EP0411172B1 - Kühleinrichtung für mehrere Kühlmittelkreisläufe - Google Patents

Kühleinrichtung für mehrere Kühlmittelkreisläufe Download PDF

Info

Publication number
EP0411172B1
EP0411172B1 EP89114116A EP89114116A EP0411172B1 EP 0411172 B1 EP0411172 B1 EP 0411172B1 EP 89114116 A EP89114116 A EP 89114116A EP 89114116 A EP89114116 A EP 89114116A EP 0411172 B1 EP0411172 B1 EP 0411172B1
Authority
EP
European Patent Office
Prior art keywords
coolant
evaporator
compressor
temperature
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89114116A
Other languages
English (en)
French (fr)
Other versions
EP0411172A1 (de
Inventor
Noya Mikhail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kkw Kulmbacher Klimagerate-Werk GmbH
Original Assignee
Kkw Kulmbacher Klimagerate-Werk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kkw Kulmbacher Klimagerate-Werk GmbH filed Critical Kkw Kulmbacher Klimagerate-Werk GmbH
Priority to EP89114116A priority Critical patent/EP0411172B1/de
Priority to DE8989114116T priority patent/DE58903363D1/de
Priority to US07/552,752 priority patent/US5076068A/en
Publication of EP0411172A1 publication Critical patent/EP0411172A1/de
Application granted granted Critical
Publication of EP0411172B1 publication Critical patent/EP0411172B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the invention relates to a cooling device according to the preamble of claim 1.
  • Cooling devices for changing volume flow or in general for changing cooling capacity can be provided in practice only with relatively high effort. Realization becomes all the more difficult the more coolant circuits are to be operated, especially when the cooling capacity changes. If the cooling device is designed for high output, there is a risk of freezing at low output.
  • Cooling devices are known from US-A-2 646 667 and FR-A-2 114 419 in which a plurality of secondary coolant circuits are led through one and the same evaporator, a compressor of a primary refrigerant circuit being regulated by means of a thermostat.
  • the invention has for its object to provide a cooling device according to the preamble of claim 1 for a plurality of secondary coolant circuits, the cooling capacity depends in a simple manner on the coolant throughput in the secondary coolant circuits and can be varied within wide limits without the risk that the coolant freezes individual coolant circuits.
  • the evaporator is arranged in a refrigerant circuit with other components, such as the compressor, condenser and expansion valve.
  • a thermostat switches on the compressor depending on the temperature of the coolant of the secondary cooling circuits measured in front of the evaporator when the switching temperature of the coolant is reached.
  • the compressor is switched off when the temperature falls below the switching temperature.
  • a bypass valve is controlled in a bypass line between connection points of the refrigerant line behind the compressor on the one hand and behind the expansion valve on the other hand by a pressure sensor in the refrigerant line.
  • the pressure sensor is in the direction of flow of the refrigerant arranged in front of the compressor.
  • the bypass valve controls the bypass valve so that it is opened at a minimum pressure in the evaporator which, for reasons of safety against freezing of the coolant - in one of the secondary circuits - should not be undercut in the evaporator.
  • the bypass valve is closed at a certain pressure in the evaporator above the minimum pressure.
  • the cooling capacity of the cooling device adapts itself through the special control of the compressor to different flow rates or outputs in the secondary coolant lines, whereby the special bypass control prevents freezing of the coolant in the compressor, so that the full capacity adjustment is sensibly possible.
  • the adjustment of the cooling capacity of the cooling device goes so far that the coolant can also stand in individual coolant circuits, so that no cooling capacity can be achieved by the respective coolant circuit.
  • the evaporator can have a coaxial structure consisting of jacket tube, center tube and inner tube in a particularly simple manner, so that there are three coaxially arranged annular spaces.
