EP0371158A1 - Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine - Google Patents

Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine Download PDF

Info

Publication number
EP0371158A1
EP0371158A1 EP88119832A EP88119832A EP0371158A1 EP 0371158 A1 EP0371158 A1 EP 0371158A1 EP 88119832 A EP88119832 A EP 88119832A EP 88119832 A EP88119832 A EP 88119832A EP 0371158 A1 EP0371158 A1 EP 0371158A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
cylinder group
cylinders
signal
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88119832A
Other languages
English (en)
French (fr)
Other versions
EP0371158B1 (de
Inventor
Erwin Dr. Achleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES88119832T priority Critical patent/ES2024616B3/es
Priority to DE8888119832T priority patent/DE3864829D1/de
Priority to EP88119832A priority patent/EP0371158B1/de
Priority to US07/431,199 priority patent/US4998522A/en
Publication of EP0371158A1 publication Critical patent/EP0371158A1/de
Application granted granted Critical
Publication of EP0371158B1 publication Critical patent/EP0371158B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the invention relates to a method for injecting fuel into the cylinders of a multi-cylinder internal combustion engine according to the preamble of claim 1.
  • crankshaft In a four-stroke internal combustion engine, the crankshaft sweeps through an angle of 720 ° per work cycle, i.e. performs two full rotations before a specific cylinder returns to the same working position, e.g. the next ignition point. In order to be able to record a current position of a cylinder, it is therefore not sufficient to determine the angular position of the crankshaft within one full rotation. In addition, it must be detected whether the machine is currently in the first or in the second half of the work cycle, corresponding to the first or second crankshaft rotation.
  • a position transmitter additionally delivers a position signal with a reference pulse per revolution of the crankshaft, by means of which a known angular position, the synchronization position, is determined. Only when the reference pulse is recognized, in conjunction with the position signal, is the position of the cylinders of the internal combustion engine known exactly, and a synchronization of electrical control functions - ignition, injection, etc. - and the cylinder positions is possible (synchronization time).
  • the object of the invention is to improve the method according to the preamble so that no start time extension occurs and the disadvantages of the known bank injection are avoided.
  • the solution according to the invention is characterized in claim 1. Then the first partial signal of the position sensor at the start determines a current (first) cylinder group consisting of the cylinders whose inlet valves are mostly closed during this first partial signal. A second cylinder group consists of the cylinders, the inlet valves of which are mostly closed during the following partial signal.
  • the preliminary quantity is injected into all cylinders of the second cylinder group at the same time, provided that this signal change is before the synchronization time.
  • the time for this injection can be immediately after the signal change, which has the advantage that no additional arithmetic operation is necessary after the signal change has been detected. As with the first cylinder group, this largely avoids injecting fuel into an open intake valve of a cylinder.
  • the injection into an open intake valve can be completely avoided: since the angular position at which the position signal changes is known, an angle can be specified for each internal combustion engine by which the crankshaft must continue to rotate until none of the Intake valves of the second cylinder group is more open. That the crankshaft has rotated further by this angle can be determined from the position signal from the position transmitter and then trigger the injection.
  • this method involves a little extra computing power, it also means a further reduction in exhaust gas emissions.
  • the pre-quantity is already injected sequentially into the cylinders of the second cylinder group in accordance with the known normal sequence.
  • This advance quantity is increased compared to the normal quantity, which is determined by the computer after the start phase. It is injected only once per cylinder at the start and has, among other things, the task of building up the wall film in the intake manifold. Therefore, this preliminary quantity is also injected into the second cylinder group if the synchronization has already taken place, but then in a sequential order.
  • the known sequential injection begins with the normal quantity. This always begins with the cylinder which, according to normal sequence, follows the last cylinder of this second cylinder group in the case of - actual or imaginary - sequential injection into the cylinders of the second cylinder group Row is.
  • the counting of the cylinders of the second cylinder group in the normal sequence begins with the cylinder whose injection time in the normal sequence has the smallest time interval from the start of the injection into the second cylinder group.
  • an internal control unit M is assigned to an internal combustion engine BKM, which controls the ignition and the fuel injection.
  • a NG camshaft sensor in conjunction with a NA camshaft sensor is used as the position sensor LG.
