EP0408507B1 - Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine - Google Patents

Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine Download PDF

Info

Publication number
EP0408507B1
EP0408507B1 EP90810513A EP90810513A EP0408507B1 EP 0408507 B1 EP0408507 B1 EP 0408507B1 EP 90810513 A EP90810513 A EP 90810513A EP 90810513 A EP90810513 A EP 90810513A EP 0408507 B1 EP0408507 B1 EP 0408507B1
Authority
EP
European Patent Office
Prior art keywords
tone
full
colour
differences
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90810513A
Other languages
English (en)
French (fr)
Other versions
EP0408507A1 (de
Inventor
Hans Ott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gretag AG
Original Assignee
Gretag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gretag AG filed Critical Gretag AG
Publication of EP0408507A1 publication Critical patent/EP0408507A1/de
Application granted granted Critical
Publication of EP0408507B1 publication Critical patent/EP0408507B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • B41F33/0045Devices for scanning or checking the printed matter for quality control for automatically regulating the ink supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2233/00Arrangements for the operation of printing presses
    • B41P2233/50Marks on printed material
    • B41P2233/51Marks on printed material for colour quality control

Definitions

  • the invention relates to a method for determining the color difference between two screen fields printed with the aid of a printing press according to the preamble of independent claim 1.
  • the invention relates to a method for color control or color regulation of the printing of a printing press according to the preamble of independent claim 2.
  • Methods for determining the color difference are generally used for quality assessment of printed products and require the use of color measuring devices or spectrophotometers in order to determine the coordinates assigned to a grid field, in particular a gray balance field, in a color space.
  • the use of such devices is perceived in many cases as expensive and complex because of the high optical and electronic complexity. It is also known to carry out a quality assessment on the basis of measured densitometric quantities.
  • a quality assessment based on a densitometric measurement system or densitometric parameters has the advantage that cheaper devices, namely densitometers can be used instead of spectrophotometers, but densitometric sizes are not particularly practical for a quality assessment and are not equivalent the sizes that occur in a real color measurement system.
  • the use of densitometers is limited to a densitometric measuring system which is worse for a quality assessment than color mass numbers in a color space that is equally sensitive in terms of sensibility, such as the L * a * b * color space or LUV color space.
  • EP-A-228 347 and EP-A 321 402 a method for color control and Color control of a printing press is known, in which measuring fields are scanned with the aid of a color measuring device or a spectrophotometer in order to obtain color coordinates in a colorimetric measuring system and, by means of a coordinate comparison from the color distance of the scanned measuring field from a predetermined target color location, a manipulated variable for adjusting the color guide elements of the printing machine to create.
  • the procedure according to EP-A-321 402 is such that a predetermined target color location lying outside a correction color space is replaced by an attainable target color location on the surface of the correction color space with a color distance from the predetermined target color location, which is for the Print quality essential components are minimal.
  • EP-A-255 924 discloses a method for controlling or regulating the color control of a printing press, in which a color change vector is determined from the target / actual color density deviations of the colored partial colors measured with the aid of a densitometer, from which a color change vector is then determined "Control recommendations" or “Regulation recommendations” for the color control are derived in a manner that is not described in detail.
  • the multiplication factors used in the "vectorial auxiliary construction" are determined by previous test prints with systematic variation of the coloring of the individual colors and subsequent evaluation using a densitometer and color measuring device.
  • the method disclosed in this document essentially only allows qualitative statements about the color deviations between the measured production print and the corresponding reference, since the "vector auxiliary construction" on which it is based, even with the most accurate density measurement, leads to mean errors of up to 16 ° in the polar angle and 3 delta-E -Units in the color difference leads. Although these errors are described as being sufficiently small to obtain sufficient information about the type and extent of a color cast for control processes, precise and reliable quantitative control of the color guide is not possible with this method.
  • the method according to this document is also relatively cumbersome and complicated insofar as the use of a multicolored overprint field (gray balance field) as a color control field means that the color density differences measured on it before Further processing by means of the "vectorial auxiliary construction" must first be "unmasked", ie the density value differences between the measured actual measured values and the target measured values of a target specimen must be converted using a linear system of equations into such density value differences as would have resulted from single-color prints. An additional series of test prints is required to determine the coefficients of the linear system of equations.
  • the invention has for its object to improve a method for determining the color difference and a method for color control or color control of the printing of a printing press of the generic types in such a way that a more precise determination of the color numbers in the selected color space and thus a more precise and reliable control or regulation of the Ink guide elements of the printing press is possible.
  • the invention is based on the knowledge that transformation matrices exist within small areas around a given color location in a colorimetric coordinate system, which make it possible to convert changes in color measures into changes in screen densities and in changes in solid densities of printed solid fields.
  • a third relationship consists in a transformation of changes in solid density of solid fields and changes in screen density of printed fields. If two transformations of the three transformations mentioned are known, the third can easily be calculated.
  • Fig. 1 four calibration prints or calibration cards with calibration color areas are shown schematically.
  • the calibration plate or calibration card shown below in FIG. 1 and produced under nominal pressure conditions is referred to below as reference calibration pressure 1.
  • the reference calibration print 1 has a color measuring strip or a calibration color area with four fields, of which the first a grid field 2, the second a cyan solid field 3, the third a magenta solid field 4 and the fourth a yellow or yellow solid field 5 is.
  • the grid 2 consists of three rasters printed one above the other with the colors and layer thicknesses of the solid tone fields 3 to 5, it being particularly expedient to use a gray balance field whose tone value or gray level is sensitive to layer thicknesses Changes and color is similar to a grid, as it occurs in the color measurement strip in the printed product to be produced later.
  • the raster field 2 of the reference calibration print 1 can be a dark gray gray balance field.
  • the screen 2 and the solid fields 3, 4 and 5 of the reference calibration print 1 are measured densitometrically .
  • the cyan grid density CR0, the magenta grid density MR0 and the yellow grid density YR0 are obtained for the grid field 2.
  • the three reference calibration measurement values for the three full tone densities and the three reference calibration measurement values for the screen densities are stored for comparison with other calibration prints in a memory, in particular in a memory of the densitometer or a memory of a connected computer or as a printout on a sheet of paper.
  • the grid 2 of the reference calibration print 1 is used in addition to the densitometric measurement of the densitometer can also be measured colorimetrically using a spectrophotometer.
  • the colorimetric measurement values recorded by the spectrophotometer are color measures of a color space, the L * a * b * color space (CIE 1976) preferably being used.
  • the L * a * b * color space is a color system with equally spaced sensations, the color dimensions of which are particularly useful for quality assessment in the color space, since they lead to greater flexibility and meaningfulness than solid color densities or screen densities.
  • Another color space system that can be used is the LUV system.
  • the colorimetric quantities or color dimension numbers L0, a0 and b0 are thus recorded and also stored for comparison with the values of other calibration prints.
  • This storage takes place electronically in the spectrophotometer itself or in a computer connected to it. It is also possible to save the color measure numbers as a printout, in particular as a printout on the reference calibration print 1 itself.
  • the additionally required calibration prints shown in FIG. 1, which are constructed similarly to the reference calibration pressure 1, are a first additional calibration pressure 6, a second additional calibration pressure 7 and a third additional calibration print 8.
  • the fields of the additional calibration prints 6 to 8, like the fields 2 to 5 of the reference calibration print 1, were each printed in such a way that the layer thicknesses of the differently colored full-tone fields match the layer thicknesses of the individual screen dots of the three printed on top of one another different colored grids of the respective grid are assigned.
  • the first additional calibration print 6 differs from the reference calibration print 1 in that a greater layer thickness of the ink guide elements of the printing machine has been set when printing the cyan solid-color field 9 and thus the associated cyan screen printed in the screen field 12, so that the solid cyan field 9 gives a larger solid cyan density CV1 than for the solid cyan field 3.
  • the magenta solid field 10 of the first additional calibration pressure 6 has a magenta solid density MV1, which corresponds to the solid density MV0 within the pressure tolerances.
  • the printed screen 12 of the first additional calibration print 6 differs from the screen 2 due to the greater layer thickness for the printing ink cyan in that the screen dots of the cyan screen each have a higher layer thickness.
  • the grid density is CR1 Grid 12 a higher measured value when measuring with the densitometer than was the case when measuring grid 2.
  • the magenta screen density MR1 of the screen 12 of the first additional calibration print 6 corresponds essentially to the magenta screen density MR0 of the reference calibration print 1. The same applies to the yellow screen density YR1 of the first additional calibration print 6.
  • the three measured values for the solid densities of the solid fields 9, 10 and 11 as well as the measured values of the halftone densities of the halftone field 12 of the first additional calibration print 6 are stored and used to compare the deviations of these six measured density values with respect to the corresponding measured six density values of the reference calibration print 1 to determine.
  • ⁇ CV1 0.19
  • ⁇ MV1 -0.01
  • ⁇ YV1 -0.02
  • ⁇ CR1 0.09
  • ⁇ MR1 0.04
  • ⁇ YR1 0.01
  • ⁇ L1 -1.85
  • a second additional calibration print 7 is shown together with the associated solid fields 13, 14 and 15 and the screen 16 also printed.
  • the same environmental conditions, in particular the same paper, printing ink and printing press were used as when printing the reference calibration print 1 and the first additional calibration print 6.
  • the second additional calibration print 7 has a much greater layer thickness for the magenta printing ink and thus a full tone density of the solid tone field 14 which is larger by ⁇ MV2 than the solid tone density MV0 of the solid tone field 4 of the reference calibration print 1.
  • the change in solid tone density ⁇ MV2 can be 0.26, for example.
  • a third additional calibration print 8 is finally produced, the layer thickness for the printing ink yellow or yellow being increased considerably in the solid field 19 shown at the top right in FIG. 1.
  • the resulting increase in solid density ⁇ YV3 can be, for example, 0.16.
  • the additional calibration prints 6, 7 and 8 differ from the reference calibration print 1 in that a full-tone density differs comparatively strongly by changing a layer thickness Lich has been made, while the other two colors have largely been left unchanged in their layer thicknesses.
  • the changes in the solid ink density there are changes in the grid field that is also printed, which, in contrast to the solid tone fields, is measured not only densitometrically but also colorimetrically as part of the calibration process.
  • FIG. 2 illustrates the concept on which the method according to the invention is based.
  • Fig. 2 on the left you can see three solid tone fields 21, 22, 23 of a color measuring strip or calibration print with the changes in the associated solid density densities ⁇ CV, ⁇ MV and ⁇ YV measured with the aid of a specific densitometer, which can be understood as the components of a three-dimensional solid density change vector [ ⁇ V].
  • These changes also cause changes in the grid field 24, 24 ', which is drawn twice on the right in FIG. 2, which can in particular be a gray balance field for monitoring the color balance of cyan, magenta and yellow in the overprint, the changes which can be detected by densitometry Screen densities are ⁇ CR, ⁇ MR and ⁇ YR.
  • an arrow 25 illustrates an assignment between the solid fields 21, 22, 23 and the grid field 24.
  • the connection of the solid fields 21 to 23 assigned full-tone density changes in a full-tone density space with the assigned raster density changes of the raster field 24 in a raster density space means a transformation of a three-dimensional vector, which can be represented by a full-tone density-raster density transformation matrix, which is hereinafter referred to briefly as transformation matrix [X].
  • the transformation matrix [X] has nine matrix elements and assigns the three solid density changes ⁇ CV, ⁇ MV and ⁇ YV to the three grid density changes ⁇ CR, ⁇ MR and ⁇ YR.
  • the transformation matrix [X] thus transforms the full-tone density change vector [ ⁇ V] formed from three full-tone density changes ⁇ CV, ⁇ MV and ⁇ YV into a screen density change vector [ ⁇ R] with the components ⁇ CR, ⁇ MR and ⁇ YR.
  • the transformation matrix [X] for three-dimensional vectors contains nine elements X11 to X33, which are the partial derivatives of the components of the grid density vector according to the components of the solid tone density vector. The following applies to the transformation matrix [X]:
  • an arrow 26 between the grid field 24 'and the solid fields 21 to 23 illustrates an assignment between changes in the color location assigned to the color of the grid field 24' in the L * a * b * color space or the assigned changes in the colorimetric values or Color measures on the one hand and the changes in solid density of the solid fields 21 to 23 printed on the other.
  • This corresponds to a transformation of a three-dimensional color change vector [ ⁇ F], the components of which are formed by the changes in color measure number ⁇ L, ⁇ a and ⁇ b, in the L * a * b * color space into the assigned three-dimensional full-tone density change vector ⁇ V in the full-tone density space.
  • the nine components of the matrix [Z] are formed in an analogous manner to the matrix [X] by the partial derivatives of the components of the solid density vector according to the components of the color vector.
  • FIG. 2 finally shows an arrow 27 between the grid field 24 'and the grid field 24.
  • the arrow 27 illustrates an association between changes ⁇ L, ⁇ a, ⁇ b of the colorimetric values L, a, b in L * a * b * - Color space of the grid field 24 'and the associated densitometrically detectable grid density changes ⁇ CR, ⁇ MR and ⁇ YR of the grid field 24 which is physically identical to the grid field 24'.
  • the assignment between three changes in color measures and three changes in grid densities illustrated by arrow 27 can be determined by a color measure - Describe the grid density transformation matrix.
  • the matrix ( briefly referred to as the transformation matrix [W], allows the transformation of the three-dimensional color change vector [ ⁇ F] in the L * a * b * color space into a grid density change vector [ ⁇ R] in the grid density space.
  • the transformation matrix [W] has nine elements because it transforms a three-dimensional vector into another three-dimensional vector.
  • the elements W11 to W33 are formed by the partial derivatives of the components of the vector [ ⁇ R] after the components of the vector [ ⁇ F]. The following therefore applies to the transformation matrix [W]:
  • the transformation matrices [X], [W] and [Z] can be assigned inverse transformation matrices [X ⁇ 1], [W ⁇ 1] and [Z ⁇ 1], respectively are illustrated by arrows 28, 29 and 30 in FIG. 2 and can each be used in a transformation in the opposite direction to the transformations illustrated by arrows 25, 27 and 26. It can be seen from FIG. 2 and the above explanations that it is sufficient to know two transformation matrices which are not inverse to one another in order to calculate any conversions between changes in the full-tone density space, screen density space and L * a * b * color space.
  • FIG. 3 illustrates how, in accordance with the method according to the invention, by measuring the calibration prints described in connection with FIG. 1, the transformation matrices [X], [W] and [Z] are determined for a working point predetermined, for example, by a gray balance field.
  • the solid fields 9, 10 and 11 known from FIG. 1 correspond to the trio of solid fields V1, the solid fields 13, 14 and 15 the trio of solid fields V2 and the solid fields 17, 18 and 19 the trio of solid fields V3.
  • the reference calibration print 1 is measured with the raster field R0 and the trio of solid fields V0.
  • a spectrophotometer 30 which allows the grid fields R0, R1, R2 and R3 to be measured colorimetrically.
  • a densitometric measurement of the grid fields R0 to R3 takes place with the aid of the densitometer 31 shown schematically in FIG. 3.
  • the spectrophotometer 30 delivers color dimensions L0, a0, b0 for the grid R0 of the reference calibration print 1, L1, a1, b1 for the grid R1 of the first additional calibration print 6, L2, a2, b2 for the grid R2 of the second additional Calibration print 7 and L3, a3, b3 for the grid R3 of the third additional calibration print 8. From the output 32 of the spectrophotometer, the triples of the color measures L i , a i and b i either go directly electrically or with the interposition of a display and manual keyboard input into a computer 33 assigned to the spectrophotometer 30 and the densitometer 31.
  • the difference calculator 34 stores the calculated difference values for the color measures, ie the numerical values for ⁇ L1, ⁇ a1, ⁇ b1, ⁇ L2, ⁇ a2, ⁇ b2, ⁇ L3, ⁇ a3 and ⁇ b3.
  • the grid fields R0, R1, R2 and R3 are additionally measured with the aid of the densitometer 31 in order to determine the grid densities for each of the colors cyan, magenta and yellow, so that the differences between the grid densities of the grid R1 are then determined in a difference calculator 35 for grid densities , R2 and R3 on the one hand and the grid density of the grid R0 on the other hand can be calculated.
  • the Grid density differences are available at the output of the difference calculator 35 for grid densities the following nine values: ⁇ CR1, ⁇ MR1, ⁇ YR1, ⁇ CR2, ⁇ MR2, ⁇ YR2, ⁇ CR3, ⁇ MR3 and ⁇ YR3.
  • the densitometer 31 is also used during the calibration measurements on the calibration prints also for the densitometric measurement of the full tone fields V0 of the reference calibration pressure 1, the full tone fields V1 of the first additional calibration pressure 6, the full tone fields V2 of the second additional calibration pressure 7 and the full tone fields V3 of the third additional calibration pressure 8.
  • These solid tone fields have the reference numerals 3, 4, 5, 9, 10, 11, 13, 14, 15, 17, 18 and 19 in FIG. 1.
  • the densitometer 31 is also directly electrically connected to a difference computer 36 for solid densities in the computer 33 or with the interposition of a densitometer display and a keyboard.
  • the difference calculator 35 for screen densities and the difference calculator 36 for solid tones feed as can be seen from the block diagram in FIG. 3, a first matrix calculator 37.
  • the matrix calculator 37 serves to determine the nine elements of the transformation matrix [X]. For this purpose, he receives from the difference computer 35 for the screen densities the nine numerical values for screen density differences mentioned above and from the difference computer 36 for full tone densities the above-mentioned nine measured values for full tone density differences.
  • the first matrix calculator 37 calculates the numerical values for the nine unknowns X11, X12, X13, X21, X22, X23, X31, X32 and X33. These numerical values are output by the first matrix computer 37 at the output 38 as the nine elements of the transformation matrix [X].
  • the computer 33 contains a second matrix computer 39 for calculating the transformation matrix [W].
  • the second matrix computer 39 supplies the nine elements of the transformation matrix [W] at its output 40.
  • the outputs 38 and 40 of the first matrix computer 37 and the second matrix computer 39 feed the two inputs of a third matrix computer 41, which it allows the transformation matrix [X] to be inverted and multiplied by the transformation matrix [W] in order to calculate the nine elements of the transformation matrix [Z] described in connection with FIG. 2.
  • the spectrophotometer 30 is no longer required in order to carry out a quality control and quality assessment in the L * a * b * color space with the densitometer 31.
  • the system consisting of the densitometer 31 and the computer 33 can now be placed by placing the densitometer 31 on a grid 43 similar to the grid of the calibration prints, in particular a gray balance grid of a sample sheet or OK sheet 44 (FIG. 4) determine the differences between the color measures of the grid 43 of the OK sheet 44 and the color measures of the grid 2 of the reference calibration print 1. After knowledge of these differences or deviations, it is possible, taking into account the color dimensions of the screen 2 of the reference calibration print 1 known from the measurement with the spectrophotometer 30, also to determine the absolute color numbers of the screen 43 of the OK sheet 44 without the OK -Bow 44 has been scanned with a spectrophotometer.
  • FIG. 4 shows the system consisting of the computer 33 and the densitometer 31 with a printing machine 42 which can be controlled with the aid of this system, as well as the OK sheet 44 and a production sheet 45 in a schematic representation.
  • the sample sheet or OK sheet 44 is drawn in FIG. 4, top left with its grid 43 which serves as a reference color area and which is similar in color to the grid 2 of the reference character print 1.
  • the color appearance of the raster field 43 becomes continuous with a raster field 46, in particular a corresponding gray balance field in the color measuring strip, when printing the production sheets 45, one of which is shown schematically with a color measuring strip in FIG. 4, top right compared.
  • the arrangement shown in FIG. 4 with the densitometer 31 and the computer 33 is used to check the continuous printing sheets 45 printed continuously with the printing machine 42 with regard to their color correspondence with the OK sheet 44 and to readjust the ink guiding elements of the printing machine 42 in the event of deviations .
  • a control variable is output at its output 47, which is fed as an input variable via the input 48 to the layer thickness control of the printing press 42.
  • the control signals present at input 48 are a layer thickness change control vector, the components of which are shown in FIG. 4 are.
  • the component ⁇ CV of the layer thickness change control vector specifies the amount by which the layer thickness for the printing ink cyan has to be changed in order to correct the color appearance of the grid field 46 if there is a deviation from the color appearance of the grid field 43 on the OK sheet 44. Accordingly, the components ⁇ MV and ⁇ YV of the layer thickness change control vector [ ⁇ V] are assigned to the required layer thickness changes for the printing inks magenta and yellow.
  • the densitometer 31 first serves to determine and to store the target value for the screen density vector [R] SOLL which can be obtained by measuring the screen field 43 of the OK sheet 44.
  • the actual value of the screen density vector [R] IST is measured with the aid of the densitometer 31 by measuring the grid field 46 in the color measurement strip of the printing sheet 45.
  • the computer 33 has a plurality of computing units designed in terms of hardware or software, which represent an evaluation computer which makes it possible, on the one hand, to determine a quality measure for the respectively printed production sheet 45 from the comparison of the vector [R] ACTUAL with the vector [R] SHOULD , which is available at the output 49 of the computer 33, and on the other hand to generate an input variable for the layer thickness control, which is provided at the output 47 of the computer 33.
  • the part of the computer 33 designated as the evaluation computer in FIG. 4 not only receives the measured values of the densitometer 31 as input variables, but also the matrix elements of the transformation matrices [X], [W] and [Z] determined beforehand on the basis of the calibration prints. These values reach the part of the computer 33 referred to as an evaluation computer via the inputs 50, 51 and 52.
  • the computer 33 has a screen density difference calculator 53 which calculates the deviations between the actual screen densities measured on the respective printing sheet 45 and the target screen density recorded on the OK sheet 44.
  • the output 56 of the grid density difference calculator 53 is connected to a first input 57 of a quality measurement calculator 54, the second input 58 of which is supplied with the values of the nine matrix elements of the transformation matrix [W].
  • the transformation matrix [W] is first inverted in the quality measurement computer 54 and then multiplied by the grid density difference vector [ ⁇ R].
  • the calculation results are available in the form of color measure difference ⁇ L, ⁇ a and ⁇ b, which can be viewed as the components of a three-dimensional color difference vector [ ⁇ F].
  • the quality measurement computer 54 has converted the deviations from density values into deviations from color coordinates of a color space that is equally graduated in terms of sensation. Based on the known deviations and the color dimensions for the calibration print or OK sheet, it is then also possible to determine the absolute color coordinates.
  • the grid density difference calculator 53 also feeds the first input 60 of a first layer thickness control computer 55.
  • the first layer thickness control computer 55 receives at its second input 61 the values of the elements of the transformation matrix [X] fed in via the input 50 of the computer 33.
  • the first layer thickness control computer 55 calculates the components ⁇ CV, ⁇ MV and ⁇ YV of the layer thickness change control vector [ ⁇ V], the values of which output from the output 62 of the first, from the product of the inverted transformation matrix [X] ⁇ 1 and the grid density difference vector [ ⁇ R] Layer thickness control computer 55 to the output 47 of the computer 33 and from there to the input 48 of the layer thickness control for the ink guide members of the printing press 42.
  • FIG. 4 Two further possibilities for the determination of the layer thickness change control vector are shown, whereby the interruptions 97, 98 and 99 in the drawn lines are intended to illustrate that an interruption 97, 98, 99 is bridged depending on the selected option.
  • the control strategy block 63 generates substitute color measure number differences ⁇ L ', ⁇ a' and ⁇ b 'from the color measure number differences fed in at the color measure number input 64, which are output via the output 65 and feed the first input 66 of the third layer thickness control computer 55 ′′.
  • the layer thickness change control vector which is present at the output 68 of the third layer thickness control computer 55 ′′ and is fed in when the interruption 99 is closed via the output 47 to the input 48 of the printing press 42 is changed or improved in accordance with the strategy defined in the control strategy block 63 in relation to a layer thickness change control vector as it is at the output of the layer thickness control computer 55 'is available.
  • a wide variety of strategies can be used as the control strategy for the control strategy block 63, in which color measure number differences are to be replaced by more useful color measure number differences.
  • a control strategy can be implemented in the control strategy block 63, which allows the highest possible print quality to be achieved even if the specified target color location in the color space lies outside a correction range which is limited as a result of maximum and minimum full-tone layer thicknesses.
  • the control strategy block 63 therefore has a limit value input 69 via which the boundary conditions, i.e. the minimum and maximum layer thicknesses that are permitted are entered.
  • the boundary conditions i.e. the minimum and maximum layer thicknesses that are permitted are entered.
  • the control strategy described here it is necessary to measure 45 additional solid tone fields 70, 71 and 72 densitometrically on the production sheet.
  • the solid field 70 is a solid field with the solid density CV for the color cyan.
  • the solid field 71 is a solid field with the solid density MV for the magenta printing ink and the solid field 72 is a solid field with the solid density YV for the color yellow or yellow.
  • the densitometer 31 when using the control strategy block 63, in addition to the densitometric measurement of the grid field 46, a densitometric detection of the full tone fields 70 to 72 is carried out in order to be able to determine within the control strategy whether an adjustment of the layer thicknesses would lead to the change in a layer thickness leads to an area that is no longer permitted.
  • the densitometer 31 is therefore additionally connected to an actual full-tone input of the control strategy block 63.
  • control strategy implemented in control strategy block 63 is described in detail in EP-A 321 402.
  • the color measure numbers of the are in the control strategy block 43 via an input, not shown in FIG Reference character print 1 has been entered so that, based on these color measure numbers and the color measure number differences at the color measure number input 64, the color location of the color of the grid 46 is available for carrying out the control strategy.
  • the color location of the raster field 43 of the OK sheet 44 results simply from the fact that, with the aid of the arrangement shown in FIG. 4, the reference character print 1 and the OK sheet 44 are measured densitometrically in succession.
  • the color locus of the grid field 43 of the OK sheet 44 results from the known color measure numbers of the reference character print 1 and the color measure number differences for the grid field 43 calculated with the aid of the evaluation computer of the computer 33.
  • By comparing the grid field 43 of the OK sheet 44 with the grid field 46 of the production sheet 45 finally results in the differences in the color measure between the grid 46 and the grid 43, so that ultimately not only the differences in color measures but also the absolute color measures or color coordinates in the L * a * b * color space are known for the grid 46.
  • the color coordinates in the color space determined in this way indicate an actual color location by which the control strategy block determines a correction color space for the colors that can be achieved on the basis of the predetermined limit densities for the solid fields 70 to 72 and the solid densities of the solid fields actually measured with the aid of the densitometer.
  • the predetermined target color location is replaced by an achievable target color location on the boundary surface of the correction color space with a color distance from the predetermined target color location, whose for the print quality essential components are minimal.
  • the color location on the surface of the correction color space that has the smallest color distance from the specified target color location is selected as the achievable target color location.
  • the position of the target color locus in the L * a * b * color space outside the correction color space spanned by the actual color locus in the L * a * b * color space there are various options for determining an optimal replacement target color locus according to Control strategy.
  • One possibility is that a solder is dropped from the predetermined target color location onto the adjacent side surface of the correction color space and the intersection point of the solder with the side surface is used as an attainable target color location.
  • the specified target color location adjacent corner of the correction color space is used as an attainable target color location.
  • chrominance errors are more critical than pure brightness errors (luminance errors). Therefore, according to an alternative of the control strategy, it is provided that the intersection of a parallel to the brightness coordinate axis closest to the predetermined target color location through the predetermined target color location with the surface of the correction color space is selected as the achievable target color location or replacement target color location.
  • the closest points on the surface of the correction color space as achievable target points for the points lying on a parallel to the brightness coordinate axis through the given target color location within a given brightness error range with a maximum and a minimum brightness. Color locations can be determined. It is possible that the closest point on the surface of the correction color space is determined for the point on the parallel) which is assigned to the largest acceptable brightness error.
  • the control strategy can also provide that the intersection of the color distance vector between the actual color location of the grid field 46 and the predetermined target color location of the grid field 43 with the surface of the color correction space is selected as the achievable replacement target color location.
  • measurement value processing is provided in which the color distance vectors between the target color location and the actual color location are multiplied by a sensitivity matrix in order to calculate the layer thickness change control vector which is the next time a production run is printed -Bogens 45 must be taken into account to achieve the desired color location shift.
  • the sensitivity matrix with which density differences for the color locus shift between the target color locus and the actual color locus are calculated, can be determined empirically and in terms of measurement technology using a test series in the control strategy mentioned.
  • control strategy can also be implemented in such a way that the control strategy block 63 does not have a layer thickness change control vector at the output 65, but only substitute color dimension difference 55 '' can be converted into a layer thickness control vector using the transformation matrix [Z].
  • Another particularly simple possibility for a control strategy in which the boundary conditions of the solid densities are taken into account, can be realized in such a way that the output of the second layer thickness control computer 55 'feeds a further input of the control strategy block 63 in a manner not shown in FIG. 4 in order to Avoid that 63 color measure number differences occur at the output of the control strategy block, which, after conversion in the third layer thickness control computer 55 ′′, would lead to an overriding of the ink guide elements beyond the layer thickness limit values.