  • a coolant can flow through the outer and the inner annular space in one direction, the coolant being passed through in the middle annular space in the opposite direction to the flow of the coolant.
  • Such a coaxial tube structure is known per se (DE-GM 84 07 854).
  • the thermostat has a temperature sensor, to which the lines of all coolant circuits are guided.
  • the coolant temperature is averaged and simple control is only possible because there are individual sensors on the respective coolant line with coolant standstill, there would be no signal change, so that regulation with simple means would not be sensibly possible.
  • Water can be used as the coolant in the secondary coolant circuits.
  • the cooling device has two coolant circuits 2 and 3 guided through an evaporator 1.
  • Devices to be cooled can be connected to the connection sockets 4, which each complete the coolant circuits.
  • a compressor 6, a condenser 7 and an expansion valve 8 are located in the refrigerant circuit 5.
  • the expansion valve 8 is controlled in a conventional manner by means of temperature or additional pressure control in the throughput in such a way that just enough refrigerant is let through that it is in the evaporator 1 can still evaporate almost completely.
  • a dryer 9 can be connected upstream of the expansion valve 8 in the flow direction in a manner known per se. The direction of flow is illustrated by flow arrows 10.
  • a thermostat 11 switches on the compressor 6 as a function of the temperature of the coolant of the cooling circuits measured in front of the evaporator 1 when the switching temperature of the coolant is reached and switches off the compressor when the temperature falls below the switching temperature.
  • a bypass valve 12 in a bypass line 13 between connection points of the refrigerant line behind the compressor 6 on the one hand and behind the expansion valve 8 on the other hand is controlled by a pressure sensor 14 in the refrigerant circuit, which is arranged upstream of the compressor 6 and which controls as follows: At a minimum pressure in the evaporator 1, which for reasons of Safety against freezing of the coolant in the evaporator should not be undercut, the bypass valve 12 is opened.
  • the bypass valve 12 is closed. Otherwise, the coolant in the evaporator could freeze especially when the coolant comes to a standstill in a cooling circuit.
  • the requested cooling capacity can drop so far that some cooling circuits come to a standstill.
  • one of two cooling circuits can be switched off without the operation of the cooling device being impaired.
  • the pressure sensor 14 is functionally part of the pressostat 16.
  • the evaporator 1 can have a coaxial tube structure consisting of a jacket tube, center tube and inner tube.
  • the outer one can be provided to the coolant circuit 3 and the inner one to the coolant circuit 2.
  • the refrigerant then flows through the middle annulus.
  • the outer annular space can advantageously be provided for a coolant circuit for greater cooling capacity than in a coolant circuit connected to the inner annular space, since the outer annular space has larger heat-exchanging surfaces.
  • the lines of all the coolant circuits are guided past a temperature sensor 15 of the thermostat 11.
  • the temperature sensor 15 is functionally part of the thermostat 11.
  • the two lines of the coolant circuits 2 and 3 are guided past the temperature sensor. Even if the coolant comes to a standstill in a coolant circuit, since cooling in this circuit is no longer required at all, the temperature sensor 15 thus easily determines a signal that can be used. For example, if the coolant circuit 3 is designed for 500 W cooling power and the coolant circuit 2 for 300 W, Standstill of the coolant in the coolant circuit 3, the cooling capacity provided by the coolant circuit 5 is reduced to the extent that the temperature at the temperature sensor 15 lowers due to the reduced cooling requirement.
  • the coolant in cooling circuits 2 and 3 can be water.
