert.
  • Bei Ballenabtragmaschinen, die auf Rädern laufen, wo Schlupf zu befürchten ist, können die erforderlichen Signale durch eine vom Schlupf unabhängige Fahrwegermittlungseinrichtung zuverlässig festgestellt werden. Beispielsweise können hier bekannte Fahrwegmeßeinrichtungen in der Form von Magnetstreifen und Linearmeßeinrichtungen benutzt werden, wie sie bei den Führungen von Werkzeugmaschinen verwendet werden.
  • Solche bekannte Magnetstreifen- oder Linearmeßeinrichtungen sind jedoch relativ aufwendig, so daß ihre Anwendung bei Ballenabtragmaschinen, bei denen der Turm über einen beträchtlichen Abstand, beispielsweise 20 m oder mehr fahrbar ist, doch zu beträchtlichen Kosten führen kann. Es ist somit eine weitere Aufgabe der vorliegenden Anmeldung eine Fahrwegmeßeinrichtung zu schaffen, insbesondere für eine Ballenabtragmaschine, welche unabhängig vom allfälligen Schlupf des Antriebssystems die aktuelle Längsposition des beweglichen Teils, beispielsweise des Turms an der Ballenabtragmaschine ermittelt, wobei die Fahrwegmeßeinrichtung robust, zuverlässig, wartungsfrei und preiswert sowie unempfindlich gegen Schmutz und Störung sein soll.
  • Zur Lösung dieser Aufgabe sieht die vorliegende Erfindung eine Fahrwegmeßeinrichtung vor, insbesondere für eine Ballenabtragmaschine mit einem nicht schlupffreien Antriebssystem und mit einem fahrbaren Turm, der mittels des Antriebssystems entlang einer Ballenreihe verfahrbar ist, gekennzeichnet durch ein längliches, sich entlang der Ballenreihe erstreckendes Teil, das entweder fest angeordnet oder mit dem Turm verbunden ist und sich mit diesem bewegt, durch eine Abtasteinrichtung, welche je nach der Anordnung des länglichen Teils entweder am fahrbaren Turm oder an einer bestimmten Stelle entlang der Ballenreihe angeordnet ist, das längliche Teil während der Fahrbewegung des Turmes schlupffrei abtastet und jedesmal, wenn der Turm einen bestimmten Schritt zurücklegt einen Impuls abgibt, und durch eine Zähleinrichtung, welche die Impulse zählt und ein dem Fahrweg proportionales Signal erzeugt.
  • Bei einer Ausführung besteht das längliche Teil aus einer Schiene und die Abtasteinrichtung aus einem Rad, das am Turm angeordnet schlupffrei entlang der Schiene abrollt, wobei ein Impulsgeber zur Abgabe von Impulsen mit dem Rad gekoppelt ist. Unter Umständen genügt es hier ein einfaches Rad mit Gummireifen für die schlupffreie Abtastung der Schiene vorzusehen, da das Gummirad keine wesentlichen Drehmomente übertragen muß und somit nicht mit Schlupf behaftet ist. Diese einfache Ausführung hat den besonderen Vorteil, daß sie sehr preisgünstig herstellbar ist. Wenn man aber befürchten muß, daß auch hier evtl. Schlupf eintreten könnte, beispielsweise aufgrund von Abmessungstoleranzen der Schiene, so kann man die Schiene als Zahnstange und das Rad als ein mit dieser kämmendes Zahnrad ausbilden.
  • Eine weitere Möglichkeit besteht darin, das längliche Teil durch eine Kette auszubilden, die am Turm befestigt ist und während einer durch die Bewegung des Turmes entlang der Ballenreihe verursachten Umlaufbewegung um Umlenkeinrichtungen an beiden Enden der Ballenreihe umlenkbar ist. Hiermit wird eine Abtasteinrichtung verwendet, welche durch ein durch die Kette antreibbares Kettenrad gebildet ist, wobei ein Impulsgeber zur Abgabe von Impulsen mit dem an einer festen Stelle der Ballenreihe angeordneten Kettenrad gekoppelt ist. Eine sehr wirtschaftliche Anordnung wird dann erreicht, wenn das Kettenrad durch eine der Umlenkeinrichtungen gebildet ist.
  • Eine weitere Möglichkeit besteht darin, das längliche Teil durch sich regelmäßig wiederholende engere und breitere Bereiche aufweisende Struktur auszubilden, beispielsweise durch eine Lochschiene oder eine fest gespannte Kette oder ein Zähne und Lücken aufweisendes längliches Gebilde, wobei diese Struktur durch eine Lichtschranke oder induktive Abtasteinrichtung, oder durch eine mechanische Schaltereinrichtung abtastbar ist, deren Empfangskreis die Impulse abgibt. Eine längliche, das Ausgangssignal der Abtasteinrichtung modulierende Struktur dieser Art kann sich insbesondere entlang des Flockentransportkanals (Absaugkanals) einer Ballenabtragmaschine erstrecken und an dieser befestigt sein. Eine derartige Anbringung der länglichen Struktur spart Platz und ist im allgemeinen möglich, ohne störende Einschränkungen zu verursachen, hinsichtlich der anderen notwendigen Teile einer Ballenabtragmaschine. Insbesondere kann auf diese Weise eine erfindungsgemäße Fahrwegmeßeinrichtung an einer bestehenden Ballenabtragmaschine nachträglich angebracht werden.
  • Eine besonders bevorzugte Ausführungsform der erfindungsgemäßen Fahrwegmeßeinrichtung zeichnet sich dadurch aus, daß die Wiederholungslänge der Struktur relativ groß ist, beispielsweise mehr als etwa 10 cm, und daß bei einer bekannten, vorzugsweise konstanten Fahrgeschwindigkeit Längsmessungen im Bereich zwischen zwei nacheinanderfolgenden Impulsen durch eine Interpoliereinrichtung durchführbar sind. Durch die Verwendung einer Struktur mit einer relativ großen Wiederholungslänge läßt sich diese Struktur sehr preisgünstig herstellen, die Erfindung ermöglicht jedoch die Messung von Längeneinheiten, die weitaus kleiner sind als die Wiederholungslänge.
  • Um die Genauigkeit bzw. Gültigkeit der einzelnen Messungen zu überwachen, wird vorzugsweise eine den Zeitabstand zwischen den Impulsen überwachende Einrichtung vorgesehen. Wenn beispielsweise der Turm mit einer bekannten konstanten Geschwindigkeit entlang der Ballenreihe läuft, so muß diese Überwachungseinrichtung jeweils den gleichen Zeitabstand zwischen zwei nacheinanderfolgenden Impulsen feststellen. Stellt die Einrichtung fest, daß dieser Zeitabstand nicht konstant ist, so weiß man, daß die Gültigkeit von interpolierten Längsmessungen zwischen den beiden Stellen der Struktur, welche die zugeordneten Impulse erzeugt haben suspekt sind. Man kann daher diese Werte ignorieren oder je nach Verwendungszweck der Messungen anders gewichten, damit die Ungenauigkeit berücksichtigt bleibt. Eine Einrichtung dieser Art hat den Vorteil, daß die Messung erneut mit der erwarteten Genauigkeit mit den nächsten Impulsen durchgeführt werden kann, da durch die starre Zuordnung zwischen den Impulsen und den die Impulse erzeugenden Teilen der Struktur das Ausmaß der durch Interpolationsfehler eintretenden Fehlmessungen begrenzt ist.
  • Selbst wenn in bestimmten Abschnitten der Ballenreihe die Ballenabtragmaschine beschleunigt oder gebremst wird bzw. mit einer langsameren Geschwindigkeit entlang der Ballenreihe fährt, so können diese Geschwindigkeitsänderungen von der Interpoliereinrichtung berücksichtigt werden, so daß auch während dieser Betriebsphasen genaue interpolierte Längsmessungen möglich sind.
  • Von besonderem Vorteil ist es, wenn die Zähleinrichtung und/oder die Interpoliereinrichtung und/oder die Überwachungseinrichtung durch einen Mikroprozessor gebildet ist bzw. sind. Die Zähl-, Interpolier- und Überwachungsfunktionen können dann durch entsprechende Programmierung des Mikroprozessors, vorzugsweise des Mikroprozessors der für die Steuerung der gesamten Ballenabtragmaschine zuständig ist, realisiert werden, wobei die vorhandene Information bestmöglich ausgewertet werden kann. Beispielsweise wird eine durch den Mikroprozessor realisierte Interpoliereinrichtung stets wissen, ob eine Beschleunigung oder Abbremsung der Turmbewegung eingeleitet ist und diese unterschiedlichen Betriebszustände bei der Durchführung der Interpolierung berücksichtigen.
  • Besonders bevorzugte Vorrichtungen zur Durchführung des erfindungsgemäßen Betriebsverfahrens einer Ballenabtragmaschine lassen sich den Ansprüchen 15 bis 18 entnehmen.
  • Die Erfindung wird nachfolgend näher erläutert anhand eines Ausführungsbeispiels und unter Bezugnahme auf die Zeichnung, in welcher zeigt:
  • Fig. 1
    eine Endansicht einer Ballenabtragungsmaschine am Anfang einer Ballenreihe,
    Fig. 2
    eine Seitenansicht an der Ballenreihe der Fig. 1 im Bereich der erfindungsgemäßen Ballenabtragmaschine,