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit Hilfe einer Druckmaschine gedruckten Rasterfeldern gemäss dem Oberbegriff des unabhängigen Anspruchs 1.
  • Ausserdem bezieht sich die Erfindung auf ein Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine gemäss dem Oberbegriff des unabhängigen Anspruchs 2.
  • Verfahren dieser Art sind aus der EP-A - 196 431 bekannt.
  • Verfahren zur Bestimmung der Farbmasszahldifferenzen dienen im allgemeinen zur Qualitätsbeurteilung von Druckerzeugnissen und erfordern den Einsatz von Farbmessgeräten oder Spektralfotometern, um die einem Rasterfeld, insbesondere einem Graubalancefeld, in einem Farbraum zugeordneten Koordinaten zu bestimmen. Der Einsatz solcher Geräte wird wegen des hohen optischen und elektronischen Aufwandes in vielen Fällen als kostspielig und aufwendig empfunden. Es ist auch bekannt, eine Qualitätsbeurteilung aufgrund von gemessenen densitometrischen Grössen vorzunehmen. Eine Qualitätsbeurteilung anhand eines densitometrischen Masssystems oder densitometrischer Parameter (vgl. EP-A-196 431) hat zwar den Vorteil, dass preiswertere Geräte, nämlich Densitometer statt Spektralfotometer eingesetzt werden können, jedoch sind densitometrische Grössen für eine Qualitätsbeurteilung nicht besonders praktisch und nicht gleichwertig mit den Grössen, wie sie in einem echten Farbmasssystem vorkommen. Bei diesem Stand der Technik (EP-A-196 431) ist man beim Einsatz von Densitometern auf ein densitometrisches Messsystem beschränkt, das für eine Qualitätsbeurteilung schlechter ist als Farbmasszahlen in einem empfindungsmässig gleichabständigen Farbraum wie dem L*a*b*-Farbraum oder dem LUV-Farbraum.
  • Aus der EP-A-228 347 und der EP-A 321 402 ist ein Verfahren zur Farbsteuerung und Farbregelung einer Druckmaschine bekannt, bei dem mit Hilfe eines Farbmessgeräts oder eines Spektralfotometers Messfelder abgetastet werden, um Farbkoordinaten in einem farbmetrischen Messsystem zu erhalten und durch einen Koordinatenvergleich aus dem Farbabstand des abgetasteten Messfeldes von einem vorgegebenen Soll-Farbort eine Stellgrösse zur Verstellung der Farbführungsorgane der Druckmaschine zu erzeugen. Dabei wird gemäss der EP-A-321 402 in der Weise vorgegangen, dass ein ausserhalb eines Korrekturfarbraumes liegender vorgegebener Soll-Farbort durch einen erreichbaren Soll-Farbort auf der Oberfläche des Korrekturfarbraumes mit einem Farbabstand vom vorgegebenen Soll-Farbort ersetzt wird, dessen für die Druckqualität wesentliche Komponenten minimal sind. Zur Realisierung einer derartigen Regelstrategie ist eine Operation in einem farbmetrischen Koordinatensystem, beispielsweise dem L*a*b*-Farbraum erforderlich. Dies erfordert gemäss der EP-A 321 402 den Einsatz eines Spektralfotometers bzw. allgemein Farbmessgeräts statt eines Densitometers.
  • Die EP-A-255 924 offenbart ein Verfahren zur Steuerung bzw. Regelung der Farbführung einer Druckmaschine, bei dem aus mit Hilfe eines Densitometers gemessenen Soll-Ist-Farbdichteabweichungen der bunten Teilfarben mittels einer "vektoriellen Hilfskonstruktion" ein Farbanderungsvektor bestimmt wird, aus dem dann in nicht näher ausgeführter Weise "Steuerempfehlungen" bzw. "Regelempfehlungen" für die Farbführung abgeleitet werden. Die in der "vektoriellen Hilfskonstruktion" verwendeten Multiplikationsfaktoren werden durch vorhergehende Testdrucke mit systematischer Variation der Farbgebung der Einzelfarben und anschliessender Auswertung mittels Densitometer und Farbmessgerät bestimmt.
  • Die in diesem Dokument offenbarte Methode erlaubt im wesentlichen nur qualitative Aussagen über die Farbabweichungen zwischen dem gemessenen Fortdruck und der entsprechenden Referenz, da die zugrundeliegende "vektorielle Hilfskonstruktion" auch bei genauester Dichtemessung zu mittleren Fehlern von bis zu 16° beim Polarwinkel und 3 Delta-E-Einheiten beim Farbabstand führt. Obwohl diese Fehler als ausreichend klein bezeichnet werden, um eine für Steuer- bzw. Regelverfahren ausreichende Information über Art und Ausmass eines Farbstichs zu erhalten, ist eine präzise und zuverlässige quantitative Steuerung bzw. Regelung der Farbführung mit dieser Methode nicht möglich.
  • Ganz abgesehen davon ist die Methode gemäss diesem Dokument auch insofern relativ umständlich und kompliziert, als bei Verwendung eines mehrfarbigen Ubereinanderdruckfeldes (Graubalancefeldes) als Farbkontrollfeld die an diesem gemessenen Farbdichtedifferenzen vor der weiteren Verarbeitung mittels der "vektoriellen Hilfskonstruktion" zuerst noch "demaskiert" werden müssen, d.h. die Dichtewertdifferenzen zwischen den gemessenen Istmesswerten und den Sollmesswerten eines Sollexemplars müssen über ein lineares Gleichungssystem in solche Dichtewertdifferenzen umgerechnet werden, wie sie sich an einfarbigen Drucken ergeben hätten. Für die Bestimmung der Koeffizienten des linearen Gleichungssystems ist dabei eine zusätzliche Serie von Testdrucken erforderlich.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bestimmung der Farbmasszahldifferenzen sowie ein Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine der gattungsgemässen Arten dahingehend zu verbessern, dass eine exaktere Bestimmung der Farbmasszahlen im gewählten Farbraum und damit eine prazisere und zuverlässigere Steuerung oder Regelung der Farbführungsorgane der Druckmaschine möglich ist.
  • Diese Aufgabe wird bezüglich des eingangs genannten Verfahrens zur Bestimmung der Farbmasszahldifferenzen und damit zur Qualitätsbeurteilung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Die erfindungsgemässe Lösung für ein Verfahren zur Farbsteuerung oder Farbregelung ist im kennzeichnenden Teil des Anspruchs 2 angegeben.
  • Zweckmässige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Der Erfindung liegt die Erkenntnis zugrunde, daß innerhalb kleiner Bereiche um einen gegebenen Farbort in einem farbmetrischen Koordinatensystem Transformationsmatritzen existieren, die es gestatten, Änderungen der Farbmaßzahlen in Änderungen von Rasterdichten und in Änderungen von Volltondichten mitgedruckter Volltonfelder umzurechnen. Eine dritte Beziehung besteht in einer Transformation von Volltondichteänderungen von Volltonfeldern und Rasterdichteänderungen mitgedruckter Rasterfelder. Wenn zwei Transformationen der drei erwähnten Transformationen bekannt sind, kann die dritte ohne weiteres berechnet werden.
  • Nachfolgend wird die Erfindung anhand der Zeichnung näher beschrieben. Es zeigen:
  • Fig. 1
    vier Eichdrucke mit Eichfarbflächen in einer schematischen perspektivischen Ansicht,
    Fig. 2
    ein Schema zur Veranschaulichung von Transformationen zwischen einem Farbraum, einem Volltondichteraum und einem Rasterdichteraum,
    Fig. 3
    eine schematische Darstellung des Verfahrens zur Bestimmung der Transformationsmatritzen zwischen den in Fig. 2 veranschaulichten Koordinatenräumen und
    Fig. 4
    eine schematische Darstellung der Funktionsweise des Verfahrens zur Qualitätsbeurteilung durch Bestimmen von Farbmaßzahl differenzen und zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine.
  • Zur Realisierung des erfindungsgemäßen Verfahrens zur Qualitätsbeurteilung und/oder Beeinflussung der farblichen Erscheinung einer aus mehreren bunten Teilfarben aufgebauten Farbfläche bei einem Druckvorgang ist es zunächst erforderlich, Eichdrucke zu erstellen, die es gestatten, empirisch die Beziehungen zwischen densitometrischen Größen und farbmetrischen Größen für einen gewählten Stützpunkt oder Arbeitspunkt in Abhängigkeit vom verwendeten Papier, der Druckfarbe, der Druckmaschine und dem jeweils einzusetzenden Densitometergerät oder Densitometertyp festzustellen.
  • In Fig. 1 sind schematisch vier Eichdrucke oder Eichkarten mit Eichfarbflächen dargestellt. Die in Fig. 1 unten dargestellte und unter nominellen Druckbedingungen hergestellte Eichtafel oder Eichkarte wird nachfolgend als Referenz-Eichdruck 1 bezeichnet. Der Referenz-Eichdruck 1 weist einen Farbmeßstreifen oder eine Eichfarbfläche mit vier Feldern auf, von denen das erste ein Rasterfeld 2, das zweite ein Cyan-Volltonfeld 3, das dritte ein Magenta-Volltonfeld 4 und das vierte ein Gelb- oder Yellow-Volltonfeld 5 ist.
  • Das Rasterfeld 2 besteht aus drei übereinander gedruckten Rastern mit den Farben und Schichtdicken der Volltonfelder 3 bis 5, wobei es besonders zweckmäßig ist, ein Graubalancefeld zu verwenden, dessen Tonwert oder Graustufe sensibel auf Schichtdicken änderungen und farblich ähnlich einem Rasterfeld ist, wie es bei dem später herzustellenden Druckerzeugnis im Farbmeßstreifen vorkommt. Insbesondere kann es sich bei dem Rasterfeld 2 des Referenz-Eichdrucks 1 um ein dunkelgraues Graubalancefeld handeln.
  • Mit Hilfe eines Densitometers und zwar vorzugsweise genau mit dem Densitometer, das später bei der Qualitätsbeurteilung oder Beeinflussung der farblichen Erscheinung durch eine Schichtdickensteuerung der Druckmaschine verwendet werden soll, werden das Rasterfeld 2 und die Volltonfelder 3, 4 und 5 des Referenz-Eichdruckes 1 densitometrisch vermessen. Dabei ergeben sich für das Cyan-Volltonfeld 3 die Cyan-Volltondichte CV₀, für das Magenta-Volltonfeld 4 die Magenta-Volltondichte MV₀ und für das Yellow-Volltonfeld 5 des Referenz-Eichdrucks 1 die Yellow-Volltondichte YV₀.
  • Durch Vermessen des vorzugsweise, aber nicht notwendigerweise, dunkelgrauen Rasterfeldes 2 mit Hilfe des Densitometers werden für das Rasterfeld 2 die Cyan-Rasterdichte CR₀, die Magenta-Rasterdichte MR₀ und die Yellow-Rasterdichte YR₀ erhalten. Die drei Referenz-Eichmeßwerte für die drei Volltondichten und die drei Referenz-Eichmeßwerte für die Rasterdichten werden zum Vergleich mit anderen Eichdrucken in einem Speicher, insbesondere in einem Speicher des Densitometers oder einem Speicher eines angeschlossenen Computers oder als Ausdruck auf einem Blatt Papier gespeichert.
  • Das Rasterfeld 2 des Referenz-Eichdrucks 1 wird zusätzlich zur densitometrischen Vermessung mit Hilfe des Densitometers auch mit Hilfe eines Spektralfotometers farbmetrisch vermessen. Die von dem Spektralfotometer erfaßten farbmetrischen Meßwerte sind Farbmaßzahlen eines Farbraums, wobei vorzugsweise der L*a*b*-Farbraum (CIE 1976) verwendet wird. Bei dem L*a*b*-Farbraum handelt es sich um ein empfindungsmäßig gleichabständig gestuftes Farbsystem, dessen Farbmaßzahlen zur Qualitätsbeurteilung im Farbraum besonders zweckmäßig sind, da sie zu einer höheren Flexibilität und Aussagekraft führen als Volltondichten oder Rasterdichten. Ein anderes verwendbares Farbraumsystem ist das LUV-System.
  • Mit Hilfe des später beim Fortdruck nicht mehr benötigten Spektralfotometers werden somit die farbmetrischen Größen oder Farbmaßzahlen L₀, a₀ und b₀ erfaßt und ebenfalls zum Vergleich mit den Werten anderer Eichdrucke gespeichert. Diese Speicherung erfolgt elektronisch im Spektralfotometer selbst oder in einem mit diesem verbundenen Computer. Es ist auch möglich, die Farbmaßzahlen als Ausdruck, insbesondere als Ausdruck auf dem Referenz-Eichdruck 1 selbst, zu speichern.
  • Die densitometrischen und farbmetrischen Größen für den Referenz-Eichdruck 1 können beispielsweise folgende Werte haben: CV₀ = 1,58, MV₀ = 1,45, YV₀ = 1,48, CR₀ = 0,80, MR₀ = 0,95, YR₀ = 1,12, L₀ = 34,21, a₀ = 3,58 und b₀ = 6,06.
  • Bei den zusätzlich benötigten und in Fig. 1 dargestellten Eichdrucken, die ähnlich wie der Referenz-Eichdruck 1 aufgebaut sind, handelt es sich um einen ersten Zusatz-Eichdruck 6, einen zweiten Zusatz-Eichdruck 7 und einen dritten Zusatz-Eichdruck 8. Die Felder der Zusatz-Eichdrucke 6 bis 8 sind jeweils wie die Felder 2 bis 5 des Referenz-Eichdrucks 1 so gedruckt worden, daß die Schichtdicken der verschiedenfarbigen Volltonfelder den Schichtdicken der mitgedruckten einzelnen Rasterpunkte der drei übereinandergedruckten verschiedenfarbigen Raster des jeweiligen Rasterfeldes zugeordnet sind.
  • Der erste Zusatz-Eichdruck 6 unterscheidet sich vom Referenz-Eichdruck 1 dadurch, daß beim Druck des Cyan-Volltonfeldes 9 und damit des mitgedruckten, zugeordneten Cyan-Rasters im Rasterfeld 12 eine größere Schichtdicke der Farbführungsorgane der Druckmaschine eingestellt worden ist, so daß sich für das Cyan-Volltonfeld 9 eine größere Cyan-Volltondichte CV₁ ergibt als für das Cyan-Volltonfeld 3. Die der erhöhten Schichtdicke entsprechende höhere Cyan-Volltondichte CV₁ kann als Summe aus der Cyan-Volltondichte CV₀ und der Veränderung ΔCV₁ ausgedrückt werden (CV₁ = CV₀ + ΔCV₁).
  • Das Magenta-Volltonfeld 10 des ersten Zusatz-Eichdrucks 6 hat eine Magenta-Volltondichte MV₁, die im Rahmen der Drucktoleranzen der Volltondichte MV₀ entspricht. Entsprechendes gilt für die Volltondichte YV₁ des Yellow-Volltonfeldes 11.
  • Das mitgedruckte Rasterfeld 12 des ersten Zusatz-Eichdrucks 6 unterscheidet sich infolge der größeren Schichtdicke für die Druckfarbe Cyan von dem Rasterfeld 2 dadurch, daß die Rasterpunkte des Cyan-Rasters jeweils eine höhere Schichtdicke aufweisen. Aus diesem Grunde ergibt sich für die Rasterdichte CR₁ des Rasterfeldes 12 ein höherer Meßwert beim Messen mit dem Densitometer als dies beim Vermessen des Rasterfeldes 2 der Fall war. Die Magenta-Rasterdichte MR₁ des Rasterfeldes 12 des ersten Zusatz-Eichdrucks 6 entspricht im wesentlichen der Magenta-Rasterdichte MR₀ des Referenz-Eichdrucks 1. Entsprechendes gilt für die Yellow-Rasterdichte YR₁ des ersten Zusatz-Eichdrucks 6.
  • Die drei Meßwerte für die Volltondichten der Volltonfelder 9, 10 und 11 sowie die Meßwerte der Rasterdichten des Rasterfeldes 12 des ersten Zusatz-Eichdrucks 6 werden gespeichert und verwendet, um die Abweichungen dieser sechs gemessenen Dichtewerte bezüglich der entsprechenden gemessenen sechs Dichtewerte des Referenz-Eichdrucks 1 zu ermitteln. Bei diesen sechs gemessenen Abweichungen oder Änderungen handelt es sich um Werte für: ΔCV₁ = CV₁ - CV₀
    Figure imgb0001
    ΔMV₁ = MV₁ - MV₀
    Figure imgb0002
    ΔYV₁ = YV₁ - YV₀
    Figure imgb0003
    ΔCR₁ = CR₁ - CR₀
    Figure imgb0004
    ΔMR₁ = MR₁ - MR₀
    Figure imgb0005
    ΔYR₁ = YR₁ - YR₀
    Figure imgb0006
  • Nach dem densitometrischen Vermessen der Volltonfelder 9 bis 11 und des Rasterfeldes 12 des ersten Zusatz-Eichdrucks 6 erfolgt eine Vermessung des Rasterfeldes 12 mit Hilfe des bereits erwähnten Spektralfotometers, um die Farbabweichung des Rasterfeldes 12 bezüglich dem Rasterfeld 2 zu bestimmen. Wenn die drei Farbmaßzahlen des Rasterfeldes 12 mit L₁ a₁ und b₁ bezeichnet werden, so ergeben sich für die Veränderungen der Farbmaßzahlen zwischen dem Referenz-Eichdruck 1 und dem ersten Zusatz-Eichdruck 6 folgende zusätzliche drei Werte. ΔL₁ = L₁ - L₀
    Figure imgb0007
    Δa₁ = a₁ - a₀
    Figure imgb0008
    Δb₁ = b₁ - b₀.
    Figure imgb0009
  • Durch farbmetrisches und densitometrisches Vermessen und Vergleichen des Referenz-Eichdrucks 1 und des ersten Zusatz-Eichdrucks 6 werden somit neun Abweichungen oder neun Differenzwerte erhalten, bei denen es sich um drei Volltondichte-Differenzen, um drei Rasterdichte-Differenzen und um drei Farbmaßzahlen-Differenzen handelt. Die Volltondichte-Differenzen ΔMV₁ und ΔYV₁ beim Zusatz-Eichdruck 6 sind ebenso wie die zugeordneten Rasterdichte-Differenzen ΔMR₁ und ΔYR₁ in der Praxis von Null verschieden. Beispielsweise ergeben sich folgende Werte: ΔCV₁ = 0,19, ΔMV₁ = -0,01, ΔYV₁ = -0,02, ΔCR₁ = 0,09, ΔMR₁ = 0,04, ΔYR₁ = 0,01, ΔL₁ = -1,85, Δa₁ = -2,87 und Δb₁ = -2,44.
  • Diese Beispielswerte hängen nicht nur vom verwendeten Densitometergerätetyp oder Densitometergerät sondern auch von den verwendeten Druckfarben, der Druckmaschine und dem verwendeten Papier ab.
  • Um eine allgemeine, für einen Arbeitspunkt im Farbraum gültige Beziehung empirisch zu bestimmen, die einen Zusammenhang zwischen den Änderungen der Volltondichten oder Schichtdicken und den Änderungen der Rasterdichten sowie den Änderungen der farbmetrischen Werte eines Druckes wiedergibt, ist es erforderlich, zwei weitere Zusatz-Eichdrucke zu erstellen und zu vermessen.
  • In Fig. 1 ist ein zweiter Zusatz-Eichdruck 7 zusammen mit den zugeordneten Volltonfeldern 13, 14 und 15 sowie dem mitgedruckten Rasterfeld 16 dargestellt. Beim Drucken des zweiten Zusatz-Eichdruckes 7 wurden die gleichen Umgebungsbedingungen, insbesondere gleiches Papier, Druckfarbe und Druckmaschine, wie beim Druck des Referenz-Eichdrucks 1 und des ersten Zusatz-Eichdrucks 6 verwendet. Im Unterschied zum Referenz-Eichdruck 1 hat der zweite Zusatz-Eichdruck 7 jedoch für die Druckfarbe Magenta eine wesentlich größere Schichtdicke und somit eine um ΔMV₂ größere Volltondichte des Volltonfeldes 14 als die Volltondichte MV₀ des Volltonfeldes 4 des Referenz-Eichdruckes 1. Die Veränderung der Volltondichte ΔMV₂ kann beispielsweise 0,26 betragen. Beim Drucken des zweiten Zusatz-Eichdrucks 7 werden Veränderungen der Volltondichten CV₂ und YV₂ für die Volltonfelder 13 und 15 jedoch weitgehend vermieden. Während die Volltonfelder 13, 14 und 15 lediglich wiederum densitometrisch vermessen werden, wird das Rasterfeld 16 des zweiten Zusatz-Eichdrucks 7 wieder sowohl densitometrisch als auch farbmetrisch erfaßt. Dabei ergeben sich im Vergleich zu den beim densitometrischen und farbmetrischen Vermessen des Referenz-Eichdrucks 1 erfaßten Werten Abweichungen, die ermittelt und in der oben erwähnten Weise gespeichert werden. Es handelt sich hierbei um folgende Werte: ΔL₂ = L₂ - L₀
    Figure imgb0010
    Δa₂ = a₂ - a₀
    Figure imgb0011
    Δb₂ = b₂ - b₀
    Figure imgb0012
    ΔCV₂ = CV₂ - CV₀
    Figure imgb0013
    ΔMV₂ = MV₂ - MV₀
    Figure imgb0014
    ΔYV₂ = YV₂ - YV₀
    Figure imgb0015
    ΔCR₂ = CR₂ - CR₀
    Figure imgb0016
    ΔMR₂ = MR₂ - MR₀
    Figure imgb0017
    ΔYR₂ = YR₂ - YR₀
    Figure imgb0018
  • Analog den Zusatz-Eichdrucken 6 und 7 wird schließlich ein dritter Zusatz-Eichdruck 8 erstellt, wobei die Schichtdicke für die Druckfarbe Gelb oder Yellow im in Fig. 1 oben ganz rechts gezeichneten Volltonfeld 19 erheblich erhöht wird. Die sich dadurch ergebende Erhöhung der Volltondichte ΔYV₃ kann beispielsweise 0,16 betragen. Durch densitometrisches Abtasten der Volltonfelder 17 bis 19 und farbmetrisches Abtasten des mitgedruckten Rasterfeldes 20 des drittes Zusatz-Eichdruckes 8 werden schließlich neun weitere Meßwerte in entsprechender Weise wie bei den ersten und zweiten Zusatz-Eichdrucken 6 und 7 erhalten, nämlich: ΔL₃ = L₃ - L₀
    Figure imgb0019
    Δa₃ = a₃ - a₀
    Figure imgb0020
    Δb₃ = b₃ - b₀
    Figure imgb0021
    ΔCV₃ = CV₃ - CV₀
    Figure imgb0022
    ΔMV₃ = MV₃ - MV₀
    Figure imgb0023
    ΔYV₃ = YV₃ - YV₀
    Figure imgb0024
    ΔCR₃ = CR₃ - CR₀
    Figure imgb0025
    ΔMR₃ = MR₃ - MR₀
    Figure imgb0026
    ΔYR₃ = YR₃ - YR₀
    Figure imgb0027
  • Es zeigt sich somit, daß sich die Zusatz-Eichdrucke 6, 7 und 8 von dem Referenz-Eichdruck 1 jeweils dadurch unterscheiden, daß eine Volltondichte durch Verändern einer Schichtdicke verhältnismäßig stark unterschied lich gemacht worden ist, während die jeweils beiden anderen Farben in ihren Schichtdicken weitgehend unverändert gelassen worden sind. Entsprechend den Änderungen der Volltondichten ergeben sich Veränderungen im jeweils mitgedruckten Rasterfeld, das im Gegensatz zu den Volltonfeldern nicht nur densitometrisch sondern auch farbmetrisch im Rahmen des Eichvorgangs vermessen wird.
  • Fig. 2 veranschaulicht das dem erfindungsgemäßen Verfahren zugrunde liegende Konzept. In Fig. 2 links erkennt man drei Volltonfelder 21, 22, 23 eines Farbmeßstreifens oder Eichdruckes mit den mit Hilfe eines bestimmten Densitometers gemessenen Änderungen der zugeordneten Volltondichten ΔCV, ΔMV und ΔYV, die als die Komponenten eines dreidimensionalen Volltondichteänderungsvektor [ΔV] aufgefaßt werden können. Diese Veränderungen bewirken in dem in Fig. 2 rechts zweimal gezeichneten Rasterfeld 24, 24', bei dem es sich insbesondere um ein Graubalancefeld zur Überwachung des Farbgleichgewichtes von Cyan, Magenta und Yellow im Übereinanderdruck handeln kann, ebenfalls Veränderungen, wobei die densitometrisch erfaßbaren Änderungen der Rasterdichten ΔCR, ΔMR und ΔYR betragen. Mißt man das Rasterfeld 24, 24' als Rasterfeld 24' farbmetrisch mit Hilfe eines Spektralfotometers, so erfaßt man die aufgrund der Veränderungen der Volltondichten bei den Volltonfeldern 21 bis 23 bewirkten Änderungen der farbmetrischen Werte ΔL, Δa und Δb im L*a*b*-Farbraum.
  • In Fig. 2 veranschaulicht ein Pfeil 25 eine Zuordnung zwischen den Volltonfeldern 21, 22, 23 und dem Rasterfeld 24. Die Verknüpfung von den Volltonfeldern 21 bis 23 zugeordneten Volltondichteänderungen in einem Volltondichteraum mit den zugeordneten Rasterdichteänderungen des Rasterfeldes 24 in einem Rasterdichteraum bedeuted eine Transformation eines dreidimensionalen Vektors, die sich durch eine Volltondichte-Rasterdichte-Transformationsmatrix darstellen läßt, die nachfolgend kurz als Transformationsmatrix [X] bezeichnet ist. Die Transformationsmatrix [X] verfügt über neun Matrixelemente und ordnet den drei Volltondichteänderungen ΔCV, ΔMV und ΔYV die drei Rasterdichteänderungen ΔCR, ΔMR und ΔYR zu. Die Transformationsmatrix [X] transformiert somit den aus drei Komponenten, nämlich den aus drei Volltondichteänderungen ΔCV, ΔMV und ΔYV gebildeten Volltondichteänderungsvektor [ΔV] in einen Rasterdichteänderungsvektor [ΔR] mit den Komponenten Δ CR, ΔMR und ΔYR. In Matrixschreibweise läßt sich dies folgendermaßen darstellen:
    Figure imgb0028