  • Lithotripsy devices are one area of application for the cooling device, which takes into account very different cooling power requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kühleinrichtung nach dem Oberbegriff des Patentanspruches 1. Kühlgeräte für wechselnden Volumenstrom oder allgemein für wechselnde Kühlleistung sind in der Praxis nur mit verhältnismäßig hohem Aufwand bereitzustellen. Die Realisierung wird um so schwieriger, je mehr Kühlmittelkreisläufe, insbesondere bei wechselnder Kühlleistung, zu betreiben sind. Wenn die Kühleinrichtung für hohe Leistung ausgelegt ist, besteht bei niedriger Leistung Gefahr, daß Einfrierungen auftreten.
  • Aus der US-A-3 859 812 ist eine Vorrichtung und ein Verfahren zum Aufbereiten von Kühlmitteln für eine Werkzeugmaschine bekannt. Gemäß dieser Druckschrift ist in einem ersten primären Kältemittelkreislauf ein Temperaturfühler in Strömungsrichtung hinter einem Verdampfer angeordnet, während ein anderer primärer Kältemittelkreislauf von einer Mehrzahl von Einflußparametern, unter anderem von dem vorgenannten Temperaturfühler, geregelt wird. Mehrere durch ein- und denselben Verdampfer geführte Sekundärkühlmittelkreisläufe sind gemäß dieser Druckschrift nicht regelbar.
  • Aus der US-A-2 646 667 und der FR-A-2 114 419 sind Kühleinrichtungen bekannt, bei welchen mehrere Sekundär-Kühlmittelkreisläufe durch ein- und denselben Verdampfer geführt sind, wobei ein Verdichter eines primären Kältemittelkreislaufes mittels eines Thermostats geregelt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Kühleinrichtung gemäß dem Oberbegriff des Patentanspruchs 1 für eine Mehrzahl von sekundären Kühlmittelkreisläufen zu schaffen, deren Kühlleistung in einfacher Weise vom Kühlmitteldurchsatz in den sekundären Kühlmittelkreisen abhängt und so in weiten Grenzen variiert werden kann, ohne daß die Gefahr besteht, daß das Kühlmittel einzelner Kühlmittelkreise gefriert.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen im kennzeichnenden Teil des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Der Verdampfer ist in einem Kältemittelkreis mit weiteren Bauteilen, wie Verdichter, Kondensator und Expansionsventil, angeordnet. Ein Thermostat schaltet in Abhängigkeit von der vor dem Verdampfer gemessenen Temperatur des Kühlmittels der sekundären Kühlkreise den Verdichter ein, wenn die Schalttemperatur des Kühlmittels erreicht wird. Der Verdichter wird abgeschaltet, wenn die Schalttemperatur unterschritten wird. Ein Bypaßventil ist in einer Bypaßleitung zwischen Anschlußstellen der Kältemittelleitung hinter dem Verdichter einerseits und hinter dem Expansionsventil andererseits von einem Drucksensor in der Kältemittelleitung gesteuert. Der Drucksensor ist in Strömungsrichtung des Kältemittels vor dem Verdichter angeordnet. Er steuert das Bypaßventil so, daß bei einem Mindestdruck im Verdampfer, der aus Gründen der Sicherheit gegen Einfrieren des Kühlmittels - in einem der Sekundärkreise - im Verdampfer nicht unterschritten werden soll, es geöffnet wird. Bei einem bestimmten Druck im Verdampfer oberhalb des Mindestdrucks wird das Bypaßventil geschlossen. Die Kühlleistung der Kühleinrichtung paßt sich durch die besondere Steuerung des Verdichters unterschiedlichem Mengendurchsatz bzw. Leistung in den sekundären Kühlmittelleitungen an, wobei durch die besondere Bypaßsteuerung ein Einfrieren des Kühlmittels im Verdichter vermieden wird, so daß die volle Leistungsanpassung sinnvoll ermöglicht wird.
  • Die Anpassung der Kälteleistung der Kühleinrichtung geht so weit, daß das Kühlmittel in einzelnen Kühlmittelkreisläufen auch stehen kann, so daß also vom jeweiligen Kühlmittelkreis keine Kühlleistung zu erbringen ist.
  • Der Verdampfer kann bei zwei Kühlmittelkreisen besonders einfach einen Koaxialaufbau aus Mantelrohr, Mittelrohr und Innenrohr aufweisen, so daß sich drei koaxial angeordnete Ringräume ergeben. Der äußere und der innere Ringraum kann von je einem Kühlmittel in einer Richtung durchflossen werden, wobei in Gegenrichtung zur Durchströmung des Kühlmittels das Kältemittel im mittleren Ringraum durchgeleitet wird. Ein derartiger Koaxialrohraufbau ist für sich gesehen bekannt (DE-GM 84 07 854).
  • Erfindungsgemäß weist der Thermostat einen Temperatursensor auf, an dem die Leitungen sämtlicher Kühlmittelkreise vorbeigeführt sind. Dadurch wird die Kühlmitteltemperatur gemittelt und eine einfache Regelung erst ermöglicht, da Einzelsensoren an der jeweiligen Kühlmittelleitung bei Kühlmittelstillstand keine Signalveränderung ergäben, so daß eine Regelung mit einfachen Mitteln nicht sinnvoll möglich wäre. Als Kühlmittel in den sekundären Kühlmittelkreisen kann Wasser eingesetzt werden.