    Fig. 3
    eine Draufsicht auf die Ballenabtragmaschine der Fig. 1,
    Fig. 4A
    eine graphische Darstellung eines Sensorsignals bei der Abtastung des Höhenprofils der Ballenreihe der Fig. 2,
    Fig. 4B
    das aus dem Sensorsignal der Fig. 4A gewonnene Höhenprofil,
    Fig. 4C
    das aus dem Sensorsignal der Fig. 4A gewonnene Härteprofil,
    Fig. 4D
    das aus dem Härteprofil der Fig. 4C ermittelte Zustellungsprofil,
    Fig. 4E
    das aus dem Härteprofil der Fig. 4C ermittelte Durchgrifftiefenprofil,
    Fig. 5
    ein stark schematisiertes Blockdiagramm zur Erläuterung der Signalauswertung bei einer Ballenabtragungsmaschine gemäß Fig. 1,
    Fig. 6
    eine schematische Darstellung der sukzessiven Abtragung der Ballenreihe der Fig. 2,
    Fig. 7
    eine schematische Darstellung eines alternativen Verfahrens zur sukzessiven Abtragung einer Ballenreihe,
    Fig. 8
    eine schematische Darstellung einer schlupffreien Längsmeßeinrichtung, bestehend aus einer Schiene und einem Rad,
    Fig. 9
    eine schematische Darstellung einer ähnlichen Ausführungsform wie die in der Fig. 8, bei der jedoch die Schiene als Zahnstange und das Rad als Zahnrad ausgebildet ist,
    Fig. 10
    eine alternative Ausführung einer schlupffreien Längsmeßeinrichtung, bestehend aus einer am Turm der Ballenabtragmaschine befestigten umlaufenden Kette,
    Fig. 11
    eine perspektivische Darstellung einer im Vergleich zu Fig. 1 abgewandelten Ausführung einer Lochschiene in einer schlupffreien Längsmeßeinrichtung, wobei auch die Verwendung von mechanischen Schaltern für die schlupffreie Längsmessung gezeigt ist, und
    Fig. 12
    eine weitere erfindungsgemäße schlupffreie Längsmeßeinrichtung mit einer länglichen Meßstruktur, bestehend aus Zähnen und Lücken.
  • Wie vor allem in Fig. 1 gezeigt, umfaßt eine Maschine 1 zum Abttragen von Faserflocken ein Abtragorgan 2, ein Maschinengestell 3 und einen Flockentransport 4.
  • Das Abtragorgan 2 selbst umfaßt einen Ausleger bzw. eine Gehäusekonstruktion 5, in welcher eine rotierende Abtragwalze 6 antreibbar gelagert ist. Durch diese Gehäusekonstruktion 5 werden im weiteren die durch die Abtragwalze 6 von den Faserballen 7 abgetragenen Faserflocken aufgenommen und über nicht gezeigte Wege weiter in den Flockentransport 4 gefördert.
  • Die Gehäusekonstruktion 5 ist mittels drehbar daran befestigter und in Führungsschienen 8 des Maschinengestells 3 geführter Rollen 9 in Pfeilrichtung A auf- und abbewegbar. In der Figur ist jedoch nur das eine Rollenpaar und nur die eine Schiene 8 gezeigt; die auf der Gegenseite in der gleichen Art vorgesehenen Rollen und vorgesehenen Schiene sind nicht sichtbar.
  • Im weiteren weist die Gehäusekonstruktion 5 einen Mitnehmer 10 auf, welcher mit einer Kette 11 eines Kettentriebes 12 fest verbunden ist.
  • Der Kettentrieb 12 umfaßt im weiteren ein oberes, drehbar gelagertes Kettenrad 13 für die Umlenkung der Kette 11 und ein unteres Kettenrad 14 für den Antrieb dieser Kette 11. Das untere Kettenrad 14 ist dabei drehfest auf einer Antriebswelle 15 eines Getriebes 16 aufgezogen. Als Leistungsquelle für das Getriebe dient ein damit verbundener Elektromotor 17, welcher als Stopmotor ausgebildet ist.
  • Der Kettentrieb 12, das Getriebe 16 und der Elektromotor 17 werden als Ganzes als Hubvorrichtung bezeichnet.
  • Auf dem in Fig. 1 oberen Wellenende 18 des Motors 17 ist ein Zahnrad 19 drehfest aufgesetzt, welches als Zählrad zusammen mit einem Initiator 20 als Impulsgeber funktioniert, dessen Impulse über eine Leitung 21 einem Mikroprozessor 22 zugeführt werden, was insbesondere in der Fig. 3 dargestellt ist. Der Initiator 20 ist handelsüblich und gibt bei jedem vorbeigehenden Zahn des Zahnrades 19 einen Impuls ab. Der Initiator 20 ist ortsfest vorgesehen.
  • Zur Abtastung der oberen und unteren Endposition des Abtragorganes ist am Maschinengestell 3 ein oberer Endschalter 23 und ein unterer Endschalter 24 vorgesehen.
  • Der obere Endschalter 23 wird von einer oberen Fläche 25 und der untere Endschalter 24 von einer unteren Fläche 26 des Mitnehmers 10 betätigt. Dabei gibt der obere Endschalter 23 seinen Impuls über eine Leitung 27 und der untere Endschalter 24 über eine Leitung 28 in den Mikroprozessor 22 ein.
  • Auf der vorderen Seite, d.h. in Fig. 2 rechten Seite des Auslegers ist ein Abstandsmeßsensor 30 angebracht. Dieser besteht aus miteinander kombinierten Sender/Empfängereinheiten und funktioniert im vorliegenden Beispiel auf Ultraschallbasis. Bei diesem Abstandsmeßsensor kann es sich beispielsweise um einen Sensor der Firma Siemens Typ Sonar/Bero 3RG6044/3 MMOO handeln. Es kann aber auch ohne weiteres ein Sensor sein, der mit einem anderen Meßprinzip arbeitet, beispielsweise ein optischer Sensor oder ein Sensor, der mit Radarwellen arbeitet. Der Meßstrahl 31 ist auf die Oberfläche 32 der Ballensreihe 7, d.h. senkrecht dazu gerichtet, wobei der Meßstrahl einen 15 bis 20 cm breiten Streifen der Oberfläche erfaßt, der, wie in Fig. 3 dargestellt, etwa in der Mitte der Ballenreihe angeordnet ist. Es können aber auch mehrere Abstandsmeßsensoren vorgesehen sein, die unterschiedliche Streifenbereiche der Oberfläche erfassen sollen. Aus den Signalen von mehreren Sensoren können ggf. Mittelwerte für die Ballenhöhe und -härte erzeugt werden. Das im Empfängerteil des Abstandsmeßsensors erzeugte Abstandssignal wird über eine Leitung 33 dem Mikroprozessor 22 zugeführt.
  • Eine weitere Leitung 34 verbindet den Elektromotor 17 mit dem Mikroprozessor 22.
  • Das Maschinengestell 3 ist mittels daran befestigter und antreibbarer Räder 35 auf Schienen 36, welche auf dem Spinnereiboden 37 befestigt sind, der Faserballenreihe 7 entlang (nicht gezeigt) und über den Flockentransport 4 hinweg fahrbar angeordnet. Da es sich bei den Rädern 35 um nicht schlupffrei arbeitende Elemente handelt, ist in diesem Beispiel eine besondere Einrichtung vorgesehen, um die genaue Längsposition des Turmes 3 entlang der Ballenreihe 7 zu ermitteln. Es handelt sich hier um die Lichtschranke 38, welche aus Sender- und Empfängerteilen besteht, die auf entgegengesetzten Seiten an einer Lochschiene 39 angeordnet sind. Die Lochschiene 39 weist mehrere Löcher mit gleichem Abstand voneinander auf, wobei die Lichtschranke beim Passieren jedes Lochs einen Signalpuls abgibt, welcher über die Leitung 41 dem Mikroprozessor 22 zugeführt wird. Aus diesen Signalen, sowie aus Signalen, welche die Fahrrichtung des Turmes entlang der Ballenreihe ansprechen, welche beispielsweise am Antriebsmotor für die Längsbewegung abgenommen werden können, ist der Mikroprozessor 22 in der Lage, die genaue Position des Turmes entlang der Ballenreihe zu ermitteln.
  • Unterhalb des Auslegers 5 befindet sich weiterhin ein Rost 40 mit einzelnen sich zwischen den einzelnen gezahnten Scheiben 81 des Abtragwalze 6 befindlichen Roststäben 42. Solche Roststäbe sind bestens bekannt und beispielsweise in den deutschen Patentanmeldungen P 38 20 427.4 und P 38 27 517.1 der Anmelderin beschrieben.
  • Wie aus Fig. 2 ersichtlich, umfaßt die Ballenreihe im vorliegenden Beispiel fünf Ballen 43 bis 47, welche unterschiedliche Höhen aufweisen, wobei rein beispielsweise der höchste Ballen 47 auf der rechten Seite der Fig. 2 und der niedrigste Ballen 43 auf der linken Seite der Fig. 2 angeordnet ist. Die Ballen 44 und 45 sind gleich hoch und etwas höher als der Ballen 43 und der Ballen 46 weist eine Höhe auf, welche zwischen denen der Ballen 45 und 47 liegt. Im übrigen ist zwecks dieser Darstellung eine Lücke 48 zwischen den Ballen 45 und 46 gezeigt, so daß senkrechte Ballengrenzen 49 bis 52 am Anfang der Ballenreihe, an beiden Seiten der Lücke 48 bzw. am Ende der Ballenreihe 7 vorgesehen sind.
  • Fig. 3 zeigt, daß eine ähnliche Ballenreihe auf der anderen Seite der Ballenabtragmaschine angeordnet sein kann, sofern es sich bei dem Turm 3 um einen drehbaren Turm handelt, der auch auf der zweiten Seite der Ballenreihe arbeiten kann.