    oder abgekürzt [ΔR] = [X] · [ΔV]
    Figure imgb0029
  • Die Transformationsmatrix [X] für dreidimensionale Vektoren enthält neun Elemente X₁₁ bis X₃₃, die den partiellen Ableitungen der Komponenten des Raster dichtevektors nach den Komponenten des Volltondichtevektors entsprechen. Somit gilt für die Transformationsmatrix [X]:
    Figure imgb0030
  • In Fig. 2 veranschaulicht ein Pfeil 26 zwischen dem Rasterfeld 24' und den Volltonfeldern 21 bis 23 eine Zuordnung zwischen Veränderungen des der Farbe des Rasterfeldes 24' zugeordneten Farbortes im L*a*b*-Farbraum bzw. den zugeordneten Änderungen der farbmetrischen Werte oder Farbmaßzahlen einerseits und den Volltondichteänderungen der mitgedruckten Volltonfelder 21 bis 23 andererseits. Dies entspricht einer Transformation eines dreidimensionalen Farbänderungsvektors [ΔF], dessen Komponenten durch die Farbmaßzahländerungen ΔL, Δa und Δb gebildet sind, im L*a*b*-Farbraum in den zugeordneten dreidimensionalen Volltondichteänderungsvektor ΔV im Volltondichteraum. Die der somit durch den Pfeil 26 veranschaulichten Transformation zugeordnete Farbmaßzahlen-Volltondichte-Transformationsmatrix ist in Fig. 2 mit [Z] bezeichnet, wobei in abgekürzter Schreibweise gilt: [ΔV] = [Z] · [ΔF]
    Figure imgb0031
  • Die neun Komponenten der Matrix [Z] werden in analoger Weise zur Matrix [X] durch die partiellen Ableitungen der Komponenten des Volltondichtevektors nach den Komponenten des Farbvektors gebildet.
  • In Fig. 2 erkennt man schließlich einen Pfeil 27 zwischen dem Rasterfeld 24' und dem Rasterfeld 24. Der Pfeil 27 veranschaulicht eine Zuordnung zwischen Änderungen ΔL, Δa, Δb der farbmetrisch erfaßbaren Farbmaßzahlen L,a,b im L*a*b*-Farbraum des Rasterfeldes 24'und den zugeordneten densitometrisch erfaßbaren Rasterdichteänderungen ΔCR, ΔMR und Δ YR des körperlich mit dem Rasterfeld 24' identischen Rasterfeldes 24. Die durch den Pfeil 27 veranschaulichte Zuordnung zwischen drei Änderungen von Farbmaßzahlen und drei Änderungen von Rasterdichten läßt sich durch eine Farbmaßzahlen-Rasterdichte-Transformationsmatrix beschreiben. Die kurz als Transformationsmatrix [W] bezeichnete Matrix gestattet die Transformation des dreidimensionalen Farbänderungsvektors [ΔF] im L*a*b*-Farbraum in einen Rasterdichteänderungsvektor [ΔR] im Rasterdichteraum. Die Transformationsmatrix [W] weist neun Elemente auf, da sie einen dreidimensionalen Vektor in einen anderen dreidimensionalen Vektor transformiert. Die Elemente W₁₁ bis W₃₃ werden durch die partiellen Ableitungen der Komponenten des Vektors [ΔR] nach den Komponenten des Vektors [ΔF] gebildet. Für die Transformationsmatrix [W] gilt somit:
    Figure imgb0032
  • Die Transformation zwischen den Farbmaßzahländerungen und den Änderungen der Rasterdichten läßt sich somit wie folgt darstellen:
    Figure imgb0033