  • the position encoder generates a static position signal, consisting of two partial signals with an A signal (binary "1") for a first full rotation of the crankshaft and a B signal (binary "0") for the next full rotation of the crankshaft.
  • the position of these partial signals with respect to the positions of the cylinders can be freely selected.
  • the center of each partial signal is 84 ° before the top dead center of the cylinder with number 1.
  • a crankshaft encoder KG with a reference mark RM in conjunction with an assigned crankshaft scanner KA serves as the position encoder PG.
  • This delivers a reference pulse R per revolution of the crankshaft, which determines a synchronization position.
  • the falling edge of this reference pulse R is 84 ° before each top dead center of the cylinder 1.
  • the signal change of the position sensor lies in the middle between two such reference pulses R. This distance is an empirical value for which a particularly favorable signal processing results in a very specific internal combustion engine .
  • Cylinder 1 begins its intake stroke at 0 °, starting from top dead center. Accordingly, the intake valve remains open for the next 180 degrees of crankshaft rotation. This angular range is indicated in the figures with a rectangular bar. After 360 °, cylinder 1 again reaches its top dead center, in the vicinity of which the ignition takes place and the work cycle begins. The ignition area is indicated by a black rectangle. After 720 ° crankshaft rotation, a work cycle is finally completed and the intake stroke begins again.
  • the control unit recognizes the start when the speed of the internal combustion engine has reached a speed threshold N, e.g. is 15 revolutions per minute; this is the case in FIG. 2 at time t1, which is here shortly after the reference pulse R of the position signal.
  • N e.g. 15 revolutions per minute
  • the position transmitter delivers an A signal and, accordingly, the associated current cylinder group (whose inlet valves are mostly closed) consists of cylinders 1, 5 and 6.
  • the preliminary quantity is injected into this immediately after t1, which is indicated in the figure by dotted squares is.
  • the preliminary quantity is injected into the second cylinder group assigned to the B signal with cylinders 2, 3 and 4.
  • the inlet valve of cylinder 4 is still open for a short time.
  • a variant of this is shown in dashed lines in FIG. 2:
  • the injection into the second cylinder group is shifted here by an angle of approximately 90 ° kW to the point in time t2. This then avoids any injection into an open intake valve.
  • the time t2 is determined from the position signal.
  • the normal quantity is injected sequentially in a known normal sequence, which is indicated in the figures with TI squares.
  • the cylinders of the second group are counted in the normal sequence from the start of injection into the second group. For illustration purposes, in cases A and B of FIG. 2 the normal sequence of the cylinders of the second group is shown as a circle with a broken line. From the illustration it follows that cylinder 4 is the last cylinder of the second group and thus the sequential injection with normal quantity begins with cylinder 5.
  • time t1 of the starter identification and the following reference pulse R lie within the same position signal - A signal. Therefore, the preliminary quantity is injected simultaneously into the assigned cylinder group with cylinders 1, 5 and 6 (t1). In this case, however, the synchronization time t2 follows before the signal change of the position signal. Accordingly, cylinders 4, 2, 3 of the next cylinder group receive the advance quantity sequentially, starting with the cylinder of this group, which comes in the normal sequence first after t2 - here cylinder 4. After the injection of the preliminary quantity into the last cylinder - 3 - this cylinder group continues the sequential injection with normal quantity - starting with cylinder 4.
  • a fourth operating case - D in FIG. 3 - the instant t3 of the start detection is in the range of the B signal, so that cylinders 2, 3 and 4 of the assigned cylinder group receive the preliminary quantity at the same time.
  • the reference pulse R follows again before the next signal change of the position signal, so that cylinders 1, 5 and 6 of the next cylinder group receive the preliminary quantity sequentially. With cylinder 1 the sequential injection starts with normal quantity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Bei einem Verfahren zum Betrieb eines Einspritzsystems wird vor einem Synchronisationszeitpunkt, an dem die Stellung der einzelnen Zylinder durch die Signale von zwei Gebern bekannt ist, in die einzelnen Zylinder gruppenweise eingespritzt. Die Gruppen sind dabei so gewählt, daß eine Einspritzung in ein offenes Einlaßventil weitgehend vermieden wird. Beim Übergang auf die normale sequentielle Einspritzung wird der erste Zylinder, in den eingespritzt wird so bestimmt, daß keine Doppeleinspritzung bei einem Zylinder vorkommt. Das Verfahren vermeidet eine Startzeitverlängerung durch fehlende Einspritzung und auch eine erhöhte Abgasemission durch Bankeinspritzung vor dem Synchronisationszeitpunkt.