  • Die Erfindung soll anhand eines in der Zeichnung grob schematisch wiedergegebenen Ausführungsbeispiels für zwei Kühlmittelkreise und einen Kältemittelkreis näher erläutert werden:
       Die Kühleinrichtung weist im Ausführungsbeispiel zwei durch einen Verdampfer 1 geführte Kühlmittelkreise 2 und 3 auf. Zu kühlende Geräte können an den Anschlußbuchsen 4 angeschlossen werden, die die Kühlmittelkreise jeweils vervollständigen. Außer dem Verdampfer 1 liegen im Kältemittelkreis 5 ein Verdichter 6, ein Kondensator 7 und ein Expansionsventil 8. Das Epansionsventil 8 ist in üblicher Weise mittels Temperatur- oder zusätzlicher Drucksteuerung im Durchsatz so gesteuert, daß gerade so viel Kältemittel durchgelassen wird, daß es im Verdampfer 1 noch nahezu vollständig verdampfen kann. Zusatzlich kann in an sich bekannter Weise ein Trockner 9 dem Expansionsventil 8 in Strömungsrichtung vorgeschaltet sein. Die Strömungsrichtung ist durch Strömungspfeile 10 veranschaulicht.
  • Wesentlich ist, daß ein Thermostat 11 in Abhängigkeit von der vor dem Verdampfer 1 gemessenen Temperatur des Kühlmittels der Kühlkreise den Verdichter 6 einschaltet, wenn die Schalttemperatur des Kühlmittels erreicht wird und den Verdichter abschaltet, wenn die Schalttemperatur unterschritten wird. Weiter ist wesentlich, daß ein Bypaßventil 12 in eine Bypaßleitung 13 zwischen Anschlußstellen der Kältemittelleitung hinter dem Verdichter 6 einerseits und hinter dem Expansionsventil 8 andererseits von einem Drucksensor 14 im Kältemittelkreis gesteuert wird, der vor dem Verdichter 6 angeordnet ist und der folgendermaßen steuert:
    Bei einem Mindestdruck im Verdampfer 1, der aus Gründen der Sicherheit gegen Einfrieren des Kühlmittels im Verdampfer nicht unterschritten werden soll, wird das Bypaßventil 12 geöffnet. Bei einem bestimmten Druck im Verdampfer oberhalb des Mindestdrucks wird das Bypaßventil 12 geschlossen. Das Kühlmittel im Verdampfer könnte anderenfalls besonders dann einfrieren, wenn das Kühlmittel in einem Kühlkreislauf zum Stehen kommt. Bei der erfindungsgemäßen Kühleinrichtung kann die angeforderte Kühlleistung so weit zurückgehen, daß einige Kühlkreise zum Stillstand kommen. Im Ausführungsbeispiel kann einer von zwei Kühlkreisen abgeschaltet werden, ohne daß der Betrieb der Kühleinrichtung beeinträchtigt wird. Der Drucksensor 14 ist funktionell Teil des Pressostaten 16.
  • Bei zwei Kühlmittelkreisen 2 und 3 kann der Verdampfer 1 einen Koaxialrohraufbau aufweisen, aus Mantelrohr, Mittelrohr und Innenrohr. Von den sich ergebenden koaxial angeordneten Ringräumen kann der äußere dem Kühlmittelkreis 3 und der innere dem Kühlmittelkreis 2 zur Verfügung gestellt werden. Durch den mittleren Ringraum strömt dann das Kältemittel. Der äußere Ringraum kann vorteilhafterweise für einen Kühlmittelkreis für größere Kühlleistung als in einem am inneren Ringraum angeschlossenen Kühlmittelkreise zur Verfügung gestellt werden, da der äußere Ringraum größere wärmetauschende Flächen aufweist.
  • An einem Temperatursensor 15 des Thermostaten 11 werden die Leitungen sämtlicher Kühlmittelkreise vorbeigeführt. Der Temperatursensor 15 ist funktionell Teil des Thermostaten 11. Im Ausführungsbeispiel sind die beiden Leitungen der Kühlmittelkreise 2 und 3 am Temperatursensor vorbeigeführt. Selbst wenn das Kühlmittel in einem Kühlmittelkreis zum Stillstand kommt, da in diesem Kreis überhaupt keine Kühlung mehr erforderlich ist, wird so auf einfache Weise vom Temperatursensor 15 ein einfach verwertbares Signal ermittelt. Wenn der Kühlmittelkreis 3 beispielsweise für 500 W Kühlleistung ausgelegt ist und der Kühlmittelkreis 2 für 300 W, kann beim Stillstand des Kühlmittels im Kühlmittelkreis 3 die vom Kältemittelkreis 5 bereitgestellte Kühlleistung in dem Maß heruntergefahren werden, wie sich die Temperatur am Temperatursensor 15 wegen verringerten Kältebedarfs erniedrigt. Das Kühlmittel in den Kühlkreisen 2 und 3 kann Wasser sein.
  • Für die Kühleinrichtung, die stark unterschiedlichen Kühlleistungsbedarf berücksichtigt, sind beispielsweise ein Einsatzgebiet Lithotripsiegeräte.