  • Mit dem Bezugszeichen 30.1 wird hier außerdem klargemacht, daß ein Höhensensor auch auf der dem Ausleger 5 entgegengesetzten Seite des Turms angeordnet sein kann, so daß während der Abtragung von Faserflocken von der in Fig. 3 unteren Reihe mit dem Sensor 30.1 das Höhenprofil und auch das Härteprofil der Ballen der oberen Reihe zeitsparend ermittelt werden kann.
  • Fig. 4A zeigt das Abstandsmeßsignal des Meßsensors 30 (bzw. 30.1) bei einem Meßdurchgang oberhalb der Reihe der aufgestellten Ballen. Der Meßsensor 30 ermittelt den Abstand zur gegenüberliegenden Fläche durch Messungen der Laufzeiten von Ultraschallwellen von ihm zu der gegenüberliegenden Fläche (Boden 37 oder Ballenoberfläche 32 und zurück. Bei diesem Meßvorgang befindet sich der Ausleger mit Sensor 30 in diesem Beispiel in einer konstanten Höhe H oberhalb des Bodens 37, und das Ausgangssignal des Abstandsmeßsensors ist von dieser Höhe H subtrahiert, so daß das schwankende Signal der Fig. 4A schließlich die Höhe der Ballenoberfläche oberhalb des Bodens darstellt. Es ist aber nicht unbedingt notwendig, daß der Meßvorgang bei konstanter Höhe des Auslegers oberhalb des Bodens durchgeführt wird, da die Höhe des Auslegers für sich aufgrund des Signalgebers 20 bekannt ist, so daß auch bei sich ändernder Höhe des Auslegers die Höhen der Ballen oberhalb des Bodens 37 stets vom Computer 22 aus den Abstandsmeßsignalen ermittelt werden können. Mit anderen Worten kann der Sensor 30 ohne weiteres während der Ballenabtragung das Höhenprofil der abzutragenden Ballen ermitteln. Mit 30.2 wird ein weiterer Sensor entsprechend dem Sensor 30 gekennzeichnet, der das Höhenprofil nach der Abtragung messen kann.
  • Fig. 4A ist im gleichen Maßstab gezeichnet wie die Fig. 2, damit die Zuordnung zwischen den einzelnen Ballen und der Amplitude des Ausgangssignals des Abstandsmeßsensors 30 (bzw. 30.1, 30.2) klar ersichtlich ist.
  • Zunächst befindet sich auf der linken Seite der Fig. 4A der Abstandsmeßsensor bei der Höhe H oberhalb des Bodens, und das eigentliche Ausgangssignal des Meßsensors gibt die Höhe H an. Das Ausgangssignal wird jedoch von der Höhe H subtrahiert, daher fängt das so korrigierte Ausganssignal des Sensors 30 im Bereich 53 bei 0 an (H - H = 0). Da der Boden 37 als schallhart zu bezeichnen ist und daher einen höheren Anteil des auf ihm auftreffenden Strahles zurückreflektiert, erfolgt eine sichere Abstandsmessung, und das Meßsignal und daher auch das korrigierte Meßsignal weist im Bereich 53 keine oder nur sehr kleine Schwankungen auf. Bei 49.1 erreicht nun der Strahl des Sensors 32 die senkrechte Ballengrenze 49, wodurch der Abstand zwischen dem Sensor 32 und der reflektierenden Oberfläche, hier die Oberfläche des Ballens 43 plötzlich verkürzt ist und die Amplitude des Signals insgesamt ansteigt. Da die Oberfläche 43.1 des Ballens 43 schallweich und zudem eine rauhe Oberfläche ist, weist das Signal des Abstandssensors große Schwankungen mit relativ hoher Frequenz auf. Die Amplitudenschwankungen sind nicht alleine durch Schwankungen der Rauhigkeit der Oberfläche des Ballens 43 verursacht, sondern eher dadurch, daß der Meßsensor versucht, immer ein eindeutiges Meßergebnis zu liefern und aufgrund der unpräzisen Reflexion des Schallstrahles an der schallweichen Oberfläche des Ballens 43 immer schwankende Meßergebnisse liefert. Diese Schwankungen finden mit einer Frequenz statt, die weitaus höher ist als in Fig. 4A rein darstellungshalber angedeutet.
  • Bei 54 hat der Meßstrahl des Sensors 30 die Grenze zwischen dem Ballen 43 und dem Ballen 44 erreicht und es erfolgt ein Amplitudensprung nach oben, während das Signal selbst ähnliche Amplitudenschwankungen aufweist, wie bei dem Ballen 43. Man merkt, daß bei dem Übergang zum gleich hohen Ballen 45 der Mittelwert des Signals in etwa gleich bleibt wie bei dem Ballen 44, jedoch sind die Amplituden der Schwankungen etwas kleiner sind. Diese kleineren Schwankungen, beispielsweise bei 45.1 deuten an, daß der obere Oberflächenbereich des Ballens 45 härter ist als die entsprechenden Bereiche der Ballen 43 und 44. Nach dem Vorbeilaufen am Ballens 45 trifft der Strahl des Sensor 30 auf die senkrechte Ballengrenze 50.1, d.h. der Sensor mißt noch einmal den Abstand zwischen ihm und dem Boden 37, weshalb die Amplitude des Empfangssignals bei 57 auf Null zurückfällt, d.h. auf ein Niveau, das dem Niveau 53 entspricht. Nach dem Vorbeilaufen der Lucke 48, d.h. bei der senkrechten Ballengrenze 51.1, steigt die Amplitude des Höhensignals noch einmal und zwar zu einem Mittelwert, der noch höher liegt als bei dem entsprechenden Mittelwert des Signals im Bereich des Ballens 45. Auch hier weist das Signal beträchtliche Amplitudenschwankungen 46.1 auf, welche darauf hinweisen, daß auch hier der Ballen 46 relativ weich ist. Bei 58 ist die Grenze zwischen dem Ballen 46 und dem Ballen 47 erreicht und die Amplitude des Abstandssensors steigt nochmals an, was auch richtig ist, weil der Ballen 47 der höchste der Ballenreihe 7 ist. Am Ende der Ballenreihe senkt sich die Amplitude des Höhensignals wiederum bei der senkrechten Ballengrenze 52 ab, was mit 52.1 in Fig. 4a gekennzeichnet ist.
  • Aus dem Abstandssignal der Fig. 4a ermittelt der Computer 22 einen Mittelwert und das Ergebnis dieser Mittelwertbildung ist in Fig. 4b dargestellt. Mittelwertbildung mittels eines Rechners ist für sich sehr gut bekannt, weshalb dies hier nicht gesondert beschrieben wird. Man sieht, daß das Mittelwertsignal eine sehr gute Wiedergabe des Höhenprofils der Ballenreihe 7 der Fig. 2 darstellt, was auch beabsichtigt ist.
  • Das Abstandssignal wird auch vom Computer 22 weiterverarbeitet, um das Härteprofil gemäß Fig. 4C zu gewinnen. Diese Auswertung erfolgt so, daß die algebraische Summe der Amplitudenschwankungen vom Mittelwert in mehreren aneinander angrenzenden Bereichen ermittelt wird und dann die reziproken Werte gebildet werden. Diese reziproken Werte stellen dann die Härte der einzelnen Bereiche dar. Man sieht, daß in den Bereichen 53, 57 und 59, wo das Abstandsmeßsignal kaum Schwankungen aufweist, da der Boden 37 gut reflektiert, dieser als harter Gegenstand ermittelt wird, weshalb das Härtesignal an diesen Stellen eine hohe Amplitude 53.3, 57.3 und 59.3 aufweist. Die Ballen 43 und 44 sowie 46 haben ungefähr gleich große Härte und diese Härte ist, wie bereits erläutert, niedrig, weshalb in den entsprechenden Bereichen 43.3, 44.3, 46.3 des Härteprofils nach Fig. 4C die Härte relativ niedrig liegt. Dagegen haben die Ballen 45 und 47 eine größere Härte, die in beiden Fällen vergleichbar hoch liegt, weshalb in diesen Bereichen 45.3 und 47.3 das Härtesignal eine höhere Amplitude aufweist.
  • Da die Härte der Ballen im Oberflächenbereich der Dichte in diesen Bereichen direkt proportional ist und die Maschine bei einer erwünschten Produktionsleistung auf eine Zustelltiefe, d.h. Abtragtiefe, entsprechend den Reziproken der Härte einzustellen ist, wird vom Rechner 22 unter Berücksichtigung der vorgesehenen Konstanten das Zustelltiefenprofil gemäß Fig. 4D ermittelt. Man sieht, daß für die Ballenbereiche 43.4, 44.4 die Zustellung gleich groß ist (weil die Härte gleich groß ist) und einen relativ hohen Betrag von 10 mm aufweist. Auch bei dem Ballen 46 ist die Zustelltiefe bei 46.4 gleich hoch. Dagegen ist die Zustelltiefe in den Bereichen 45.4 und 47.4 auf etwa 5 mm reduziert, da die Oberflächen dieser Ballen härter sind. Das Zustelltiefenprofil der Fig. 4D umfaßt auch Bereiche 53.4, 57.4 und 59.4, wo die Zustellung Null ist, da der Boden sehr hart ist und zudem kein Material vom Boden abgetragen werden soll.
  • Aus dem Mittelwert des Höhenprofils gemäß Fig. 4B und dem Zustelltiefenprofil gemäß Fig. 4D bzw. kann man aus den entsprechenden Werten einen Steuerbefehl für den Antrieb des Motors 17 erhalten, um die erwünschte Höhe des Abtragorgans beim Abtragen jedes Ballens der Ballenreihe einzustellen. D.h. die Zustelltiefe wird Punkt für Punkt von der Höhe subtrahiert. In Bereichen, wo die Zustelltiefe Null ist, wird die gleiche Höhe des Abtragorganes beibehalten.