Description

  • Die Erfindung betrifft ein Verfahren zum Einspritzen von Kraft­stoff in die Zylinder einer mehrzylindrigen Brennkraftmaschine gemäß Oberbegriff von Anspruch 1.
  • Bei einer Viertakt-Brennkraftmaschine überstreicht die Kurbel­welle je Arbeitsspiel einen Winkel von 720°, führt also zwei Volldrehungen aus bevor ein bestimmter Zylinder wieder die gleiche Arbeitsstellung, z.B. den nächsten Zündzeitpunkt, er­reicht. Um eine momentane Stellung eines Zylinders erfassen zu können, genügt es also nicht, die Winkelposition der Kurbelwel­le innerhalb einer Volldrehung zu bestimmen. Zusätzlich muß er­faßt werden, ob sich die Maschine gerade in der ersten oder in der zweiten Hälfte des Arbeitsspiels, entsprechend der ersten oder zweiten Kurbelwellendrehung, befindet.
  • Dazu ist es bekannt, einen statischen Lagegeber vorzusehen, dessen periodisches Lagesignal aus zwei Teilsignalen, einem A-­Signal und einem B-Signal, besteht, die sich abwechselnd über je eine volle Kurbelwellendrehung erstrecken. Ein Positionsge­ber liefert zusätzlich ein Positionssignal mit einem Referenz­impuls je Umdrehung der Kurbelwelle, durch den eine bekannte Winkelposition, die Synchronisationsposition, bestimmt ist. Erst mit dem Erkennen des Referenzimpulses ist in Verbindung mit dem Lagesignal die Stellung der Zylinder der Brennkraftma­schine genau bekannt und eine Synchronisation von elektrischen Steuerfunktionen - Zündung, Einspritzung, etc. - und den Zylin­derstellungen möglich (Synchronisationszeitpunkt).
  • Nach dem Start der Brennkraftmaschine kann also im ungünstig­sten Fall eine volle Kurbelwellendrehung vergehen, bis die Synchronisationsposition erstmals erreicht ist. Erst dann kann in die einzelnen Zylinder taktrichtig Kraftstoff eingespritzt werden.
  • Um eine Verlängerung der Startphase durch fehlende Einspritzung während der ersten Kurbelwellendrehung zu vermeiden, ist es be­kannt, unmittelbar beim Start in alle Zylinder gleichzeitig Kraftstoff einzuspritzen - sogenannte Bankeinspritzung. Dies führt jedoch nach dem Synchronisationszeitpunkt und dem Über­gang auf die normale Einspritzung je nach Stellung der Kurbel­welle beim Start zu einer doppelten Einspritzung in einige Zy­linder. Außerdem wird bei mindestens einem Zylinder der Kraft­stoff in das offene Einlaßventil eingespritzt, wodurch sich ei­ne zusätzliche Erhöhung der Abgasemission ergibt.
  • Die Aufgabe der Erfindung liegt darin, das Verfahren gemäß Oberbegriff so zu verbessern, daß keine Startzeitverlängerung auftritt und die Nachteile der bekannten Bankeinspritzung ver­mieden werden.
  • Die erfindungsgemäße Lösung ist in Anspruch 1 gekennzeichnet. Danach ist durch das erste Teilsignal des Lagegebers beim Start eine aktuelle (erste) Zylindergruppe bestimmt, die aus den Zy­lindern besteht, deren Einlaßventile während dieses ersten Teilsignals überwiegend geschlossen sind. Eine zweite Zylinder­gruppe besteht aus den Zylindern, deren Einlaßventile während des folgenden Teilsignales überwiegend geschlossen sind.
  • Beim Start der Brennkraftmaschine wird in alle Zylinder der er­sten Zylindergruppe gleichzeitig eine Vorabmenge eingespritzt. Damit ist ein Einspritzen von Kraftstoff in ein offenes Einlaß­ventil eines Zylinders weitgehend vermieden.
  • Nach dem ersten Signalwechsel des Lagesignals wird in alle Zy­linder der zweiten Zylindergruppe die Vorabmenge gleichzeitig eingespritzt, sofern dieser Signalwechsel vor dem Synchronisa­tionszeitpunkt liegt.