Claims (3)

  1. Kühleinrichtung mit einem Verdampfer (1), einem primärseitig durch den Verdampfer (1) geführten Kältemittelkreis (5) mit Verdichter (6), Kondensator (7) und Expansionsventil (8), mehreren sekundärseitig durch den Verdampfer (1) geführten Kühlmittelkreisen (2,3) für zu kühlende Geräte und mit einem Thermostat (11) zum Ein- und Ausschalten des Verdichters (6),
    dadurch gekennzeichnet, daß der Thermostat (11) mit einem Temperaturfühler (15) versehen ist, an dem die Leitungen sämtlicher Kühlmittelkreise (2,3) derart vorbeigeführt sind, daß der Thermostat (11) in Abhängigkeit von der in Strömungsrichtung des Kühlmittels vor dem Verdampfer (1) gemessenen und durch die Mehrzahl der Kühlmittelkreise (2,3) beeinflußten Mischtemperatur den Verdichter (6) einschaltet, wenn eine Schalttemperatur des Kühlmittels erreicht wird, und den Verdichter (6) abschaltet, wenn die Schalttemperatur des Kühlmittels unterschritten wird, und daß ein Bypaßventil (12) in einer Bypaßleitung (13) zwischen Anschlußstellen des Kältemittelkreises (5), jeweils in Strömungrichtung gesehen, hinter dem Verdichter (6) einerseits und hinter dem Expansionsventil (8) andererseits angeordnet ist und von einem im Kältemittelkreis (5) vor dem Verdichter (5) angeordneten Drucksensor (14) derart gesteuert wird, daß bei einem Mindestdruck im Verdampfer (1), der aus Gründen der Sicherheit gegen Einfrieren des Kühlmittels im Verdampfer nicht unterschritten werden soll, das Bypaßventil (12) geöffnet und bei einem bestimmten Druck im Verdampfer oberhalb des Mindestdrucks das Bypaßventil (12) geschlossen wird.
  2. Kühleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verdampfer (1) bei zwei Kühlmittelkreisen (2,3) einen Koaxialrohraufbau aus Mantelrohr, Mittelrohr und Innenrohr aufweist, so daß sich drei koaxial angeordnete Ringräume ergeben, deren äußerer und innerer Ringraum von je einem Kühlmittel in einer Richtung durchflossen werden, in Gegenrichtung zur Durchströmung mit Kältemittel im mittleren Ringraum.
  3. Kühleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Kühlmittel Wasser eingesetzt ist.
EP89114116A 1989-07-31 1989-07-31 Kühleinrichtung für mehrere Kühlmittelkreisläufe Expired - Lifetime EP0411172B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP89114116A EP0411172B1 (de) 1989-07-31 1989-07-31 Kühleinrichtung für mehrere Kühlmittelkreisläufe
DE8989114116T DE58903363D1 (de) 1989-07-31 1989-07-31 Kuehleinrichtung fuer mehrere kuehlmittelkreislaeufe.
US07/552,752 US5076068A (en) 1989-07-31 1990-07-16 Cooling device for a plurality of coolant circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89114116A EP0411172B1 (de) 1989-07-31 1989-07-31 Kühleinrichtung für mehrere Kühlmittelkreisläufe