  • Es kann durchaus sinnvoll sein, die Durchgrifftiefe des Abtragorganes 6, d.h. den Abstand zwischen den radial untersten Punkten der Zahnscheiben 81 und den Roststäben 42 auch entsprechend der Härte der Ballen einzustellen, wobei bei härteren Ballen die Durchgrifftiefe kleiner sein sollte und bei weicheren Ballen die Durchgrifftiefe durchaus höher sein darf. Das entsprechende Durchgrifftiefenprofil für die Ballenreihe der Fig. 2 ist in Fig. 4E gezeigt, wobei auch hier die einzelnen Segmente des Profils mit den einzelnen Ballen mittels der Numerierung der Ballenreihe und dem Zusatz .5 in Einklang gebracht worden sind.
  • Zur besseren Erläuterung der Arbeitsweise des Computers 22 im Zusammenhang mit der Ermittlung des Höhenprofils, des Härteprofils, des Zustelltiefenprofils und des Durchgrifftiefenprofils wird nun auf Fig. 5 verwiesen. Die Signale für die senkrechte Position des Abtragorganes bzw. des Auslegers 5 werden, wie bereits beschrieben, vom Computer aufgrund der Signale auf den Leitungen 27, 28 und 21 ermittelt, und der Computer schickt Steuerbefehle für die Höhe des Abtragorganes an den Motor 17 über die Leitung 34. Die Signale des Längssensors 38 werden über die Leitung 41 in den Computer eingelesen. Gegebenenfalls können mehr Werte extrapolliert werden, um eine feinere Auflösung zu erreichen. Jeweils bei einem entweder eingelesenen Signal des Längssensors oder bei einem vorausextrapollierten Wert wird die Sensorik vom Computer aktiviert, um den vom Sensor unmittelbar zurückgegebenen Meßwert abzuspeichern. Der Abstandsmeßsensor 30 führt in regelmäßig wiederholten zeitlichen Abständen Abstandsmessungen durch und speichert diese Abmessungen vorübergehend in einem Zwischenspeicher 60. Der Computer 22 liest über die Leitung 33 die gespeicherten Werte zu Zeitpunkten ab, die durch die Signale des Längssensors 38 bestimmt werden. Aus den im Computer so eingelesenen Werten ermittelt dieser dann das Höhenprofil 4B durch Mittelwertbildung, das Härteprofil 4C durch die algebraische Addition der Amplitudenschwankungen, das Zustelltiefenprofil aus den reziproken Werten des Härteprofils und das Durchgrifftiefenprofil entsprechend dem Härteprofil und aufgrund von im Computer festgehaltenen Konstanten. Die Profile selbst werden dann in Speichern des Rechners 22 festgehalten und können auf Wunsch permanent abgerufen werden.
  • Fig. 6 zeigt schließlich, wie das Höhenprofil der Ballenreihe 7 aus Fig. 2 durch sukzessive Arbeiten abgetragen wird. Bei der Fig. 6 geht man davon aus, daß man gleichzeitig mit der Abmessung des Höhenprofils abträgt und zunächst versucht, eine konstante Abtragungshöhe einzuhalten, damit der Computer auf alle Fälle Daten richtig erfassen kann. Dieser erste Durchgang ist mit 62 bezeichnet. Die konstante Abtragtiefe wird hier so niedrig gewählt, daß es zu keiner Überlastung der Abtragmaschine kommen kann.
  • Danach ermittelt der Computer die erwünschte Zustelltiefe für jeden Ballen beim nächsten Durchgang und überprüft, ob bei Einhaltung dieser Zustelltiefen das Höhenprofil in unerwünschter Weise geändert wird, so daß größere senkrechte Sprünge entstehen. Wenn dies nicht der Fall ist, so wird die Ballenreihe entsprechend der ausgerechneten Zustelltiefen nach Linien 63 ... 67 abgetragen. Wenn aber anscheinend größere Sprünge entstehen, so wird von den höheren Stellen das Maximum abgetragen und von den anderen Bereichen etwas weniger, damit das Höhenprofil allmählich glatter wird. Das Ziel ist, am unteren Ende der Ballen bei dem Enddurchgang eine waagerechte Linie 68 zu erreichen, damit alle Ballen bzw. Ballenreste gleich hoch sind, was eine gute Voraussetzung für die Abtragung der nächsten aufzustellenden Ballenreihe sicherstellt.
  • Es ist auch eine vereinfachte Ausführungsform der Maschine denkbar. Bei dieser ist es aus Gründen der Antriebstechnik nicht möglich, die Höhenverstellmotorik und den seitlichen Vorschub gleichzeitig in Betrieb zu halten (siehe Fig. 7). So wird im ersten Durchgang (Bezugszeichen 70) das Abtragorgan schrittweise der Ballenoberfläche nachgeführt. Im zweiten Durchgang (Bezugszeichen 71) und eventuell im dritten Durchgang (Bezugszeichen 72) wird nun das Abtragorgan auf eine konstante Höhe eingestellt, dessen Wert vom Computer so berechnet wird, daß einerseits eine maximale Abtragtiefe nicht überschritten wird, andererseits aber doch die Produktion schon möglichst hoch gehalten wird. Als Nachteil ist jedoch in diesem Bereich eine kleine Produktionseinbuße in Kauf zu nehmen. Jedoch ist spätestens vom sechsten Durchgang (Bezugszeichen 75) an die Ballengruppe ausnivelliert. Es ist also nicht mehr nötig, den Vorschubmotor auszuschalten, um die Höhe des Abtragorganes zu verändern.
  • Ob man dieses Verfahren anwenden kann, hängt zum Teil damit zusammen, ob die Mischverhältnisse der Fasern mit der Ballenabtragungsmaschine selbst bestimmt werden oder ob die einzelnen Komponenten je separat abgetragen und zu einzelnen Mischschächten geführt werden, wobei die Mischungsverhältnisse der Flocken schließlich in der Mischstation und nicht durch die Flockenabtragung bestimmt werden. Sollten unsachgerechte Ballenhöhen vorliegen, die keineswegs eine konvergierende Abtragung ermöglichen, so kann dies vom Computer angezeigt werden, wodurch die Bedienungsperson aufgefordert wird, die Ballen teilweise manuell abzutragen bzw/ umzulegen, um günstigere Verhältnisse zu schaffen.
  • Wie vorher erwähnt, wird ein Meßsystem bevorzugt, das für eine schlupffreie Messung der Längsposition des Turmes entlang der Ballenreihe sorgt und zwar unabhängig davon, ob im Betrieb bei dem Fahrantrieb des Turmes Schlupf eintritt. Erwähnt ist bis jetzt als konkrete Ausführung lediglich eine Lichtschranke 38, welche mit einer Lochschiene 39 zusammenarbeitet. Eine weitere Möglichkeit zeigt die Fig. 8. Hier ist die Schiene 39 durch eine Schiene 39.1 mit I-förmigem Querschnitt ersetzt worden. An einem senkrecht nach unten weisenden Schenkel 80 des Maschinengestells 3, nämlich an dem Schenkel, welcher die Laufräder 35 trägt, sind der Schiene 39.1 gegenüber zwei Flansche 82 und 84 fest angebracht, beispielsweise durch Schweißen, wobei in diesen Flanschen eine sich ebenfalls senkrecht erstreckende Welle 86 drehbar gelagert ist. Drehfest auf der Welle befindet sich ein Gummirad 88, welches leicht gegen die Längsseite 89 des einen Schenkels der I-förmigen Schiene 39.1 gedrückt wird. Bei einer Fahrbewegung des Turmes senkrecht zur Ebene der Fig. 8 rollt das Gummirad 88 daher an der Längskante 89 ab und führt somit zu einer schlupffreien Drehbewegung der Welle 86. Am oberen Ende der Welle 86 befindet sich eine Lochscheibe 90, d.h. eine Scheibe mit einer Reihe von Löchern in ihrem Umfangsbereich, so daß eine Drehung des Gummirades zu einer Umdrehung der ebenfalls mit der Welle 86 drehfest verbundenen Lochscheibe 90 fährt. Eine Lichtschranke 38.1 mit Sender- und Empfängerteilen umgreift den Umfangsbereich der Lochscheibe 90 und erzeugt somit beim Umlaufen der Lochscheibe auf der Welle 86 eine Impulsfolge entsprechend der Reihenfolgen von Löchern und Stegen in der Lochscheibe. Diese Impulsfolge wird über die Leitung 41.1 dem Mikroprozessor 22 zugeführt und dort verarbeitet, entsprechend dem Signal 41 der Fig. 1 bis 5.
  • Wenn bei der Ausführungsform gemäß Fig. 8 doch mit einem gewissen Schlupf gerechnet werden muß, beispielsweise aufgrund von Herstellungstoleranzen oder unzureichender Führung des Turmes entlang der Ballenreihe (eine ausreichende Führung des Turmes entlang der Ballenreihe und der Querrichtung ist normalerweise durch die Zusammenarbeit zwischen den Rädern 35 und den Schienen 36 sichergestellt), so kann man, wie in Fig. 9 dargestellt, eine etwas abgewandelte Ausführung wählen, bei der das Gummirad 88 durch ein Zahnrad 88.2 ersetzt wird. Das Zahnrad kämmt dann mit einer Zahnreihe 94 an der Schiene 39.2. Mit anderen Worten ist die Schiene 39.2 als Zahnstange ausgebildet. Entsprechend der Ausführung gemäß Fig. 8 ist hier das Zahnrad 88.2 drehfest an der Welle 86.2 angebracht, welche die ebenfalls hiermit drehfest verbundene Lochscheibe 90.2 antreibt. Wiederum in Übereinstimmung mit Fig. 8 erzeugt eine Lichtschranke 38.2 eine Impulsfolge, die über die Leitung 41.2 an den Mikroprozessor 22 angelegt wird.