  • Der Zeitpunkt für diese Einspritzung kann unmittelbar nach dem Signalwechsel liegen, was den Vorteil hat, daß keine zusätzli­che Rechenoperation nach Erfassen des Signalwechsels nötig ist. Damit ist, wie bei der ersten Zylindergruppe, ein Einspritzen von Kraftstoff in ein offenes Einlaßventil eines Zylinders weitgehend vermieden.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung kann die Einspritzung in ein offenes Einlaßventil vollständig vermieden werden: Da die Winkelposition, an der das Lagesignal wechselt, bekannt ist, kann man für jede Brennkraftmaschine einen Winkel angeben, um den sich die Kurbelwelle weiterdrehen muß, bis kei­nes der Einlaßventile der zweiten Zylindergruppe mehr geöffnet ist. Daß sich die Kurbelwelle um diesen Winkel weitergedreht hat, läßt sich aus dem Positionssignal des Positionsgebers be­stimmen und danach die Einspritzung auslösen. Mit dieser Metho­de ist zwar ein geringer Mehraufwand an Rechnerleistung verbun­den, jedoch auch eine weitere Absenkung der Abgasemissionen.
  • Liegt dagegen der Synchronisationszeitpunkt vor dem Zeitpunkt des ersten Signalwechsels des Lagesignals, so wird bereits die Vorabmenge in die Zylinder der zweiten Zylindergruppe sequen­tiell gemäß der bekannten Normalfolge eingespritzt. Diese Vor­abmenge ist gegenüber der Normalmenge, die nach der Startphase vom Rechner ermittelt wird, erhöht. Sie wird beim Start nur einmal je Zylinder eingespritzt und hat unter anderem die Auf­gabe, den Wandfilm im Saugrohr aufzubauen. Deshalb wird in die zweite Zylindergruppe auch dann diese Vorabmenge eingespritzt, wenn die Synchronisation bereits erfolgt ist, dann allerdings in sequentieller Reihenfolge.
  • Nachdem jeder Zylinder der Brennkraftmaschine einmal die Vorab­menge erhalten hat, beginnt die bekannte sequentielle Einsprit­zung mit Normalmenge. Diese beginnt stets mit dem Zylinder, der bei - tatsächlicher oder gedachter - sequentieller Einspritzung in die Zylinder der zweiten Zylindergruppe gemäß Normalfolge nach dem letzten Zylinder dieser zweiten Zylindergruppe an der Reihe ist. Die Zählung der Zylinder der zweiten Zylindergruppe in Normalfolge beginnt dabei mit dem Zylinder, dessen Einspritz­zeitpunkt bei Normalfolge von dem Beginn der Einspritzung in die zweite Zylindergruppe den geringsten Zeitabstand hat.
  • Die Erfindung wird anhand der Figuren näher erläutert. Dabei zeigen:
    • Figur 1 ein Strukturbild der Steuerung einer Brennkraftmaschi­ne und
    • Figuren 2 und 3 Einspritzimpulsdiagramme von vier Betriebs­fällen einer Sechszylinder-Brennkraftmaschine.
  • In Figur 1 ist einer Brennkraftmaschine BKM ein übliches Steu­ergerät M zugeordnet, das die Zündung und die Kraftstoffein­spritzung steuert. Als Lagegeber LG dient ein Nockenwellengeber NG in Verbindung mit einem Nockenwellenabtaster NA. Der Lagege­ber erzeugt ein statisches Lagesignal, bestehend aus zwei Teil­signalen mit einem A-Signal (binäre "1") für eine erste Voll­drehung der Kurbelwelle und einem B-Signal (binäre "0") für die nächste Volldrehung der Kurbelwelle. Die Lage dieser Teilsigna­le bezüglich der Stellungen der Zylinder ist frei wählbar. Im Ausführungsbeispiel liegt die Mitte jedes Teilsignales 84° vor dem oberen Totpunkt des Zylinders mit Nummer 1.