    oder abgekürzt [ΔR] = [W] · [ΔF]
    Figure imgb0034
  • Aus Fig. 2 sowie den obigen Erläuterungen ergibt sich, daß den Transformationsmatritzen [X], [W] und [Z] jeweils inverse Transformationsmatritzen [X⁻¹], [W⁻¹] und [Z⁻¹] zugeordnet werden können, die in Fig. 2 durch die Pfeile 28, 29 und 30 veranschaulicht sind und jeweils bei einer Transformation in umgekehrter Richtung zu den durch die Pfeile 25, 27 und 26 veranschaulichten Transformationen ,verwendet werden können. Man erkennt aus Fig. 2 und den obigen Erläuterungen, daß es genügt, zwei nicht einander inverse Transformationsmatritzen zu kennen, um beliebige Umrechnungen zwischen Veränderungen im Volltondichteraum, Rasterdichteraum und L*a*b*-Farbraum zu berechnen. Die oben erörterten Transformationsmatritzen [X], [W] und [Z] gelten dabei jeweils nur für den Arbeitspunkt, für den sie bestimmt worden sind, weil bei den obigen Betrachtungen lineare Zusammenhänge vorausgesetzt worden sind, die jedoch immer dann richtig sind, wenn die betrachteten Änderungen sich in einem verhältnismäßig kleinen Raumvolumen des gesamten dreidimensionalen (Farb)-Raumes abspielen. Der Arbeitspunkt ist dabei derjenige Punkt im jeweiligen Raum, um den die Veränderungen stattfinden.
  • Berücksichtigt man zusätzlich zu den oben erwähnten Transformationsmatritzen die jeweils leicht zu berechnenden inversen Transformationsmatritzen, so gelten in abgekürzter Schreibweise folgende weitere Beziehungen, die sich auch der Fig. 2 entnehmen lassen: [ΔV] = [X]⁻¹ · [ΔR]
    Figure imgb0035
    [ΔF] = [W]⁻¹ · [ΔR]
    Figure imgb0036
    [ΔF] = [Z]⁻¹ · [ΔV]
    Figure imgb0037
    [ΔV] = [X]⁻¹ · [W] · [ΔF]
    Figure imgb0038
    und [ΔF] = [W]⁻¹ · [X] · [ΔV]
    Figure imgb0039
  • Bei Kenntnis der neun Elemente zweier Transformationsmatritzen ist es somit möglich, beliebige Berechnungen zwischen den Volltondichten der Volltonfelder, den Rasterdichten der Rasterfelder und den Farbmaßzahlen der Rasterfelder gedruckter Eichfarbflächen oder Farbmeßstreifen vorzunehmen. Die Eichfarbflächen dienen zunächst zur Bestimmung der Matrixelemente, die dann später bei der Überwachung von Farbmeßstreifen für Umrechnungen zur Verfügung stehen.
  • Fig. 3 veranschaulicht, wie gemäß dem erfindungsgemäßen Verfahren durch Ausmessen der im Zusammenhang mit Fig. 1 beschriebenen Eichdrucke die Transformationsmatritzen [X], [W] und [Z] für einen z.B. durch ein Graubalancefeld vorgegebenen Arbeitspunkt bestimmt werden. In Fig. 3 erkennt man oben links ein Rasterfeld Ri mit i = 0, 1, 2 oder 3, wobei es sich je nach dem Index i um das Rasterfeld 2, 12, 16 oder 20 aus der Fig. 1 handelt.
  • In Fig. 3 oben rechts erkennt man ein Trio von Volltonfeldern Vi, wobei der Index i von 0 bis 3 läuft. Wenn der Index i = 0 beträgt, besteht das Trio der Volltonfelder V₀ aus den Volltonfeldern 3, 4 und 5 gemäß Fig. 1. Die aus Fig. 1 bekannten Volltonfelder 9, 10 und 11 entsprechen dem Trio der Volltonfelder V₁, die Volltonfelder 13, 14 und 15 dem Trio der Volltonfelder V₂ und die Volltonfelder 17, 18 und 19 dem Trio der Volltonfelder V₃.
  • Zu Beginn der Eichmessungen für die Bestimmung der Transformationsmatritzen [X], [W] und [Z] wird der Referenz-Eichdruck 1 mit dem Rasterfeld R₀ und dem Trio der Volltonfelder V₀ vermessen. In Fig. 3 erkennt man ein Spektralfotometer 30, das es gestattet, die Rasterfelder R₀, R₁, R₂ und R₃ farbmetrisch auszumessen. Außer einer farbmetrischen Ausmessung der Rasterfelder R₀ bis R₃, die wie erwähnt den Rasterfeldern 2, 12, 16 und 20 entsprechen) erfolgt eine densitometrische Vermessung der Rasterfelder R₀ bis R₃ mit Hilfe des in Fig. 3 schematisch dargestellten Densitometers 31.
  • Das Spektralfotometer 30 liefert jeweils Farbmaßzahlen L₀, a₀, b₀ für das Rasterfeld R₀ des Referenz-Eichdrucks 1, L₁, a₁, b₁ für das Rasterfeld R₁ des ersten Zusatz-Eichdrucks 6, L₂, a₂, b₂ für das Rasterfeld R₂ des zweiten Zusatz-Eichdrucks 7 und L₃, a₃, b₃ für das Rasterfeld R₃ des dritten Zusatz-Eichdrucks 8. Vom Ausgang 32 des Spektralfotometers gelangen die Trippel der Farbmaßzahlen Li, ai und bi entweder direkt elektrisch oder unter Zwischenschaltung einer Anzeige und einer manuellen Tastatureingabe in einen dem Spektralfotometer 30 und dem Densitometer 31 zugeordneten Computer 33.
  • Der Computer 33 verfügt über einen Differenzrechner 34 für vom Spektralfotometer 30 erfaßte Farbmaßzahlen und bildet mit dessen Hilfe die Differenzen zwischen den Farbmaßzahlen Li, ai, bi mit i = 1, 2, 3 der Rasterfelder R₁, R₂ und R₃ einerseits und den Farbmaßzahlen L₀, a₀, b₀ des Rasterfeldes R₀ andererseits. Anschließend speichert der Differenzrechner 34 die errechneten Differenzwerte für die Farbmaßzahlen, d.h. die Zahlenwerte für ΔL₁, Δa₁, Δb₁, ΔL₂, Δa₂, Δb₂, ΔL₃, Δa₃ und Δb₃. Die drei Farbmaßzahldifferenzen für den ersten Zusatz-Eichdruck 6 können als Komponenten eines dreidimensionalen Vektors [Δ F]₁, die für den zweiten Zusatz-Eichdruck 7 als Komponenten eines Vektors [ΔF]₂ und die des dritten Zusatz-Eichdrucks 8 als Komponenten eines ebenfalls dreidimensionalen Vektors [ΔF]₃ aufgefaßt werden. In den dem Differenzrechner 34 für die Farbmaßzahlen zugeordneten Block in Fig. 3 sind diese drei dreidimensionalen Vektoren als [ΔF]i mit i = 1, 2, 3 dargestellt.
  • Die Rasterfelder R₀, R₁, R₂ und R₃ werden zusätzlich mit Hilfe des Densitometers 31 vermessen, um für jede der Farben Cyan, Magenta und Yellow die Rasterdichten zu bestimmen, so daß anschließend in einem Differenzrechner 35 für Rasterdichten die Differenzen zwischen den Rasterdichten der Raster R₁, R₂ und R₃ einerseits und der Rasterdichte des Rasters R₀ andererseits errechnet werden können. Nach dem Speichern der Rasterdichtedifferenzen stehen am Ausgang des Differenzrechners 35 für Rasterdichten folgende neun Werte zur Verfügung: ΔCR₁, ΔMR₁, ΔYR₁, ΔCR₂, ΔMR₂, ΔYR₂, ΔCR₃, ΔMR₃ und ΔYR₃. In Kurzschreibweise lassen sich diese Rasterdichtedifferenzen als dreidimensionale Rasterdichteänderungsvektoren [ΔR]i mit i = 1, 2, 3 schreiben.
  • Das Densitometer 31 dient während der Eichmessungen an den Eichdrucken schließlich auch zur densitometrischen Vermessung der Volltonfelder V₀ des Referenz-Eichdrucks 1, der Volltonfelder V₁ des ersten ZusatzEichdrucks 6, der Volltonfelder V₂ des zweiten ZusatzEichdrucks 7 und der Volltonfelder V₃ des dritten Zusatz-Eichdrucks 8. Diese Volltonfelder tragen in Fig. 1 die Bezugszeichen 3, 4, 5, 9, 10, 11, 13, 14, 15, 17, 18 und 19.
  • Wie man in Fig. 3 erkennt, ist das Densitometer 31 auch mit einem im Computer 33 vorhandenen Differenzrechner 36 für Volltondichten direkt elektrisch oder unter Zwischenschaltung einer Densitometeranzeige und einer Tastatur verbunden. Der Differenzrechner 36 für Volltondichten berechnet aus den vom Densitometer 31 erfaßten Volltondichten für jede der drei Druckfarben die Differenz zwischen der Volltondichte eines ZusatzEichdrucks 6, 7 oder 8 und der gleichen Farbe des Referenz-Eichdrucks 1. Anschließend werden diese Werte zur Weiterverarbeitung im Differenzrechner 36 für Volltondichten gespeichert. Dabei handelt es sich um folgende neun Volltondichtedifferenzen: ΔCV₁, Δ MV₁, ΔYV₁, ΔCV₂, ΔMV₂, ΔYV₂, ΔCV₃, ΔMV₃ und ΔYV₃. Diese jeweils einem Zusatz-Eichdruck zugeordneten Zahlentrippel lassen sich in der Kurz schreibweise zu einem dreidimensionalen Vektor [ΔV]i mit i = 1, 2, 3 zusammenfassen.
  • Der Differenzrechner 35 für Rasterdichten und der Differenzrechner 36 für Volltondichten speisen, wie sich dem Blockschaltbild in Fig. 3 entnehmen läßt, einen ersten Matrixrechner 37. Der Matrixrechner 37 dient dazu, die neun Elemente der Transformationsmatrix [X] zu bestimmen. Dazu erhält er von dem Differenzrechner 35 für die Rasterdichten die oben erwähnten neun Zahlenwerte für Rasterdichtedifferenzen und vom Differenzrechner 36 für Volltondichten die oben erwähnten neun Meßwerte für Volltondichtedifferenzen. Durch Einsetzen dieser Zahlenwerte in die drei Matrixgleichungen [ΔR] i = [X] · [ΔV] i mit i = 1, 2 und 3
    Figure imgb0040