  • Eine weitere Möglichkeit der schlupffreien Längsmessung ist in Fig. 10 dargestellt. Die Fig. 10 zeigt eine Seitenansicht einer Ballenabtragmaschine, bei der der Turm 3 zwischen zwei Endstellungen 96 und 98 läuft. Der Fahrantrieb des Turmes erfolgt wie bei den früheren Beispielen über die Räder 35. Oberhalb des Bodens 37 befindet sich eine umlaufende Kette 100, die an einer Stelle am Turm 3 befestigt ist und an ihren beiden Enden über jeweilige Umlenkräder 102, 104 läuft. Das Umlenkzahnrad 102 ist dabei auf einer Welle 106 drehfest angebracht, welche drehbar in einer C-förmigen Aufnahme 108 gelagert ist. In entsprechender Weise ist das Umlenkzahnrad 104 auf einer Welle 110 drehfest angebracht, welches drehbar in einer Aufnahme 112 gelagert ist. Um zu zeigen, daß die Kette sehr lang ist, wird sie in der Zeichnung gemäß Fig. 10 an einer Stelle 100.1 unterbrochen. Auf der Welle 106 befindet sich in Übereinstimmung mit den Fig. 8 und 9 eine Lochscheibe 90.3, welche drehfest mit der Welle 106 befestigt ist. Innerhalb der C-förmigen Aufnahme 108 befindet sich eine Lichtschranke 38.3, welche bei Umdrehung der Lochscheibe eine Impulsfolge über die Leitung 41.3 dem Mikroprozessor 22 zuführt. Man sieht, daß bei Bewegung des Turmes 3 entlang der Ballenreihe die entsprechende Bewegung der Kette zu einer Drehbewegung der Welle 106 führt, wobei diese Drehbewegung schlupffrei durch die Lichtschranke 38.3 ermittelt wird.
  • Fig. 11 zeigt eine weitere Ausführungsform, bei der eine Lochschiene 39.4 über Konsolen 114 am Faserabsaugkanal 4 befestigt ist. In der Lochschiene 39.4 sind mit konstantem Abstand L kreisförmige Löcher 116 angeordnet. Da dieser Faserabsaugkanal sehr lang ist, wird nur dessen Anfang in Fig. 11 gezeigt. Diese Figur zeigt auch andeutungsweise eine verschiebbare Abdeckung 4.1 des Faserabsaugkanals, welche in an sich bekannter Weise dafür sorgt, daß der Faserabsaugkanal, außer an der Stelle, an der der Turm die abgetragenen Faserflocken in den Kanal einspeist, geschlossen ist. Zur Abtastung der Reihe von Löchern 116 ist in der Ausführung gemäß Fig. 11 ein induktiver Näherungsschalter 38.4 vorgesehen, der am Maschinengestell 3 der Ballenabtragmaschine befestigt ist und so mit dem Turm der Ballenabtragmaschine entlang der Lochschiene 39.4, d.h. entlang der Ballenreihe bewegt wird. Jedesmal, wenn der induktive Näherungsschalter an einem der Löcher 116 vorbeifährt, erzeugt er einen Impuls, und diese Impulsfolge wird entsprechend den anderen Ausführungsformen über die Leitung 41.4 an den Mikroprozessor 22 angelegt.
  • Die Fig. 11 zeigt auch eine alternative Ausführung, bei der eine Stange 118 mit voneinander einen regelmäßigen, d.h. konstanten Abstand aufweisenden Vertiefungen 120 ebenfalls an den Konsolen 114 befestigt ist. Oberhalb der im Querschnitt quadratischen Stange befindet sich ein mechanischer Taster 122, der am Maschinengestell 3 des Turmes der Ballenabtragmaschine befestigt ist und so mit diesem entlang der Stange 118 und entlang der Ballenreihe fährt. Der mechanische Taster 122 hat einen Stößel mit einem hemisphärischen Ende (nicht gezeigt), welcher beim Passieren der Vertiefungen 120 jedesmal durch Federvorspannung in die jeweilige Vertiefung hineingedrückt und aufgrund der Relativbewegung und hemisphärischen Oberfläche dann wieder herausgedrückt wird. Jedesmal, wenn der Stößel sich in eine Vertiefung hineinbewegt, wird ein mechanischer Schaltvorgang ausgelöst, der elektrische Schaltkontakte bewegt und über die Leitung 41.5 eine entsprechende Impulsfolge an den Mikroprozessor 22 anlegt.
  • Schließlich zeigt die Fig. 12 eine noch einfachere Anordnung, bei der am Faserabsaugkanal 4 rechteckige Blechteile 124 in regelmäßigen Abständen bei 126 angeschweißt werden, so daß die Blechteile Zähne 128 und dazwischen befindliche Lücken 130 bilden. Obwohl in dieser Zeichnung die Zähne und Lücken die gleiche Breite aufweisen, ist dies nicht zwingend vorgeschrieben. Am Maschinengestell 3 des Turmes (in Fig. 12 nicht gezeigt) ist eine als Lichtschranke ausgebildete Abtasteinrichtung 39.6 über eine C-förmige Halterung 132 befestigt, wobei die Lichtschranke auch hier aus Sende- und Empfangsteilen besteht und der sich zwischen diesen beiden Teilen erstreckende Lichtstrahl aufgrund der relativen Bewegung durch die senkrechten Kanten der Zähne 128 periodisch unterbrochen und wieder freigegeben wird. Dies erzeugt eine Impulsfolge, welche über die Leitung 41.6 an den Mikroprozessor 22 wie bisher angelegt wird.
  • Alle Ausführungen haben gemeinsam, daß der Computer auch weiß, in welche Richtung sich der Turm bewegt, beispielsweise aufgrund der an den Antriebsmotor angelegten Antriebssignale. Somit ist der Mikroprozessor in der Lage, die Längsposition der Ballenabtragmaschine entlang des Turmes je nach Laufrichtung desselben durch Aufaddieren bzw. Subtrahieren der ankommenden Impulse zu ermitteln. Es kann auch vorteilhaft sein, ein besonderes Kennzeichen am Anfang und am Ende der Ballenreihe anzubringen, damit diese Stellen einwandfrei markiert sind. Solche Markierungen können auch durch besondere Ausbildung der Lochreihen bzw. der Zahnreihen selbst gebildet werden. Beispielsweise können an beiden Enden der Lochschiene zwei benachbarte Löcher zu einem Längsloch ausgebildet werden, wodurch das Ausgangssignal der entsprechenden Abtasteinrichtung auf einem konstanten Niveau liegt und nicht mehr ein- und ausschaltet, wie während einer Bewegung entlang der Ballenreihe.
  • Wie früher erwähnt, kann die durch die Zahn- oder Lochreihe gebildete Struktur eine sehr grobe Rastung aufweisen, wobei die Längsmessung in Bereichen zwischen den einzelnen Markierungen durch Interpolation erfolgt. Dieses Verfahren ist schematische in Fig. 5 eingezeichnet. Der Kasten 140 stellt eine Interpoliereinrichtung dar, welche aus den über die Leitung 41, 41.1, 41.2, 41.3, 41.4, 41.5 oder 41.6 eingelesenen Signalen und aus den im Computer 22 vorhandenen Informationen über die Geschwindigkeit bzw. Beschleunigung oder Verzögerung der Bewegung des Turmes entlang der Ballenreihe die Zeitabstände zwischen nachfolgenden Impulsen so unterteilt, daß die entstehenden Zeitsignale auch als Maß für die Längsposition des Turmes entlang der Ballenreihe dienen. Ist die Geschwindigkeit der Bewegung konstant, so ist die Unterteilung der Zeitabstande in konstanten Einheiten vorzunehmen.
  • Wenn beispielsweise die Geschwindigkeit der Bewegung 1 m/sec beträgt und die Löcher der Schiene voneinander einen Abstand von 20 cm aufweisen, so entstehen über die Leitung 41 Signale mit einem Zeitabstand zwischen den einzelnen Impulsen von 0.2 sec. Bei konstanter Geschwindigkeit entspricht eine Zeiteinheit von 0.01 sec daher 0.01 m = 1cm. Somit können beispielsweise Sensormessungen nach jedem cm Vorschub durchgeführt werden, wenn die Interpoliereinrichtung nach jedem Impuls von der Leitung 41-41.6 dem Meßsensor 30 in zeitlichen Abständen von 0.01 sec Leseimpulse über die Zähleinrichtung 144 und die Leitung 33 schickt.
  • Weiterhin kann der Computer 22 eine Überwachungseinrichtung 142 aufweisen, welche prüft, daß beim Eintreffen des nächsten Impulses über die Leitung 41-41.6 die von der Interpoliereinrichtung errechnete Längsposition mit der durch diese Impulse einwandfrei markierten Position übereinstimmt. Sollte dies nicht zutreffen, so sind die zwischen den zwei letzten Impulsen von der Leitung 41-41.6 errechneten Längspositionen als fehlerhaft zu betrachten und daher zu ignorieren. Mit dem Kasten 144 ist die Zähleinrichtung gezeigt, welche die Impulse über die Leitung 41-41.6 und/oder von der Interpoliereinrichtung 142 aufzählt und hierdurch ein dem Fahrweg proportionales Signal erzeugt. Hier sind die Interpoliereinrichtung 140, die Überwachungseinrichtung 142 und die Zähleinrichtung 144 in den Computer 22 integriert, d.h. in Software realisiert. Sie können aber auch getrennte Einheiten darstellen, d.h. als Hardware realisiert werden.