Publications (2)

Publication Number Publication Date
EP0411172A1 EP0411172A1 (de) 1991-02-06
EP0411172B1 true EP0411172B1 (de) 1993-01-20

Family

ID=8201698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89114116A Expired - Lifetime EP0411172B1 (de) 1989-07-31 1989-07-31 Kühleinrichtung für mehrere Kühlmittelkreisläufe

Country Status (3)

Country Link
US (1) US5076068A (de)
EP (1) EP0411172B1 (de)
DE (1) DE58903363D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230296301A1 (en) * 2022-03-15 2023-09-21 Goodman Manufacturing Company, L.P. Refrigerant leak mitigation for multi-circuit refrigerant systems

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT396834B (de) * 1992-05-04 1993-12-27 Friedmann Kg Alex Kältemaschine
JPH0828969A (ja) * 1994-07-15 1996-02-02 Sanyo Electric Co Ltd 冷却装置
US5491982A (en) * 1994-10-27 1996-02-20 Aec, Inc. Chiller bypass
DE19737671A1 (de) * 1997-08-29 1999-03-04 Ralph Kerstner Einrichtung zur Verhinderung von Kompressorschäden insbesondere bei Kompressoren für Fahrzeugkühlung durch Ölmangel bei sehr tiefen Ansaugtemperaturen
JP2000009034A (ja) * 1998-06-25 2000-01-11 Toyota Autom Loom Works Ltd 空調システム
JP2000028208A (ja) * 1998-07-09 2000-01-28 Komatsu Ltd 冷凍装置の制御装置
JP3150117B2 (ja) 1998-11-27 2001-03-26 エスエムシー株式会社 恒温冷媒液循環装置
US6314747B1 (en) * 1999-01-12 2001-11-13 Xdx, Llc Vapor compression system and method
US6185958B1 (en) 1999-11-02 2001-02-13 Xdx, Llc Vapor compression system and method
CA2358461C (en) 1999-01-12 2008-10-14 Xdx, Llc Vapor compression system and method
IL144128A0 (en) * 1999-01-12 2002-05-23 Xdx Llc Vapor compression system and method
US6026650A (en) * 1999-01-15 2000-02-22 York International Corporation Freeze point protection for water cooled chillers
US6237352B1 (en) * 1999-08-18 2001-05-29 Winton J. Goodchild Water producing and dispensing machine
EP2068066A3 (de) * 2000-02-24 2009-09-23 Calsonic Kansei Corporation Kombination aus einem Verbindungsteil und einem Duplexrohr und Verfahren zum Löten eines Verbindungsteils mit einem Duplexrohr
US6401470B1 (en) 2000-09-14 2002-06-11 Xdx, Llc Expansion device for vapor compression system
US6393851B1 (en) 2000-09-14 2002-05-28 Xdx, Llc Vapor compression system
ITBO20020025A1 (it) * 2002-01-22 2003-07-22 Gencold Srl Gruppo di refrigerazione per acqua