    erhält man die folgenden neun Gleichungen für die neun Unbekannten der Transformationsmatrix [X]: ΔCR₁ = X₁₁ · ΔCV₁ + X₁₂ · ΔMV₁ + X₁₃ · ΔYV₁
    Figure imgb0041
    ΔCR₂ = X₁₁ · ΔCV₂ + X₁₂ · ΔMV₂ + X₁₃ · ΔYV₂
    Figure imgb0042
    ΔCR₃ = X₁₁ · ΔCV₃ + X₁₂ · ΔMV₃ + X₁₃ · ΔYV₃
    Figure imgb0043
    ΔMR₁ = X₂₁ · ΔCV₁ + X₂₂ · ΔMV₁ + X₂₃ · ΔYV₁
    Figure imgb0044
    ΔMR₂ = X₂₁ · ΔCV₂ + X₂₂ · ΔMV₂ + X₂₃ · ΔYV₂
    Figure imgb0045
    ΔMR₃ = X₂₁ · ΔCV₃ + X₂₂ · ΔMV₃ + X₂₃ · ΔYV₃
    Figure imgb0046
    ΔYR₂ = X₃₁ · ΔCV₁ + X₃₂ · ΔMV₁ + X₃₃ · ΔYV₁
    Figure imgb0047
    ΔYR₂ = X₃₁ · ΔCV₂ + X₃₂ · ΔMV₂ + X₃₃ · ΔYV₂
    Figure imgb0048
    ΔYR₃ = X₃₁ · ΔCV₃ + X₃₂ · ΔMV₃ + X₃₃ · ΔYV₃
    Figure imgb0049
  • Nach Einsetzen der speziellen von den Differenzrechnern 35 und 36 insgesamt gelieferten 18 Differenzzahlenwerte in das obige Gleichungssystem mit neun Gleichungen berechnet der erste Matrixrechner 37 die Zahlenwerte für die neun Unbekannten X₁₁, X₁₂ , X₁₃, X₂₁, X₂₂, X₂₃, X₃₁, X₃₂ und X₃₃ . Diese Zahlenwerte werden vom ersten Matrixrechner 37 am Ausgang 38 als die neun Elemente der Transformationsmatrix [X] ausgegeben.
  • Der Computer 33 enthält, wie man der Fig. 3 weiter entnehmen kann, einen zweiten Matrixrechner 39 zur Berechnung der Transformationsmatrix [W]. Der zweite Matrixrechner 39 setzt die von den Differenzrechnern 34 und 35 ermittelten und zwischengespeicherten Differenzwerte in die Matrixgleichung [ΔR]i = [W]·[ΔF]i ein. Dadurch ergeben sich folgende neun Gleichungen für die neun Unbekannten der Elemente der Transformationsmatrix [W]: ΔCR₁ = W₁₁ · ΔL₁ + W₁₂ · Δa₁ + W₁₃ · Δb₁
    Figure imgb0050
    ΔCR₂ = W₁₁ · ΔL₂ + W₁₂ · Δa₂ + W₁₃ · Δb₂
    Figure imgb0051
    ΔCR₃ = W₁₁ · ΔL₃ + W₁₂ · Δa₃ + W₁₃ · Δb₃
    Figure imgb0052
    ΔMR₁ = W₂₁ · ΔL₁ + W₂₂ · Δa₁ + W₂₃ · Δb₁
    Figure imgb0053
    ΔMR₂ = W₂₁ · ΔL₂ + W₂₂ · Δa₂ + W₂₃ · Δb₂
    Figure imgb0054
    ΔMR₃ = W₂₁ · ΔL₃ + W₂₂ · Δa₃ + W₂₃ · Δb₃
    Figure imgb0055
    ΔYR₁ = W₃₁ · ΔL₁ + W₃₂ · Δa₁ + W₃₃ · Δb₁
    Figure imgb0056
    ΔYR₂ = W₃₁ · ΔL₂ + W₃₂ · Δa₂ + W₃₃ · Δb₂
    Figure imgb0057
    ΔYR₃ = W₃₁ · ΔL₃ + W₃₂ · Δa₃ + W₃₃ · Δb₃
    Figure imgb0058
  • Nach Auswerten dieses Gleichungssystems liefert der zweite Matrixrechner 39 an seinem Ausgang 40 die neun Elemente der Transformationsmatrix [W].
  • Die Ausgänge 38 und 40 des ersten Matrixrechners 37 und des zweiten Matrixrechners 39 speisen die beiden Eingänge eines dritten Matrixrechners 41, der es gestattet, die Transformationsmatrix [X] zu invertieren und mit der Transformationsmatrix [W] zu multiplizieren, um die neun Elemente der im Zusammenhang mit Fig. 2 beschriebenen Transformationsmatrix [Z] zu berechnen.
  • Sobald im Computer 33 die Elemente der Transformationsmatritzen [X], [W] und [Z] vorhanden sind, wird das Spektralfotometer 30 nicht mehr benötigt, um mit dem Densitometer 31 eine Qualitätskontrolle und Qualitätsbeurteilung im L*a*b*-Farbraum vorzunehmen.
  • Im Anschluß an die oben beschriebene Eichung kann das aus dem Densitometer 31 und dem Computer 33 bestehende System nunmehr durch Aufsetzen des Densitometers 31 auf ein den Rasterfeldern der Eichdrucke ähnliches Rasterfeld 43, insbesondere ein Graubalanceraster eines Musterbogens oder OK-Bogens 44 (Fig. 4), die Differenzen zwischen den Farbmaßzahlen des Rasterfeldes 43 des OK-Bogens 44 und den Farbmaßzahlen des Rasterfeldes 2 des Referenz-Eichdrucks 1 bestimmen. Nach Kenntnis dieser Differenzen bzw. Abweichungen ist es möglich, unter Berücksichtigung der durch die Messung mit dem Spektralfotometer 30 bekannten Farbmaßzahlen des Rasterfeldes 2 des Referenz-Eichdrucks 1 auch die absoluten Farbmaßzahlen des Rasterfeldes 43 des OK-Bogens 44 zu bestimmen, ohne daß der OK-Bogen 44 mit einem Spektralfotometer abgetastet worden ist. Dabei wird für eine hohe Genauigkeit vorausgesetzt, daß beim Herstellen des Referenz-Eichdrucks 1 die nominellen Bedingungen wie beim Herstellen des OK-Bogens 44 verwendet wurden und daß das zum Abtasten des OK-Bogens 44 verwendete Densitometer 31 das gleiche oder zumindest der gleiche Densitometertyp ist, wie er beim Abtasten der Eichdrucke verwendet worden ist.
  • Fig. 4 zeigt, das aus dem Computer 33 und dem Densitometer 31 bestehende System mit einer mit Hilfe dieses Systems steuerbaren Druckmaschine 42 sowie dem OK-Bogen 44 und einem Fortdruck-Bogen 45 in schematischer Darstellung.
  • Der Musterbogen oder OK-Bogen 44 ist in Fig. 4, oben links mit seinem Rasterfeld 43 gezeichnet, das als Referenzfarbfläche dient und das farblich dem Rasterfeld 2 des Referenzeichdrucks 1 ähnlich ist. Die farbliche Erscheinung des Rasterfeldes 43 wird beim Drucken der Fortdruck-Bögen 45, von denen einer in Fig. 4, oben rechts schematisch mit einem Farbmeßstreifen dargestellt ist, laufend mit einem Rasterfeld 46, insbesondere einem entsprechenden Graubalancefeld im Farbmeßstreifen, der Fortdruck-Bögen 45 verglichen.
  • Die in Fig. 4 dargestellte Anordnung mit dem Densitometer 31 und dem Computer 33 dient dazu, die laufend mit der Druckmaschine 42 gedruckten Fortdruck-Bögen 45 bezüglich ihrer farblichen Übereinstimmung mit dem OK-Bogen 44 zu überprüfen und bei Abweichungen die Farbführungsorgane der Druckmaschine 42 nachzustellen. Dazu wird mit Hilfe des Computers 33 an dessen Ausgang 47 eine Steuergröße ausgegeben, die als Eingangsgröße über den Eingang 48 der Schichtdickensteuerung der Druckmaschine 42 zugeführt wird.
  • Bei den am Eingang 48 anliegenden Stellsignalen handelt es sich um einen Schichtdickenänderungssteuervektor, dessen Komponenten in Fig. 4 eingezeichnet sind. Die Komponente ΔCV des Schichtdickenänderungssteuervektors gibt an, um welchen Betrag die Schichtdicke für die Druckfarbe Cyan zu ändern ist, um die farbliche Erscheinung des Rasterfeldes 46 zu korrigieren, wenn eine Abweichung von der farblichen Erscheinung des Rasterfeldes 43 auf dem OK-Bogen 44 vorliegt. Entsprechend sind die Komponenten ΔMV und ΔYV des Schichtdickenänderungssteuervektors [ΔV] den erforderlichen Schichtdickenänderungen für die Druckfarben Magenta und Yellow zugeordnet.
  • Wie in Fig. 4 veranschaulicht ist, dient das Densitometer 31 zunächst dazu, den Sollwert für den Rasterdichtevektor [R]SOLL der durch Ausmessen des Rasterfeldes 43 des OK-Bogens 44 gewonnen werden kann, zu bestimmen und abzuspeichern. Dabei handelt es sich um die Komponenten CRSOLL, MRSOLL und YRSOLL des Rasterdichtevektors [R]SOLL.
  • Entsprechend wird mit Hilfe des Densitometers 31 durch Ausmessen des Rasterfeldes 46 im Farbmeßstreifen des Fortdruck-Bogens 45 der Ist-Wert des Rasterdichtevektors [R]IST gemessen.
  • Der Computer 33 verfügt über mehrere hardwaremäßig oder softwaremäßig ausgebildete Recheneinheiten, die einen Auswertecomputer darstellen, der es gestattet, aus dem Vergleich des Vektors [R]IST mit dem Vektor [R]SOLL einerseits ein Qualitätsmaß für den jeweils gedruckten Fortdruck-Bogen 45 zu bestimmen, das am Ausgang 49 des Computers 33 zur Verfügung steht, und andererseits eine Eingangsgröße für die Schichtdickensteuerung zu erzeugen, die am Ausgang 47 des Computers 33 zur Verfügung gestellt wird.
  • Der in Fig. 4 als Auswertecomputer bezeichnete Teil des Computers 33 erhält nicht nur die Meßwerte des Densitometers 31 als Eingangsgrößen, sondern auch die vorab anhand der Eichdrucke bestimmten Matrixelemente der Transformationsmatritzen [X], [W] und [Z]. Diese Werte gelangen über die Eingänge 50, 51 und 52 in den als Auswertecomputer bezeichneten Teil des Computers 33.
  • Der Computer 33 verfügt, wie in Fig. 4 zu erkennen ist, über einen Rasterdichtendifferenzrechner 53, der die Abweichungen zwischen den auf dem jeweiligen Fortdruck-Bogen 45 gemessenen Ist-Rasterdichten und der auf dem OK-Bogen 44 erfaßten Soll-Rasterdichte berechnet. Der Ausgang 56 des Rasterdichtendifferenzrechners 53 ist mit einem ersten Eingang 57 eines Qualitätsmaßrechners 54 verbunden, dessen zweiter Eingang 58 mit den Werten der neun Matrixelemente der Transformationsmatrix [W] beaufschlagt ist. Entsprechend dem in Fig. 2 veranschaulichten Zusammenhang wird im Qualitätsmaßrechner 54 zunächst die Transformationsmatrix [W] invertiert und anschließend mit dem Rasterdichtendifferenzvektor [ΔR] multipliziert. Am Ausgang 59 des Qualitätsmaßrechners 54 stehen die Rechenergebnisse in der Form von Farbmaßzahldifferenzen ΔL, Δa und Δb zur Verfügung, die als die Komponenten eines dreidimensionalen Farbdifferenzvektors [ΔF] angesehen werden können.
  • Dank der Rechnungen des Qualitätsmaßrechners 54 und der Transformationsmatrix [W] liegen am Ausgang 49 Farbmaßzahlen bzw. deren Differenzen vor, obwohl der Computer 33 nicht mit don Daten eines Farbmeßgerätes, sondern mit denen des Densitometers 31 gespeist worden ist. Die Farbmaßzahländerungen am Ausgang 49 des Computers 33 gestatten eine Qualitätsbeurteilung im Farbraum, wodurch sich eine wesentlich einfachere und aussagekräftigere Qualitätskontrolle ergibt als bei einer Qualitätsbeurteilung anhand von Dichtewerten. Der Qualitätsmaßrechner 54 hat dabei eine Umrechnung der Abweichungen von Dichtewerten in Abweichungen von Farbkoordinaten eines empfindungsmäßig gleichabständig abgestuften Farbraumes vorgenommen. Aufgrund der bekannten Abweichungen und der Farbmaßzahlen für den Eichdruck bzw. OK-Bogen ist es dann auch möglich, die absoluten Farbkoordinaten zu bestimmen.
  • Der Rasterdichtendifferenzrechner 53 speist weiterhin den ersten Eingang 60 eines ersten Schichtdickensteuerungsrechners 55. Der erste Schichtdickensteuerungsrechner 55 erhält an seinem zweiten Eingang 61 die über den Eingang 50 des Computers 33 eingespeisten Werte der Elemente der Transformationsmatrix [X]. Nach dem Invertieren der Transformationsmatrix [X] berechnet der erste Schichtdickensteuerungsrechner 55 aus dem Produkt der invertierten Transformationsmatrix [X]⁻¹ und dem Rasterdichtendifferenzvektor [ΔR] die Komponenten ΔCV, ΔMV und ΔYV des Schichtdickenänderungssteuervektors [ΔV], deren Werte vom Ausgang 62 des ersten Schichtdickensteuerungsrechners 55 zum Ausgang 47 des Computers 33 und von dort zum Eingang 48 der Schichtdickensteuerung für die Farbführungsorgane der Druckmaschine 42 gelangen.
  • Neben der oben beschriebenen Bestimmung des Schichtdickenänderungssteuervektors [ΔV] sind in Fig. 4 zwei weitere Möglichkeiten für die Bestimmung des Schichtdickenänderungssteuervektors dargestellt, wobei durch die Unterbrechungen 97, 98 und 99 in den gezeichneten Linien veranschaulicht werden soll, daß je nach der gewählten Möglichkeit eine Unterbrechung 97, 98, 99 überbrückt ist.
  • Bei der ersten zusätzlichen Möglichkeit kann auf den ersten Schichtdickensteuerungsrechner 55 verzichtet werden. Dann wird mit Hilfe des Farbdifferenzvektors [ΔF] am Ausgang 59 des Qualitätsmaßrechners 54 unter Verwendung der Transformationsmatrix [Z] in einem alternativ vorgesehenen zweiten Schichtdickensteuerungsrechner 55' der Schichtdickenänderungssteuervektor [ΔV] gemäß der Gleichung [ΔV] = [ΔF] · [Z]
    Figure imgb0059