Claims (23)

  1. Verfahren zum Betrieb einer Ballenabtragmaschine (1) mit einem Abtragorgan (2), bei dem mittels wenigstens eines auf die Ballenoberfläche (32) gerichteten Sensors (30, 30.1, 30.2) das Höhenprofil einer Ballenreihe (7) ermittelt und zur Steuerung der Lage des Abtragorganes (2) bei der nachfolgenden Ballenabtragung herangezogen wird, dadurch gekennzeichnet, daß das Empfangssignal (Fig. 4a) des vorzugsweise optischen, akustischen oder mit Radarwellen arbeitenden Sensors (30, 30.1, 30.2) zur Gewinnung eines der Ballenhärte entsprechenden Signals (Fig. 4C) verarbeitet wird, und daß die Zustellung (Fig. 4D) und ggf. auch die Durchgrifftiefe (Fig. 4E) des Abtagorganes (2) entsprechend diesem Härtesignal gesteuert oder geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Härtesignal aus den Schwankungen der Sensorsignale (Fig. 4A) ermittelt wird, beispielsweise dadurch, daß das Härtesignal durch das Summieren der mit positivem Vorzeichen versehenen Abweichungen des Sensorsignals vom Mittelwert dieses Signals ermittelt wird, wobei ggf. das Sensorsignal abgetastet wird, vorzugsweise mit einer Frequenz, die größer ist als die doppelte Grundfrequenz des Signals.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Sensor (30, 30.1, 30.2) verwendet wird, der z.B. periodisch gestartet wird und unmittelbar den momentanen Meßwert in digitalisierter Form dem Computer (22) übergibt, der dieses in einem Array abspeichert.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Härte getrennt für jeden Ballen (43-47) bzw. für jede Komponente der Ballenreihe (7) ermittelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Höhenprofil (Fig. 4b) der Ballenreihe (7) während einer Leerfahrt des Abtragorganes oberhalb der Ballenreihe ermittelt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, bei dem Ballenreihen (7) auf beiden Seiten einer Ballenabtragmaschine (1) angeordnet sind, dadurch gekennzeichnet, daß das Höhenprofil (Fig. 4B) der einen Ballenreihe (7) während des Abtragens der anderen Ballenreihe (7) ermittelt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das während eines ersten Durchganges des Abtragorganes (2) entlang einer Ballenreihe abgetastete Höhenprofil (Fig. 4A) in einen Computer (22) eingelesen wird, welcher aufgrund dieses Höhenprofils (Fig. 4B) und des errechneten Härteprofils (Fig. 4C) ein sich über die Länge der Ballenreihe (7) änderndes Zustellprofil (Fig. 4D) errechnet, bei dem die Produktion unter Berücksichtigung des erwünschten Mischungsverhältnisses der Provenienzen der einzelnen Ballen (43-47) annähernd an einem Maximum gehalten wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Computer (22) programmiert wird, um bei mehreren Durchgängen bestrebt zu sein, alle Ballen (43-47) entsprechend den jeweils gemessenen Härten und dem erwünschten Mischungsverhältnis so abzutragen, daß am Ende des Abtragens die ganze Reihe (7) ohne nennenswerte Ballenreste abgetragen ist, wobei vorzugsweise bei jedem Durchgang der Computer (22) stets eine Zustelltiefe bzw. ein Zustelltiefenprofil anstrebt, das immer mehr einer waagrechten Linie angenähert wird.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß das Abtragen der Ballenreihe (7) bereits bei dem ersten Durchgang bei gleichzeitigem Erfassen des Höhenprofils (Fig. 4B) erfolgt, wobei das Abtragorgan (2) im ersten Durchgang konstant oder schrittweise der Ballenhöhe nachgesteuert wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Computer (22) für nachfolgende Durchgänge die optimalen Durchgangshöhenkurven (62-67; 70-75) ermittelt, um einerseits immer eine annähernd maximale Produktion zu erreichen und andererseits im letzten Durchgang auf einer minimalen Höhe (68) angelangt zu sein.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß ein Sollwert für den Flockenstrom der Abtragmaschine vorgebbar ist, daß der Istwert des Flockenstromes aufgrund der Zustelltiefe (Fig. 4D) und des jeweiligen Härtesignals (Fig. 4C) ermittelt wird und die Zustelltiefe zur Einhaltung des vorgegebenen bzw. eines maximalen Flockenstromes geregelt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anfang (49) bzw. das Ende (52) der Ballenreihe (7) und ggf. das Vorhandensein und die Länge von Lücken (48) zwischen den Ballen (43-47) der Reihe (7) durch das Sensorsignal (Fig. 4A) ermittelt wird.
  13. Verfahren nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß ein dem Fahrweg des Abtragorganes (2) entlang der Ballenreihe proportionales Signal (41) erzeugt und vom Computer (22) bei der Berechnung des Höhenprofils (Fig. 4B) bzw. des Zustelltiefenprofils (Fig. 4D) bzw.des Härteprofils (Fig. 4C) berücksichtigt wird.
  14. Verfahren zum Betrieb einer Ballenabtragmaschine mit einem Abtragorgan (2), bei dem mittels wenigstens eines auf die Ballenoberfläche gerichteten Sensors (30, 30.1, 30.2) das Höhenprofil einer Ballenreihe ermittelt und zur Steuerung der Lage des Abtragorganes (2) bei der nachfolgenden Ballenabtragung herangezogen wird, dadurch gekennzeichnet, daß für die Ermittlung des Höhenprofils ein Abstandsmeßsensor (30, 30.1, 30.2) verwendet wird, insbesondere ein optischer, akustischer oder mit Radarwellen arbeitender Sensor, der den Abstand zwischen ihm und der Ballenoberfläche (32) bzw. dem Boden (37) direkt mißt.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß bei der Abtragung einer Ballenreihe (7) das Abtragsorgan (2) im ersten Durchgang der Ballenoberfläche (32) schrittweise nachgeführt wird, daß im zweiten Durchgang und evtl. auch im dritten Durchgang das Abtragorgan (2) auf eine konstante Höhe eingestellt wird, deren Wert vom Computer (22) so berechnet wird, daß einerseits eine maximale Abtragtiefe nicht überschritten wird, andererseits aber doch die Produktion schon möglichst hoch gehalten wird, und daß vorzugsweise spätestens beim vierten Durchgang an die Ballengruppe ausnivelliert wird.