US6775996B2 (en) * 2002-02-22 2004-08-17 Advanced Thermal Sciences Corp. Systems and methods for temperature control
AU2002951636A0 (en) * 2002-09-25 2002-10-10 Peter Hamilton Boyle Method and apparatus for collecting atmospheric moisture
US7896910B2 (en) 2004-05-17 2011-03-01 Coolsystems, Inc. Modular apparatus for therapy of an animate body
DE102005029048B4 (de) * 2005-06-21 2007-11-08 Alfons Kruck Luftwärmepumpen-Verdampfungsvorrichtung für eine Luftwärmepumpenheizung sowie Verfahren zum Betreiben einer Luftwärmepumpenheizung
US7828048B2 (en) * 2006-01-11 2010-11-09 Randall Douglas Dickinson Tank for a system that outputs liquid at a user-defined constant temperature
US8092676B2 (en) * 2006-01-11 2012-01-10 Thermo Fisher Scientific Inc. Tank for a system that outputs liquid at a user-defined constant temperature
DE102007003464B4 (de) * 2007-01-24 2012-10-18 Technotrans Ag Kühlvorrichtung für Druckmaschinen
US7837638B2 (en) 2007-02-13 2010-11-23 Coolsystems, Inc. Flexible joint wrap
US7731244B2 (en) 2007-09-12 2010-06-08 Coolsystems, Inc. Make-brake connector assembly with opposing latches
WO2009140584A2 (en) 2008-05-15 2009-11-19 Xdx Innovative Refrigeration, Llc Surged vapor compression heat transfer system with reduced defrost
ES2543471T3 (es) 2009-10-22 2015-08-19 Coolsystems, Inc. Control de temperatura y de flujo en un dispositivo de terapia térmica
US9615967B2 (en) 2010-12-30 2017-04-11 Coolsystems, Inc. Reinforced therapeutic wrap and method
US8597217B2 (en) 2010-12-30 2013-12-03 Coolsystems, Inc. Reinforced therapeutic wrap and method
US10463565B2 (en) 2011-06-17 2019-11-05 Coolsystems, Inc. Adjustable patient therapy device
US10456320B2 (en) 2013-10-01 2019-10-29 Coolsystems, Inc. Hand and foot wraps
CN106714743B (zh) 2014-08-05 2019-11-01 酷尔系统公司 集成的多部分热交换器
CN106032949B (zh) * 2015-03-09 2020-01-10 大金工业株式会社 制冷装置
US10859295B2 (en) 2016-04-13 2020-12-08 ZeoThermal Technologies, LLC Cooling and heating platform
EP3521731B1 (de) * 2016-09-30 2022-06-15 Daikin Industries, Ltd. Kühlvorrichtung
US11638675B2 (en) 2018-11-07 2023-05-02 Zenith Technical Innovations, Llc System and method for heat or cold therapy and compression therapy
US11221165B2 (en) * 2019-09-17 2022-01-11 Laird Thermal Systems, Inc. Temperature regulating refrigeration systems for varying loads