    berechnet.
  • Man erkennt, daß die Bestimmung des Schichtdickenänderungssteuervektors [ΔV] bei einem derartigen Vorgehen über den L*a*b*-Farbraum erfolgt. Dies eröffnet eine weitere in Fig. 4 dargestellte Möglichkeit, bei der die vom Ausgang 59 gelieferten Farbmaßzahldifferenzen ΔL, Δa und Δb nicht unmittelbar, sondern unter Einwirkung einer Korrektur mit Hilfe einer Regelstrategie, die in Fig. 4 als Block 63 dargestellt ist, die Eingangsgröße eines dritten schichtdickensteuerungsrechners 55'' bilden.
  • Der Regelstrategieblock 63 erzeugt aus den am Farbmaßzahleneingang 64 eingespeisten Farbmaßzahldifferenzen Ersatz-Farbmaßzahldifferenzen ΔL', Δa' und Δb', die über den Ausgang 65 ausgegeben werden und den ersten Eingang 66 des dritten Schichtdickensteuerungsrechners 55'' speisen. Der zweite Eingang 67 des dritten Schichtdickensteuerungsrechners 55'' dient zum Einspeisen der Matrixelemente der Transformationsmatrix [Z]) so daß der Schichtdickenänderungssteuervektor [ΔV] entsprechend der Gleichung [ΔV] = [ΔF]' · [Z]
    Figure imgb0060