  16. Vorrichtung zum Betrieb einer Ballenabtragmaschine (1) mit einem Abtragorgan (2) zum Abtragen wenigstens einer Ballenreihe (7), mit einem die Höhe des Abtragorganes steuernden oder regelnden Einrichtung (22) und mit mindestens einem das Höhenprofil (Fig. 4B) der Ballenreihe (7) ermittelnden und auf die Oberfläche der Ballenreihe gerichteten Sensor (30, 30.1, 30.2), dadurch gekennzeichnet, daß der bzw. jeder Sensor ein Abstandsmeßsensor (30, 30.1, 30.2), insbesondere ein optischer, akustischer oder mit Radarwellen arbeitender Sensor ist, der den Abstand zur Ballenoberfläche (32) bzw. am Anfang (49) und am Ende (52) der Ballenreihe (7) oder bei Lücken (48) innerhalb der Ballenreihe den Abstand zum Boden (37) oder zu einem Ballenträger mißt, wobei eine Einrichtung (22) vorgesehen ist, die an den Abstandsignalen (Fig. 4A) des Abstandsmeßsensors (30, 30.1, 30.2) die Härte der einzelnen Ballen (43-47) im Bereich der Ballenoberfläche (32) ermittelt.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß eine Einrichtung (22) vorgesehen ist, welche die Zustellung (Fig. 4D) des Abtragorganes (2) entsprechend der ermittelten Ballenhärte (Fig. 4C) steuert, und/oder daß eine Einrichtung (22) vorgesehen ist, welche die Durchgrifftiefe (Fig. 4E) des Abtragorganes (2) entsprechend der ermittelten Ballenhärte (Fig. 4c) steuert, wobei vorzugsweise der Abstandsmeßsensor (30, 30.1) an dem das Abtragorgan (2) tragenden Ausleger (5) in Abtragrichtung vor dem Abtragorgan (2) angebracht ist und ggf. mehrere parallel zueinander arbeitende Abstandsmeßsensoren an dem das Abtragorgan (2) tragenden Ausleger (5) in Abtragrichtung vor dem Abtragorgan angebracht sind, wobei wahlweise ein weiterer Abstandsmeßsensor (30.2) auf der Rückseite des das Abtragorgan (2) tragenden Auslegers (5) angebracht ist.
  18. Vorrichtung nach Anspruch 16, bei dem das Abtragorgan (2) von einem fahrbaren und drehbaren Turm (3) getragen ist, der zur Abtragung von auf beiden Seiten des Fahrweges angeordneten Ballenreihen (7) vorgesehen ist, dadurch gekennzeichnet, daß der Abstandsmeßsensor (30.1) auf der dem Abtragorgan entgegengesetzten Seite des Turmes (3) angeordnet ist.
  19. Vorrichtung nach einem der vorhergehenden Ansprüche 16-18, gekennzeichnet durch einen die Längsposition des Abtragorganes entlang der Ballenreihe ermittelnden Wegmeßsensor (38, 38.1, 38.2, 38.3, 38.4, 38.6), der am Computer (22) angeschlossen ist.
  20. Vorrichtung nach einem der Ansprüche 16 bis 19 mit einer Fahrwegmeßeinrichtung zur Anwendung mit der Ballenabtragmaschine, welche ein nicht schlupffreies Antriebssystem und einen fahrbaren Turm (3) aufweist, der mittels des Antriebssystems entlang der Ballenreihe (7) verfahrbar ist, gekennzeichnet durch ein längliches, sich entlang der Ballenreihe (7) erstreckendes Teil (39.1; 39.2; 100; 39.4; 4, 124), das entweder fest angeordnet oder mit dem Turm (3) verbunden ist und sich mit diesem bewegt, durch eine Abtasteinrichtung (38.1; 38.2; 38.3; 38.4; 38.6), welche je nach der Anordnung des länglichen Teils entweder am fahrbaren Turm oder an einer bestimmten Stelle entlang der Ballenreihe angeordnet ist und das längliche Teil (39.1; 39.2; 100; 39.4; 4, 124) während der Fahrbewegung des Turmes schlupffrei abtastet und jedesmal, wenn der Turm (3) einen bestimmten Schritt zurücklegt, einen Impuls abgibt und durch eine Zähleinrichtung (144), welche die Impulse zählt und ein dem Fahrweg proportionales Signal erzeugt.
  21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß das längliche Teil eine Schiene (39.1; 39.2) und die Abtasteinrichtung ein Rad (88, 88.2) ist, das am Turm (3) angeordnet schlupffrei entlang der Schiene abrollt, und daß ein Impulsgeber (90, 90.2) zur Abgabe von Impulsen mit dem Rad gekoppelt ist, wobei zweckmäßigerweise die Schiene als Zahnstange (39.2) und das Rad als ein mit dieser kämmendes Zahnrad (88.2) ausgebildet ist.
  22. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß das längliche Teil durch eine Kette (100) gebildet ist, die am Turm (3) befestigt ist und während einer durch die Bewegung des Turmes entlang der Ballenreihe (7) verursachten Umlaufbewegung um Umlenkeinrichtungen (102, 104) an beiden Enden der Ballenreihe (7) umlenkbar ist; daß die Abtasteinrichtung durch ein durch die Kette antreibbares Kettenrad (102) gebildet ist; und daß ein Impulsgeber (90.3) zur Abgabe von Impulsen mit dem an einer festen Stelle der Ballenreihe (7) angeordneten Kettenrad (102) gekoppelt ist, wobei das Kettenrad vorzugsweise eine der Umlenkeinrichtungen (102, 104) bildet.
  23. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß das längliche Teil durch eine sich regelmäßig wiederholende, engere und breitere Bereiche aufweisende Struktur gebildet ist, beispielsweise durch eine Lochschiene (39.4) oder eine fest gespannte Kette oder ein Zähne (128) und Lücken (130) aufweisendes längliches Gebilde (4, 124), und daß die Struktur durch eine Lichtschranke (132, 38.6) oder induktive Abtasteinrichtung abtastbar ist, deren Empfangskreis die Impulse abgibt, wobei sich die längliche Struktur (4, 124) vorzugsweise entlang des Flockentransportkanals (4) (Absaugkanals) erstreckt und an diesem befestigt ist, vorzugsweise, daß die Wiederholungslänge der Struktur relativ groß ist, beispielsweise mehr als etwa 10 cm, und daß bei einer bekannten, vorzugsweise konstanten Fahrgeschwindigkeit Längsmessungen im Bereich zwischen zwei nacheinanderfolgenden Impulsen durch eine Interpoliereinrichtung durchführbar sind, ggf. daß eine den Zeitabstand zwischen den Impulsen überwachende Einrichtung vorgesehen ist, wobei die Zähleinrichtung (144) und/oder die Interpoliereinrichutng (140) und/oder die Überwachungseinrichtung (142) zweckmäßigerweise durch einen Mikroprozessor (22) gebildet ist bzw. sind.
EP90115424A 1989-08-10 1990-08-10 Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine Expired - Lifetime EP0415156B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3926482 1989-08-10
DE19893926482 DE3926482A1 (de) 1989-08-10 1989-08-10 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
DE19893943322 DE3943322A1 (de) 1989-12-29 1989-12-29 Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
DE3943322 1989-12-29