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2022771A (en) * 1931-10-13 1935-12-03 Gen Motors Corp Refrigerating apparatus
US2136813A (en) * 1935-09-12 1938-11-15 Dewey H Dolison Liquid cooler control
CH202328A (de) * 1937-09-15 1939-01-15 Sulzer Ag Regelvorrichtung für Kompressionskältemaschinen.
CH223393A (de) * 1941-05-03 1942-09-15 Sulzer Ag Verfahren und Einrichtung zur Regelung der Leistung von Kälte- bezw. Wärmepumpenanlagen.
CH265303A (de) * 1947-11-29 1949-11-30 Sulzer Ag Anlage zum Kühlen mit Hilfe eines flüssigen Kälteträgers.
US2646667A (en) * 1949-10-15 1953-07-28 Wallace R Kromer Method of and apparatus for storing, cooling, and dispensing beverages
US2598751A (en) * 1950-03-18 1952-06-03 Berkowitz Joseph Art of cooling and dispensing beverages
US3481151A (en) * 1967-12-28 1969-12-02 Frick Co Refrigerant system employing liquid chilling evaporators
US3675441A (en) * 1970-11-19 1972-07-11 Clark Equipment Co Two stage refrigeration plant having a plurality of first stage refrigeration systems
US3859812A (en) * 1974-03-08 1975-01-14 Richard B Pavlak Methods and apparatus for treating machine tool coolants
US4060997A (en) * 1976-03-31 1977-12-06 Application Engineering Corporation Water chiller control
DE3101138A1 (de) * 1981-01-15 1982-08-05 Jürgen 4500 Osnabrück Vonhoff Waermepumpe mit waermetauschern
DE8407854U1 (de) * 1984-03-14 1984-08-02 KKW Kulmbacher Klimageräte-Werk GmbH, 8650 Kulmbach Waermepumpe
FR2625871B1 (fr) * 1988-01-18 1991-06-14 Prominox Sa Procede et systeme de stockage et de conservation du lait dans une installation de refroidissement a compression de vapeur et a detente directe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230296301A1 (en) * 2022-03-15 2023-09-21 Goodman Manufacturing Company, L.P. Refrigerant leak mitigation for multi-circuit refrigerant systems

Also Published As

Publication number Publication date
US5076068A (en) 1991-12-31
DE58903363D1 (de) 1993-03-04
EP0411172A1 (de) 1991-02-06

Similar Documents

Publication Publication Date Title
EP0411172B1 (de) Kühleinrichtung für mehrere Kühlmittelkreisläufe
DE3517221C2 (de)
EP0410330B1 (de) Verfahren und Vorrichtung zum Betrieb einer Kälteanlage
DE3517216C2 (de)
DE3517222C2 (de)
DE602004008450T2 (de) Dampfkompressionssystem mit bypass/economiser-kreisläufen
DE3639639C2 (de)
DE60304279T3 (de) Doppelverdampfer-Klimaanlage und Verwendungsverfahren
DE112013002162B4 (de) Kältekreislaufsystem
DE3517219C2 (de)
DE4324510A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kühlsystems
DE1960975C3 (de) Kühlvorrichtung für Flüssigkeiten
DE3229779C2 (de)
DE2147394C2 (de) Steuerung zur Regelung von Kreiselverdichtern für ein Kühlsystem
DE19727440A1 (de) Kühlmittelausdehnungseinrichtung
DE2911068C2 (de) Schaltungsanordnung zur Regelung der Belastung eines Kompressors
DE2652888C2 (de) Kältemaschine
DE3341853C2 (de) Einrichtung zum Kühlen von Innenräumen
EP3791123B1 (de) Kühlsystem sowie verfahren zum temperieren eines rechenzentrums unter nutzung eines kühlsystems
DE2621904B2 (de) Vierwegemischeinrichlung für ein Heizungssystem mit zwei Strömungskreisen
DE19842221A1 (de) Unter veränderlichen Betriebsbedingungen arbeitende Kühlvorrichtung
DE69921368T2 (de) Verfahren und vorrichtung zum regeln der kaltlufterzeugung
DE3910988C2 (de)
DE2712110C2 (de) Anlage zum Heizen und/oder Kühlen
DE3714062A1 (de) Elektrisch beheizter durchlauferhitzer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: RICCARDI SERGIO & CO.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 19910402

GBC Gb: translation of claims filed (gb section 78(7)/1977)

Free format text: DELETE IN JOURNAL 5332 PAGE 2266

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19910625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58903363

Country of ref document: DE

Date of ref document: 19930304

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930416

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030710

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030721

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050731