    berechnet werden kann, wobei [ΔF]' den Vektor aus den Ersatz-Farbmaßzahldifferenzen ΔL', Δb' und Δa' bedeutet. Der am Ausgang 68 des dritten Schichtdickensteuerungsrechners 55'' anliegende und bei geschlossener Unterbrechung 99 über den Ausgang 47 zum Eingang 48 der Druckmaschine 42 eingespeiste Schichtdickenänderungssteuervektor ist entsprechend der im Regelstrategieblock 63 festgelegten Strategie gegenüber einem Schichtdickenänderungssteuervektor verändert oder verbessert, wie er am Ausgang des Schichtdickensteuerungsrechners 55' zur Verfügung steht.
  • Als Regelstrategie für den Regelstrategieblock 63 können vielfältige Strategien verwendet werden, bei denen Farbmaßzahldifferenzen durch besser brauchbare Farbmaßzahldifferenzen ersetzt werden sollen. Insbesondere kann im Regelstrategieblock 63 eine Regelstrategie verwirklicht sein, die es gestattet, eine möglichst hohe Druckqualität auch dann zu erreichen, wenn der vorgegebene Soll-Farbort im Farbraum außerhalb eines Korrekturbereichs liegt, der infolge maximaler und minimaler Volltonschichtdicken begrenzt ist.
  • Der Regelstrategieblock 63 verfügt daher bei dem beschriebenen Ausführungsbeispiel über einen Grenzwerteingang 69, über den die Randbedingungen, d.h. die minimalen und maximalen Schichtdicken, die zulässig sind, eingegeben werden. Um die jeweils tatsächlich vorliegende Schichtdicke der drei Druckfarben zu erfassen, ist es beim Einsatz der hier beschriebenen Regelstrategie erforderlich, auf dem Fortdruck-Bogen 45 zusätzliche Volltonfelder 70, 71 und 72 densitometrisch auszumessen. Bei dem Volltonfeld 70 handelt es sich um ein Volltonfeld mit der Volltondichte CV für die Farbe Cyan. Bei dem Volltonfeld 71 handelt es sich um ein Volltonfeld mit der Volltondichte MV für die Druckfarbe Magenta und bei dem Volltonfeld 72 um ein Volltonfeld mit der Volltondichte YV für die Farbe Gelb oder Yellow.
  • Mit Hilfe des Densitometers 31 wird beim Einsatz des Regelstrategieblocks 63 zusätzlich zur densitometrischen Vermessung des Rasterfeldes 46 eine densitometrische Erfassung der Volltonfelder 70 bis 72 vorgenommen, um innerhalb der Regelstrategie feststellen zu können, ob ein Ausregeln der Schichtdicken dazu führen würde, daß die Änderung einer Schichtdicke in einen Bereich führt, der nicht mehr zulässig ist. Das Densitometer 31 ist daher bei Einsatz der Regelstrategien zusätzlich mit einem Ist-Volltoneingang des Regelstrategieblocks 63 verbunden.
  • Die im Regelstrategieblock 63 verwirklichte Regelstrategie ist ausführlich in der EP-A 321 402 beschrieben.
  • Über einen in Fig. 4 nicht dargestellten Eingang sind in den Regelstrategieblock 43 die Farbmaßzahlen des Referenzeichdrucks 1 eingegeben worden, so daß ausgehend von diesen Farbmaßzahlen und den Farbmaßzahldifferenzen am Farbmaßzahleingang 64 der Farbort der Farbe des Rasterfeldes 46 zur Durchführung der Regelstrategie vorliegt.
  • Der Farbort des Rasterfeldes 43 des OK-Bogens 44 ergibt sich einfach dadurch, daß mit Hilfe der in Fig. 4 dargestellten Anordnung nacheinander der Referenzeichdruck 1 und der OK-Bogen 44 densitometrisch ausgemessen werden. Aufgrund der bekannten Farbmaßzahlen des Referenzeichdrucks 1 und der mit Hilfe des Auswertecomputers des Computers 33 berechneten Farbmaßzahldifferenzen für das Rasterfeld 43 ergibt sich der Farbort des Rasterfeldes 43 des OK-Bogens 44. Durch einen Vergleich des Rasterfeldes 43 des OK-Bogens 44 mit dem Rasterfeld 46 des Fortdruck-Bogens 45 ergeben sich schließlich die Farbmaßzahldifferenzen zwischen dem Rasterfeld 46 und dem Rasterfeld 43, so daß für das Rasterfeld 46 schlußendlich nicht nur die Farbmaßzahldifferenzen, sondern auch die absoluten Farbmaßzahlen oder Farbkoordinaten im L*a*b*-Farbraum bekannt sind.
  • Die auf diese Weise ermittelten Farbkoordinaten im Farbraum geben einen Ist-Farbort an, um den aufgrund der vorgegebenen Grenzdichten für die Volltonfelder 70 bis 72 und die mit Hilfe des Densitometers tatsächlich gemessenen Volltondichten der Volltonfelder durch den Regelstrategieblock ein Korrekturfarbraum für die erreichbaren Farben bestimmt wird.
  • Wenn sich durch einen Vergleich des Ist-Farbortes des Rasterfeldes 46 mit dem Soll-Farbort des Rasterfeldes 43 ergibt, daß der Soll-Farbort außerhalb des Korrekturraumes liegt, so wird gemäß der im Regelstrategieblock 63 implementierten Regelstrategie der vorgegebene Soll-Farbort durch einen erreichbaren Soll-Farbort auf der Begrenzungsfläche des Korrekturfarbraumes mit einem Farbabstand vom vorgegebenen Soll-Farbort ersetzt, dessen für die Druckqualität wesentliche Komponenten minimal sind.
  • Insbesondere wird bei der implementierten Regelstrategie als erreichbarer Soll-Farbort derjenige Farbort auf der Oberfläche des Korrekturfarbraumes gewählt, der den kleinsten Farbabstand vom vorgegebenen Soll-Farbort hat. Je nach der Lage des Soll-Farbortes im L*a*b*-Farbraum außerhalb des um den Ist-Farbort im L*a*b*-Farbraum aufgespannten Korrekturfarbraumes ergeben sich verschiedene Möglichkeiten zur Bestimmung eines optimalen Ersatz-Soll-Farbortes gemäß der Regelstrategie. Eine Möglichkeit besteht darin, daß vom vorgegebenen Soll-Farbort ein Lot auf die benachbarte Seitenfläche des Korrektur-Farbraumes gefällt wird und der Schnittpunkt des Lotes mit der Seitenfläche als erreichbarer Soll-Farbort verwendet wird.
  • Wenn eine derartige Lösung nicht gegeben ist, ist es gemäß der Regelstrategie möglich, so vorzugehen, daß vom vorgegebenen Soll-Farbort ein Lot auf die benachbarte Seitenkante des Korrekturfarbraumes gefällt wird und der Schnittpunkt des Lotes mit der Seitenkante als erreichbarer Soll-Farbort verwendet wird.
  • Ist auch dafür keine Lösung möglich, ist es vorgesehen, daß die vom vorgegebenen Soll-Farbort benachbarte Ecke des Korrekturfarbraumes als erreichbarer Soll-Farbort verwendet wird.
  • Es ist bekannt, daß Chrominanzfehler kritischer als reine Helligkeitsfehler (Luminanzfehler) sind. Daher ist gemäß einer Alternative der Regelstrategie vorgesehen, daß der dem vorgegebenen Soll-Farbort am nächsten liegende Schnittpunkt einer Parallelen zur Helligkeitskoordinatenachse durch den vorgegebenen Soll-Farbort mit der Oberfläche des Korrekturfarbraumes als erreichbarer Soll-Farbort oder Ersatz-Soll-Farbort gewählt wird. Gemäß einer speziellen Abwandlung dieses Verfahrens ist vorgesehen, daß für die auf einer Parallelen zur Helligkeitskoordinatenachse durch den vorgegebenen Soll-Farbort liegenden Punkte innerhalb eines vorgegebenen Helligkeitsfehlerbereichs mit einer maximalen und einer minimalen Helligkeit die am nächsten liegenden Punkte auf der Oberfläche des Korrekturfarbraumes als erreichbare Soll-Farborte bestimmt werden. Dabei ist es möglich, daß der am nächsten liegende Punkt auf der Oberfläche des Korrekturfarbraumes für den Punkt auf der Parallelen bestimmt wird) der dem größten akzeptabel erscheinenden Helligkeitsfehler zugeordnet ist.
  • Die Regelstrategie kann auch vorsehen, daß als erreichbarer Ersatz-Soll-Farbort der Schnittpunkt des Farbabstandsvektors zwischen dem Ist-Farbort des Rasterfeldes 46 und dem vorgegebenen Soll-Farbort des Rasterfeldes 43 mit der Oberfläche des Farbkorrekturraumes gewählt wird.
  • Aus den beispielsweise oben genannten Möglichkeiten für die Regelstrategie erkennt man, daß eine Regel strategie im L*a*b*-Farbraum erfolgt, obwohl das Rasterfeld 46 des Fortdruck-Bogens 45 nicht mit einem Farbmeßgerät, sondern lediglich mit dem Densitometer 31 abgetastet worden ist. Der Einsatz des Regelstrategieblocks 63 und des dritten Schichtdickensteuerungsrechners 55'' gestattet es somit, daß ein nicht erreichbarer auf dem OK-Bogen 44 vorgegebener Farbort gemäß einer Regelstrategie durch einen erreichbaren Soll-Farbort ersetzt wird, so daß für den Ist-Farbort des Rasterfeldes 46 des Fortdruck-Bogens 45 eine optimale Lage im Farbkoordinatenraum angesteuert werden kann, obwohl die Farbkoordinaten des Rasterfeldes 46 nicht mit Hilfe eines Farbmeßgerätes oder Spektralfotometers erfaßt worden sind.
  • Bei der in der oben genannten EP-A 321 402 beschriebenen Regelstrategie ist eine Meßwertverarbeitung vorgesehen, in der die Farbabstandsvektoren zwischen dem Soll-Farbort und dem Ist-Farbort mit einer Sensitivitätsmatrix multipliziert werden, um den Schichtdickenänderungssteuervektor zu berechnen, der beim nächsten Druck eines Fortdruck-Bogens 45 berücksichtigt werden muß, um die gewünschte Farbortverschiebung zu erreichen. Die Sensitivitätsmatrix, mit der Dichtedifferenzen für die Farbortverschiebung zwischen dem Soll-Farbort und dem Ist-Farbort berechnet werden, kann bei der erwähnten Regelstrategie empirisch und meßtechnisch mittels einer Versuchsserie bestimmt werden.
  • Gemäß Fig. 4 kann die Regelstrategie jedoch auch so realisiert werden, daß der Regelstrategieblock 63 am Ausgang 65 keinen Schichtdickenänderungssteuervektor, sondern lediglich Ersatz-Farbmaßzahldifferenzen 55'' mit Hilfe der Transformationsmatrix [Z] in einen Schichtdickenänderungssteuervektor umgerechnet werden.
  • Eine andere besonders einfache Möglichkeit für eine Regelstrategie, bei der die Grenzbedingungen der Volltondichten berücksichtigt werden, kann so realisiert werden, daß in einer in Fig. 4 nicht gezeichneten Weise der Ausgang des zweiten Schichtdickensteuerungsrechners 55' einen weiteren Eingang des Regelstrategieblocks 63 speist, um zu vermeiden, daß am Ausgang des Regelstrategieblocks 63 Farbmaßzahldifferenzen auftreten, die nach Umrechnung im dritten Schichtdickensteuerungsrechner 55'' zu einer Übersteuerung der Farbführungsorgane über die Schichtdickengrenzwerte hinaus führen würden.

Claims (6)

  1. Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit Hilfe einer Druckmaschine gedruckten Rasterfeldern, insbesondere zwei Graubalancefeldern, durch optisches Abtasten der zu vergleichenden Rasterfelder mit Hilfe eines Densitometers, wobei für jede beteiligte Druckfarbe die Differenz der zugeordneten Rasterdichten bestimmt wird und diese Differenzen durch eine eine Multiplikation umfassende Transformation in Farbmasszahldifferenzen in einem empfindungsmassig gleichabstandig abgestuften Farbraum transformiert werden, wobei die Multiplikationsfaktoren durch einen vorherigen Druckversuch mit systematischer Variation der Farbgebung der Einzelfarben und anschliessender Auswertung mittels Densitometer und Farbmessgerät bestimmt werden, dadurch gekennzeichnet, dass ein aus den Rasterdichtedifferenzen der beteiligten Druckfarben als Komponenten zusammengesetzter Rasterdichtendifferenzvektor durch Multiplizieren mit einer invertierten Farbmasszahlen-Rasterdichte-Transformationsmatrix in einen die Farbmasszahldifferenzen als Komponenten enthaltenden Farbänderungsvektor in dem empfindungsmässig gleichabstandig abgestuften Farbraum transformiert wird, wobei die Farbmasszahlen-Rasterdichte-Transformationsmatrix dadurch bestimmt wird, dass mit Hilfe der Druckmaschine unter nominellen Bedingungen ein Referenz-Eichdruck sowie mehrere Zusatz-Eichdrucke gedruckt werden, die jeweils mehrere Volltonfelder und ein mitgedrucktes farblich den zu vergleichenden Rasterfeldern ähnliches Rasterfeld, insbesondere Graubalancefeld, aufweisen, wobei jeder Zusatz-Eichdruck für wenigstens ein Volltonfeld eine von dem entsprechenden gleichfarbigen Volltonfeld des Referenz-Eichdruckes verschiedene Volltondichte aufweist, dass mit Hilfe des Desitometers die Rasterdichtedifferenzen zwischen den Rasterdichten des Rasterfeldes des Referenz-Eichdrucks einerseits und denen der Rasterfelder der Zusatz-Eidrucke andererseits sowie mit Hilfe eines Spektralfotometers die Farbmasszahldifferenzen zwischen den Farbmasszahlen des Rasterfeldes des Referenz-Eichdrucks einerseits und denen der Rasterfelder der Zusatz-Eichdrucke andererseits gemessen werden, dass durch Einsetzen der auf diese Weise erfassten Werte für die Rasterdichtedifferenzen und Farbmasszahldifferenzen in die Gleichungen [ΔR]i = [W] ·[ΔF]i
    Figure imgb0061
    die Elemente der Farbmasszahlen-Rasterdichte-Transformationsmatrix [W] bestimmt werden, wobei in [ΔR]i der dem i-ten Zusatz-Eichdruck zugeordnete Rasterdichte differenzvektor mit den durch die Rasterdichtedifferenzen für jede Druckfarbe gebildeten Komponenten und [ΔF]i der dem i-ten Zusatz-Eichdruck zugeordnete Farbmasszahien differenzvektor mit den durch die Farbmasszahldifferenzen gebildeten Komponenten ist.
  2. Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine, wobei auf den von der Druckmaschine gedruckten Fortdruck-Bögen Messfelder optisch erfasst werden, um den Farbabstand des erfassten Messfeldes von einem vorgegebenen Soll-Farbort zu bestimmen und aus diesem eine Stellgrösse zur Verstellung der Farbführungsorgane der Druckmaschine zu erzeugen, damit unerwünschte Farbabweichungen bei den mit der neuen Farbführungseinstellung anschliessend gedruckten Fortdruck-Bögen minimal werden, wobei ferner auf den Fortdruck-Bögen ein Messfeld in Gestalt eines aus mehreren Druckfarben aufgebauten Rasterfeldes, insbesondere eines Graubalancefeldes, vorgesehen wird, dem auf einem OK-Bogen ein entsprechendes den Soll-Farbort definierendes Raster zugeordnet wird, wobei weiter die Bestimmung des Farbabstandes durch Vergleich der beim Abtasten der beiden Rasterfelder mit Hilfe eines Densitometers erhaltenen Rasterdichten in der Weise erfolgt, dass für jede beteiligte Druckfarbe die Differenz der zugeordneten Rasterdichten bestimmt wird und diese Differenzen durch eine eine Multiplikation umfassende Transformation in einen Farbanderungsvektor in einem empfindungsmassig gleichabstandig abgestuften Farbraum transformiert werden, wobei die Multiplikationsfaktoren durch einen vorherigen Druckversuch mit systematischer Variation der Farbgebung der Einzelfarben und anschliessender Auswertung mittels Densitometer und Farbmessgerät bestimmt werden, und wobei aus dem auf diese Weise erhaltenen Farbänderungsvektor Steuer- bzw. Regelempfehlungen zur Verstellung der Farbführungsorgane der Druckmaschine erzeugt werden, dadurch gekennzeichnet, dass ein aus den Rasterdichtedifferenzen der beteiligten Druckfarben als Komponenten zusammengesetzter Rasterdichtendifferenz-Vektor durch Multiplizieren mit einer invertierten Farbmasszahlen-Rasterdichte-Transformationsmatrix in einen die Farbmasszahldifferenzen als Komponenten enthaltenden Farbänderungsvektor in dem empfindungsmässig gleichabstandig abgestuften Farbraum transformiert wird, wobei die Farbmasszahlen-Rasterdichte-Transformationsmatrix dadurch bestimmt wird, dass mit Hilfe der Druckmaschine unter nominellen Bedingungen ein Referenz-Eichdruck sowie mehrere Zusatz-Eichdrucke gedruckt werden, die jeweils mehrere Volltonfelder und ein mitgedrucktes farblich den zu vergleichenden Rasterfeldern ähnliches Rasterfeld, insbesondere Graubalancefeld, aufweisen, wobei jeder Zusatz-Eichdruck für wenigstens ein Volltonfeld eine von dem entsprechenden gleichfarbigen Volltonfeld des Referenz-Eichdruckes verschiedene Volltondichte aufweist, dass mit Hilfe des Densitometers die Rasterdichtedifferenzen zwischen den Rasterdichten des Rasterfeldes des Referenz-Eichdrucks einerseits und denen der Rasterfelder der Zusatz-Eichdrucke andererseits sowie mit Hilfe eines Spektralfotometers die Farbmasszahldifferenzen zwischen den Farbmasszahlen des Rasterfeldes des Referenz-Eichdrucks einerseits und denen der Rasterfelder der Zusatz-Eichdrucke andererseits gemessen werden, dass durch Einsetzen der auf diese Weise erfassten Werte für die Rasterdichtedifferenzen und Farbmasszahldifferenzen in die Gleichungen [ΔR]i = [W] ·[ΔF]i
    Figure imgb0062
    die Elemente der Farbmasszahlen-Rasterdichte-Transformationsmatrix [W] bestimmt werden, wobei [ΔR]i der dem i-ten Zusatz-Eichdruck zugeordnete Rasterdichten differenzvektor mit den durch die Rasterdichtedifferenzen für jede Druckfarbe gebildeten Komponenten und [ΔF]i der dem i-ten Zusatz-Eichdruck zugeordnete Farbmasszahlen differenzvektor mit den durch die Farbmasszahldifferenzen gebildeten Komponenten ist, und dass aus dem auf diese Weise erhaltenen Farbänderungsvektor ein Schichtdickenänderungssteuervektor zur Verstellung der Farbführungsorgane der Druckmaschine erzeugt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass mit Hilfe der vorgegebenen Grenzdichten und den gemessenen Volltondichten der zusammen mit dem Rasterfeld auf den Fortdruck-Bögen gedruckten Volltonfelder ein Korrekturfarbraum um den auf dem Rasterfeld gemessenen Ist-Farbort bestimmt wird und dass ein ausserhalb des Korrekturfarbraumes liegender vorgegebener Soll-Farbort durch einen erreichbaren Soll-Farbort auf der Begrenzungsfläche des Korrekturfarbraumes mit einem Farbabstand vom vorgegebenen Soll-Farbort ersetzt wird, dessen für die Druckqualität wesentliche Komponenten minimal sind.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Farbänderungsvektor oder ein gemäss einer Regelstrategie im Farbraum unter Berücksichtigung der Grenzwerte für die erreichbaren Volltondichten errechneter Ersatz-Farbänderungsvektor mit einer Farbmasszahlen-Volltondichte-Transformationsmatrix multipliziert wird, um den Schichtdickenänderungssteuervektor zu erhalten.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Farbmasszahlen-Volltondichten-Transformationsmatrix dadurch bestimmt wird, dass mit Hilfe des Densitometers für jede Farbe die Volltondichtedifferenz zwischen den Volltondichten des Volltonfeldes des Referenz-Eichdruckes einerseits und denen der Volltonfelder der Zusatz-Eichdrucke andererseits sowie mit Hilfe des Spektralfotometers die Farbmasszahldifferenzen zwischen den Farbmasszahlen des Rasterfeldes Referenz-Eichdruckes einerseits und denen der Rasterfelder der Zusatz-Eichdrucke andererseits gemessen werden, dass durch Einsetzen der auf diese Weise erfassten Werte für die Volltondichtedifferenzen und Farbmasszahldifferenzen in die Gleichungen [ΔV]i = [Z] ·[ΔF]i
    Figure imgb0063
    die Elemente der Farbmasszahlen-Volltondichte-Transformationsmatrix [Z] bestimmt werden, wobei [ΔV]i der dem i-ten Zusatz-Eichdruck zugeordnete Volltondichten differenzvektor mit den durch die Volltondichtedifferenzen für jede Druckfarbe gebildeten Komponenten und [ΔF]i der dem i-ten Zusatz-Eichdruck zugeordnete Farbmasszahlen differenzvektor mit den durch die Farbmasszahldifferenzen gebildeten Komponenten ist.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Farbmasszahlen-Volltondichte-Transformationsmatrix dadurch bestimmt wird, dass die Farbmasszahlen-Rasterdichte-Transformationsmatrix [W] bestimmt und mit der invertierten Volltondichte-RasterdichteTransformationsmatrix [X]⁻¹ multipliziert wird, die ihrerseits dadurch bestimmt wird, dass mit Hilfe eines Densitometers die Rasterdichtedifferenzen zwischen den Rasterdichten des Rasterfeldes des Referenz-Eichdruckes einerseits und denen der Rasterfelder der Zusatz-Eichdrucke andererseits sowie für jede Farbe die Volltondichtedifferenz zwischen den Volltondichten des Volltonfeldes des Referenz-Eichdruckes einerseits und denen der Volltonfelder der Zusatz-Eichdrucke andererseits gemessen werden, dass durch Einsetzen der auf diese Weise erfassten Werte für die Rasterdichtedifferenzen und Volltondichtedifferenzen in die Gleichungen [ΔR]i = [X] ·[ΔV]i
    Figure imgb0064
    die Elemente der Volltondichte-Rasterdichte-Transformationsmatrix X bestimmt werden, wobei [ΔR]i der dem i-ten Zusatz-Eichdruck zugeordnete Rasterdichtendifferenzvektor mit den durch die Rasterdichtedifferenzen für jede Druckfarbe gebildeten Komponenten und [ΔV]i der dem i-ten Zusatz-Eichdruck zugeordnete Volltondichtedifferenzvektor mit den durch die Volltondifferenzen gebildeten Komponenten ist.
EP90810513A 1989-07-14 1990-07-05 Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine Expired - Lifetime EP0408507B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH264689 1989-07-14
CH2646/89 1989-07-14