Publications (2)

Publication Number Publication Date
EP0415156A1 EP0415156A1 (de) 1991-03-06
EP0415156B1 true EP0415156B1 (de) 1996-07-10

Family

ID=25883908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115424A Expired - Lifetime EP0415156B1 (de) 1989-08-10 1990-08-10 Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine

Country Status (4)

Country Link
US (2) US5105507A (de)
EP (1) EP0415156B1 (de)
JP (1) JPH03220323A (de)
DE (1) DE59010412D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323513A (en) * 1989-01-16 1994-06-28 Maschinenfabrik Rieter Ag Safety apparatus for a traveling unit of a textile machine and method of operating the textile machine
DE4040197C2 (de) * 1990-12-15 2003-04-24 Truetzschler Gmbh & Co Kg Vorrichtung zum Abtragen von Faserflocken aus in Reihe angeordneten Faserballen, z. B. aus Baumwolle, Chemiefasern o. dgl.
DE4119888C2 (de) * 1991-06-17 2001-03-08 Truetzschler Gmbh & Co Kg Vorrichtung zum Abtragen des Fasergutes von Textilfaserballen aus Spinngut, z. B. Baumwolle, Chemiefasern u. dgl.
DE4131424C1 (de) * 1991-09-20 1993-01-14 Hergeth Hollingsworth Gmbh, 4408 Duelmen, De
DE4422574A1 (de) * 1993-09-24 1995-03-30 Truetzschler Gmbh & Co Kg Verfahren und Vorrichtung zum Abtragen von Faserflocken von Textilfaserballen, z. B. Baumwolle, Chemiefasern o. dgl.
DE4415796B4 (de) * 1994-05-05 2008-05-08 TRüTZSCHLER GMBH & CO. KG Ballenabtragverfahren und Vorrichtung zum Abtragen für in mindestens einer Reihe aufgestellten Faserballen
EP1114211A1 (de) * 1998-09-18 2001-07-11 Maschinenfabrik Rieter Ag Verfahren zum abtragen von faserflocken von faserballen mit einem ballenöffner
WO2000049209A1 (en) * 1999-02-17 2000-08-24 Lakshmi Machine Works Limited Bale plucking machine
DE102005013076A1 (de) 2005-03-18 2006-10-05 TRüTZSCHLER GMBH & CO. KG Vorrichtung zum Abtragen des Fasergutes von Textifaserballen aus Spinngut, z. B. Baumwolle, Chemiefasern und dgl.
DE102005019526A1 (de) * 2005-04-27 2006-11-02 Hubert Hergeth Spurfräse
DE102005020506A1 (de) 2005-04-29 2006-11-09 TRüTZSCHLER GMBH & CO. KG Vorrichtung an einem Streckwerk einer Spinnereimaschine, insbesondere Strecke, Karde, Kämmmaschine o. dgl., zur Belastung der Streckwerkswalzen, mit mindestens einem Druckmittelzylinder
DE102005039094B4 (de) * 2005-08-08 2009-03-19 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Führen eines Maschinenteils entlang einer definierten Bewegungsbahn über einer Werkstücksoberfläche
WO2008037096A1 (de) * 2006-09-26 2008-04-03 Maschinenfabrik Rieter Ag Vorrichtung zum abtragen von fasergut
DE102006048742B4 (de) 2006-10-11 2021-06-10 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung an einem Streckwerk einer Spinnereimaschine zur Belastung der Streckwerkswalzen, mit mindestens einem Druckmittelzylinder
WO2008092285A1 (de) * 2007-01-31 2008-08-07 Maschinenfabrik Rieter Ag Zentimeterwellensensor
CH710258A1 (de) * 2014-10-16 2016-04-29 Rieter Ag Maschf Ballenöffner.
CH710257A1 (de) * 2014-10-16 2016-04-29 Rieter Ag Maschf Ballenöffner.
CN104674385A (zh) * 2015-03-06 2015-06-03 湖州吉昌丝绸有限公司 一种抓棉机抓手升降调节机构
CH712367A1 (de) * 2016-04-15 2017-10-31 Rieter Ag Maschf Verfahren zur Kalibrierung der Aufliegekraft eines Abtragorgans eines Ballenöffners und Ballenöffner.
CH712382A1 (de) * 2016-04-21 2017-10-31 Rieter Ag Maschf Verfahren zum Betrieb eines Ballenöffners und Ballenöffner.
CH712385A1 (de) 2016-04-22 2017-10-31 Rieter Ag Maschf Verfahren zur Längspositionsbestimmung und zur Längspositionierung eines Abtragorgans eines Ballenöffners und Ballenöffner.
DE102019004992A1 (de) * 2019-07-04 2021-01-07 Hubert Hergeth Fahrwerk
CN110637799B (zh) * 2019-08-23 2022-02-15 江苏大学 一种基于超声传感器的宽株距作物精准对靶施药装置及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT323786B (de) * 1971-10-04 1975-07-25 Plasser Bahnbaumasch Franz Einrichtung zur messung und aufzeichnung einer zurückgelegten strecke
US3809864A (en) * 1971-11-01 1974-05-07 Pentron Industries Distance event marker
US3955073A (en) * 1974-05-14 1976-05-04 Carew Victor E Caliper type dimensional sensing devices and associated electronic mensuration, data processing and printout system
DE2832085C3 (de) * 1978-07-21 1981-08-13 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Zusammenstellen von Fasermischungen
US4256278A (en) * 1979-07-23 1981-03-17 Servo Corporation Of America Railway freight car identification system
DE3135272C2 (de) * 1981-09-05 1986-10-09 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zur Ermittlung der Höhe von Textilfaserballen
IT1140136B (it) * 1981-12-11 1986-09-24 Marzoli & C Spa Dispositivo di comando di una macchina asportetrice di fiocchi di fibre da una serie di balle di fibre tessili
SU1117348A1 (ru) * 1982-10-14 1984-10-07 Всесоюзный заочный институт текстильной и легкой промышленности Устройство дл определени поверхностной плотности нетканых материалов
SU1112070A1 (ru) * 1983-02-14 1984-09-07 Ивановский Ордена "Знак Почета" Энергетический Институт Им.В.И.Ленина Устройство дл стабилизации производительности кипоразборщика
SU1175983A1 (ru) * 1983-09-01 1985-08-30 Научно-Исследовательский Экспериментально-Конструкторский Институт Прядильного Машиностроения Способ смешивани волокнистого материала
DE3335792C2 (de) * 1983-10-01 1985-11-28 Trützschler GmbH & Co KG, 4050 Mönchengladbach Vorrichtung zur Ermittlung der Lücken zwischen Ballen einer Ballenreihe
DE3335793C2 (de) * 1983-10-01 1985-08-14 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Betreiben eines Ballenöffners, insbesondere zur Ermittlung der Höhe von Textilfaserballen
EP0193647B1 (de) * 1985-02-07 1989-03-08 Maschinenfabrik Rieter Ag Verfahren und Steuerung für eine Maschine zum Abtragen von Faserflocken von Textilfaserballen
IN166942B (de) * 1985-03-22 1990-08-11 Rieter Ag Maschf
GB8520130D0 (en) * 1985-08-10 1985-09-18 Haigh Chadwick Ltd Control apparatus
GB8524304D0 (en) * 1985-10-02 1985-11-06 Rieter Ag Maschf Flock delivery systems
DE3536019A1 (de) * 1985-10-09 1987-04-09 Standard Elektrik Lorenz Ag Einrichtung zur weg- und geschwindigkeitsmessung bei schienenfahrzeugen
SU1416540A1 (ru) * 1986-10-08 1988-08-15 Пензенский научно-исследовательский экспериментально-конструкторский институт прядильных машин Устройство дл управлени кипным питателем с верхним отбором волокна
DE3636752C2 (de) * 1986-10-29 1997-03-20 Hergeth Hubert A Verfahren zum Ermitteln der Begrenzungen von Ballenblöcken bei Ballenfräsen
GB8724338D0 (en) * 1987-10-16 1987-11-18 Haigh Chadwick Ltd Bin emptying arrangement
US5051935A (en) * 1989-05-25 1991-09-24 Matty Richard D Drag race analyzer

Also Published As

Publication number Publication date
JPH03220323A (ja) 1991-09-27
US5121418A (en) 1992-06-09
DE59010412D1 (de) 1996-08-14
EP0415156A1 (de) 1991-03-06
US5105507A (en) 1992-04-21

Similar Documents

Publication Publication Date Title
EP0415156B1 (de) Verfahren und Vorrichtung zum Betrieb einer Ballenabtragmaschine
EP0388390B1 (de) Inkrementales Messsystem
EP0358891B1 (de) Öffnungsvorrichtung zum Öffnen von gepressten Faserballen, z.B. Baumwolle- und Zellwollballen
AT391903B (de) Fahrbare gleisbearbeitungsmaschine mit einer einrichtung zur steuerung der arbeits-position ihrer arbeits-aggregate bzw. -werkzeuge
DE2248194A1 (de) Messgeraet
EP0199041B1 (de) Verfahren und Vorrichtung zum Abtragen von Faserflocken aus Textilfaserballen
DE102006062129A1 (de) Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe
WO1998033039A1 (de) Elektrooptisches messgerät zum feststellen der relativlage, die zwei körper oder zwei oberflächenbereiche von körpern im bezug aufeinander einnehmen
EP0193647A1 (de) Verfahren und Steuerung für eine Maschine zum Abtragen von Faserflocken von Textilfaserballen
DE102016113149A1 (de) Aufnahme von Entfernungsprofilen
DE3042897C2 (de)
DE3903381C2 (de)
DE3916060C2 (de) Verfahren und Vorrichtung zum Erfassen der Querschnittsform und der Abmessungen eines Werkstücks in einer Sägemaschine
WO1998046111A2 (de) Steuerung eines reinigungsautomaten
DE1548292B2 (de) Meßvorrichtung zur berührungslosen Breitenmessung eines durchlaufenden Bandes
EP0327885B1 (de) Vorrichtung zum Abtragen von Faserflocken
DE3943322A1 (de) Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
DE3926482A1 (de) Verfahren und vorrichtung zum betrieb einer ballenabtragmaschine
EP0290877B1 (de) Vorrichtung zur maschinellen Rücknahme von Leergut
DE4207305C2 (de) Vorrichtung zur Steuerung des Stapelträgers in Druckmaschinen
DE3932281C2 (de)
DE2413523A1 (de) Abtast- und zentriervorrichtung
DE19840384C1 (de) Einrichtung zum Putzen von Modeln
DE102019104570A1 (de) Verfahren und Messvorrichtung zur Funktionsprüfung einer Flügelchangierung
DE2226118A1 (de) Steuervorrichtung für einen Metallband-Vorschub

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19910403

17Q First examination report despatched

Effective date: 19930618

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960710

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960710

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REF Corresponds to:

Ref document number: 59010412

Country of ref document: DE

Date of ref document: 19960814

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961007

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980805

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010724

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040805

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301