Publications (2)

Publication Number Publication Date
EP0408507A1 EP0408507A1 (de) 1991-01-16
EP0408507B1 true EP0408507B1 (de) 1993-11-10

Family

ID=4238429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810513A Expired - Lifetime EP0408507B1 (de) 1989-07-14 1990-07-05 Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine

Country Status (4)

Country Link
US (1) US5068810A (de)
EP (1) EP0408507B1 (de)
JP (1) JPH0356832A (de)
DE (1) DE59003421D1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005558A1 (de) * 1990-02-22 1991-09-19 Roland Man Druckmasch Verfahren zur prozessdiagnose einer rotationsdruckmaschine anhand von remissionen von vollton- und rastertonfeldern
JPH0514750A (ja) * 1990-10-16 1993-01-22 Sharp Corp 画像色分解装置
US5149960B1 (en) * 1991-07-03 1994-08-30 Donnelly R R & Sons Method of converting scanner signals into colorimetric signals
US5841955A (en) * 1991-12-02 1998-11-24 Goss Graphic Systems, Inc. Control system for a printing press
US5224421A (en) * 1992-04-28 1993-07-06 Heidelberg Harris, Inc. Method for color adjustment and control in a printing press
US5412577A (en) * 1992-10-28 1995-05-02 Quad/Tech International Color registration system for a printing press
US5357448A (en) * 1993-02-02 1994-10-18 Quad/Tech, Inc. Method and apparatus for controlling the printing of an image having a plurality of printed colors
JP3070027B2 (ja) * 1993-04-21 2000-07-24 富士通株式会社 配線基板の製造方法
US5508826A (en) * 1993-04-27 1996-04-16 Lloyd; William J. Method and apparatus for calibrated digital printing using a four by four transformation matrix
US5381349A (en) * 1993-06-29 1995-01-10 Hewlett-Packard Company System for calibrating a color display to enable color-matching
EP0632645A1 (de) * 1993-06-29 1995-01-04 Schablonentechnik Kufstein Aktiengesellschaft Vorlagen-Reproduktionsverfahren und Siebdruckschablone zu seiner Durchführung
ATE183137T1 (de) * 1993-12-15 1999-08-15 Goss Graphic Syst Inc Druckereisteuerungssystem
DE4402784C2 (de) * 1994-01-31 2001-05-31 Wifag Maschf Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
DE4402828C2 (de) * 1994-01-31 2001-07-12 Wifag Maschf Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
NL193959C (nl) * 1994-03-08 2001-03-02 Stork Digital Imaging Bv Werkwijze voor het voor een waarnemer bepalen en weergeven van een kleurverschil tussen twee kleuren.
DE19506425B4 (de) * 1995-02-24 2004-11-18 Heidelberger Druckmaschinen Ag Offsetdruckverfahren
US5812705A (en) * 1995-02-28 1998-09-22 Goss Graphic Systems, Inc. Device for automatically aligning a production copy image with a reference copy image in a printing press control system
US5767980A (en) * 1995-06-20 1998-06-16 Goss Graphic Systems, Inc. Video based color sensing device for a printing press control system
US5805280A (en) * 1995-09-28 1998-09-08 Goss Graphic Systems, Inc. Control system for a printing press
US5903712A (en) * 1995-10-05 1999-05-11 Goss Graphic Systems, Inc. Ink separation device for printing press ink feed control
ES2129907T3 (es) * 1996-04-19 1999-06-16 Schablonentechnik Kufstein Ag Procedimiento de impresion a media tinta y maquina de imprimir para su realizacion.
ATE210555T1 (de) * 1996-09-23 2001-12-15 Wifag Maschf Messfeldblock und verfahren zur erfassung von qualitätsdaten im mehrfarben-auflagendruck
US5809894A (en) * 1997-02-20 1998-09-22 Advanced Vision Technology, Ltd. System and method for registration control on-press during press set-up and printing
US5819655A (en) * 1997-08-20 1998-10-13 Bristol-Myers Squibb Company Cyclinder color printing method and product using improved misregistration detection
DE19749063A1 (de) * 1997-11-06 1999-05-12 Heidelberger Druckmasch Ag Verfahren zur Gewinnung von Farbmeßwerten
US5895836A (en) * 1997-11-06 1999-04-20 Uzik; Barry K. Greyscale calibration method in digital printing
US5974967A (en) * 1998-08-27 1999-11-02 Lenticulartechnologies, L.L.C. Registration system for lenticular printing
EP1071275B1 (de) * 1999-01-18 2014-04-02 FUJIFILM Corporation Verfahren zur farbkorrektur
EP1199883B1 (de) * 1999-07-12 2006-09-13 Sagawa printing Co., Ltd. Farbverbesserungsverfahren und vorrichtung sowie speichermedium worauf das farb-verbesserungsprogramm gespeichert ist
US7050196B1 (en) * 2000-06-20 2006-05-23 Eastman Kodak Company Color printer calibration
US6564714B2 (en) * 2000-12-06 2003-05-20 Delaware Capital Formation, Inc. Spectral color control method
PL200158B1 (pl) * 2000-12-06 2008-12-31 Avt Advanced Vision Technology Sposób sterowania kolorem na arkuszu drukarskim
US6982812B2 (en) 2001-01-22 2006-01-03 Hewlett-Packard Development Company, L.P. Calibration of printing devices
CA2439819A1 (en) * 2001-03-02 2002-09-12 The Ackley Martinez Company Dba Mgi Studio Printing adjustment system and method
WO2003011604A2 (en) 2001-07-30 2003-02-13 The Ackley Martinez Company Dba Mgi Studio System admixture compensation system and method
EP1412187A4 (de) * 2001-07-30 2005-07-20 Ackley Martinez Company Dba Mg Farbverwaltungsverarbeitungssystem und -verfahren
CN100458423C (zh) * 2003-03-21 2009-02-04 中国印钞造币总公司 彩色印刷质量检查方法
US7032508B2 (en) * 2003-03-21 2006-04-25 Quad/Tech, Inc. Printing press
US7152941B2 (en) 2003-10-28 2006-12-26 Hewlett-Packard Development Company, L.P. Printing system calibration
US7411700B2 (en) * 2003-10-28 2008-08-12 Hewlett-Packard Development Company, L.P. Printing system calibration
US7605959B2 (en) 2005-01-05 2009-10-20 The Ackley Martinez Company System and method of color image transformation
JP5022682B2 (ja) * 2006-11-30 2012-09-12 リョービ株式会社 カラー印刷機の印刷画像品質管理方法及び印刷画像品質管理装置
JP2009178883A (ja) * 2008-01-30 2009-08-13 Ryobi Ltd カラー印刷機の印刷画像品質管理方法及び印刷画像品質管理装置
DE102010009226B4 (de) * 2009-03-13 2024-02-15 Heidelberger Druckmaschinen Ag Verfahren zur Steuerung des Farbauftrags in einer Druckmaschine
DE102009046853A1 (de) * 2009-11-19 2011-05-26 Manroland Ag Verfahren zur Bestimmung von Eigenschaften eines bedruckten Bedruckstoffs
DE102011012806B4 (de) 2010-03-24 2022-07-07 Heidelberger Druckmaschinen Ag Graubalancekorrektur eines Druckverfahrens
JP2017053805A (ja) * 2015-09-11 2017-03-16 セイコーエプソン株式会社 測色装置、及び印刷装置
CN110793976B (zh) * 2019-11-14 2022-04-12 苏州中科全象智能科技有限公司 一种印刷质量检测系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255924A2 (de) * 1986-08-05 1988-02-17 FOGRA Deutsche Forschungsgesellschaft für Druck- und Reproduktionstechnik e.V. Verfahren und Vorrichtung zur Beeinflussung der farblichen Erscheinung einer Farbfläche bei einem Druckvorgang

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916168A (en) * 1973-10-09 1975-10-28 Mobil Oil Corp Color matching surface coatings containing metallic pigments
DD200665A1 (de) * 1981-07-28 1983-06-01 Wolfgang Arnold Verfahren zur einstellung der farbdosierung an druckmaschinen
DE3232577A1 (de) * 1981-09-12 1983-03-31 Dainippon Screen Manufacturing Co., Ltd., Kyoto Verfahren und vorrichtung zur farbkonzentrationsmessung in druckerzeugnissen
US4706206A (en) * 1983-09-20 1987-11-10 Kollmorgen Technologies Corporation Color printing control using halftone control areas
DE3539540A1 (de) * 1984-11-08 1986-05-22 Canon K.K., Tokio/Tokyo Farbbildbehandlungsverfahren
DE3687074D1 (de) * 1985-03-21 1992-12-17 Felix Brunner Verfahren, regelvorrichtung und hilfsmittel zur erzielung eines gleichfoermigen druckresultats an einer autotypisch arbeitenden mehrfarbenoffsetdruckmaschine.
US4967379A (en) * 1987-12-16 1990-10-30 Gretag Aktiengesellschaft Process for the ink control or regulation of a printing machine by comparing desired color to obtainable color data
ES2033128T3 (es) * 1988-01-14 1993-03-01 Gretag Aktiengesellschaft Procedimiento y dispositivo para regular el calor de una maquina impresora.
DE3913382C2 (de) * 1989-04-24 1995-12-14 Heidelberger Druckmasch Ag Verfahren zur Steuerung der Farbführung einer Druckmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255924A2 (de) * 1986-08-05 1988-02-17 FOGRA Deutsche Forschungsgesellschaft für Druck- und Reproduktionstechnik e.V. Verfahren und Vorrichtung zur Beeinflussung der farblichen Erscheinung einer Farbfläche bei einem Druckvorgang

Also Published As

Publication number Publication date
JPH0356832A (ja) 1991-03-12
US5068810A (en) 1991-11-26
EP0408507A1 (de) 1991-01-16
DE59003421D1 (de) 1993-12-16

Similar Documents

Publication Publication Date Title
EP0408507B1 (de) Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine
EP0255586B1 (de) Verfahren und Vorrichtung zur Beeinflussung der farblichen Erscheinung einer Farbfläche bei einem Druckvorgang
EP0324718B1 (de) Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine
EP0321402B1 (de) Verfahren zur Farbsteuerung oder Farbregelung einer Druckmaschine
EP2008818B1 (de) Verbesserter Druckkontrollstreifen zur Farbmessung auf Bedruckstoffen
DE4431270C2 (de) Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
EP0914945B1 (de) Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine
DE10359322B4 (de) Verfahren und Vorrichtung zur Korrektur von nicht angepassten Druckdaten anhand eines farbmetrisch vermessenen Referenzbogens
EP0585740B1 (de) Verfahren zur Steuerung des Druckprozesses auf einer autotypisch arbeitenden Druckmaschine, insbesondere Bogenoffsetdruckmaschine
DE19515499A1 (de) Verfahren zum Regeln der Farbgebung beim Drucken
DE102005060893B4 (de) Verfahren zur Ermittlung eines drucktechnischen Messwertes
DE4402828C2 (de) Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
EP0505323B1 (de) Verfahren zur Einstellung der Rasterpunktgrössen für eine Offset-Rotationsdruckmaschine
EP0528094A1 (de) Verfahren und Vorrichtung zur Ermittlung von Rasterprozentwerten
EP1291179B1 (de) Prüfmittel und Verfahren zur Kontrolle des Offset- und Digitaldrucks
DE10150837B4 (de) Verfahren zur Bestimmung bzw. Umrechnung von Farbprofilen
EP0916491B1 (de) Verfahren zur Ermittlung von Farbwertgradienten
EP0920994A2 (de) Verfahren zur Gewinnung von Farbmesswerten
DE3942254C2 (de)
DE102010009226A1 (de) Verfahren zur Steuerung des Farbauftrags in einer Druckmaschine
DE19830487A1 (de) Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild
DE4402784C2 (de) Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
EP1279502B1 (de) Verfahren zur Kontrolle eines Tiefdruckverfahrens
DE4104537A1 (de) Verfahren zur regelung einer offset-druckmaschine
DE4242683A1 (de) Verfahren zum Steuern eines Farbauftrages in einer Druckeinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19921102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59003421

Country of ref document: DE

Date of ref document: 19931216

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000616

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000629

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050705