  • Als Positionsgeber PG dient ein Kurbelwellengeber KG mit einer Referenzmarke RM in Verbindung mit einem zugeordneten Kurbel­wellenabtaster KA. Dieser liefert einen Referenzimpuls R je Um­drehung der Kurbelwelle, der eine Synchronisationsposition be­stimmt. Die Abstiegsflanke dieses Referenzimpulses R liegt 84° vor jedem oberen Totpunkt des Zylinders 1. Der Signalwechsel des Lagegebers liegt jeweils in der Mitte zwischen zwei solchen Referenzimpulsen R. Dieser Abstand ist ein Erfahrungswert, für den sich bei einer ganz bestimmten Brennkraftmaschine eine besonders günstige Signalverarbeitung ergibt.
  • In den Figuren 2 und 3 sind untereinander je zwei Betriebsfälle dargestellt, wobei die zeitlich versetzten Arbeitszyklen der Zylinder 1 bis 6 untereinander, horizontal von links nach rechts aufgetragen sind. Ihnen sind das Lagesignal, bestehend aus abwechselndem A- und B-Signal, das Positionssignal mit den Referenzimpulsen R sowie eine Winkelachse W und eine Zeitachse t zugeordnet.
  • Der Zylinder 1 beginnt jeweils bei 0° - ausgehend vom oberen Totpunkt - seinen Ansaugtakt. Dementsprechend bleibt das Ein­laßventil für die nächsten 180° der Kurbelwellendrehung offen. Dieser Winkelbereich ist in den Figuren mit einem Rechteckbalken angedeutet. Der Zylinder 1 erreicht nach 360° wieder seinen oberen Totpunkt, in dessen Umgebung die Zündung erfolgt und der Arbeitstakt beginnt. Der Zündbereich ist jeweils durch ein schwarzes Rechteck angedeutet. Nach 720°-Kurbelwellendrehung ist schließlich ein Arbeitsspiel abgeschlossen und es beginnt wieder der Ansaugtakt.
  • Bei der hier zugrundegelegten Sechszylindermaschine sind die Arbeitsspiele für die Zylinder jeweils um 120° gegeneinander versetzt. Die einzelnen Zylinder sind in den Figuren gemäß ih­rer Normalfolge beim Einspritzen und Zünden durchnummeriert und untereinander dargestellt.
  • Das Steuergerät erkennt den Start, wenn die Drehzahl der Brenn­kraftmaschine eine Drehzahlschwelle N erreicht hat, die z.B. bei 15 Umdrehungen pro Minute liegt; das ist in Figur 2 im Zeitpunkt t1 der Fall, der hier kurz nach dem Referenzimpuls R des Positionssignals liegt. Zu diesem Zeitpunkt liefert der La­gegeber A-Signal und dementsprechend besteht die zugehörige aktuelle Zylindergruppe (deren Einlaßventile überwiegend ge­schlossen sind) aus den Zylindern 1, 5 und 6. In diese wird so­fort nach t1 die Vorabmenge eingespritzt, was in der Figur mit punktierten Quadraten angedeutet ist.
  • Sofort nach dem Wechsel des Lagesignals von A-Signal auf B-Si­gnal wird in die zweite, dem B-Signal zugeordnete Zylindergrup­pe mit den Zylindern 2, 3 und 4 die Vorabmenge eingespritzt. Hierbei ist das Einlaßventil von Zylinder 4 noch kurzzeitig ge­öffnet.
  • Eine Variante hierzu ist in Figur 2 gestrichelt eingezeichnet: Die Einspritzung in die zweite Zylindergruppe ist hier um einen Winkel von ungefähr 90° kW auf den Zeitpunkt t2 verschoben. Da­mit ist dann jede Einspritzung in ein offenes Einlaßventil ver­mieden. Der Zeitpunkt t2 wird dabei aus dem Positionssignal be­stimmt.
  • Im Zeitpunkt t3 - Synchronisationszeitpunkt- wird dann der er­ste Referenzimpuls R nach Starterkennung - t1 - erkannt. Von da an wird die Normalmenge in bekannter Normalfolge sequentiell eingespritzt, was in den Figuren mit TI-Quadraten angedeutet ist. Zur Bestimmung des Zylinders, in den erstmals die Normal­menge eingespritzt wird, zählt man die Zylinder der zweiten Gruppe in Normalfolge ab Beginn der Einspritzung in die zweite Gruppe. Zur Veranschaulichung ist in den Fällen A und B der Fi­gur 2 die Normalfolge der Zylinder der zweiten Gruppe gestri­chelt als Kreis eingetragen. Aus der Darstellung folgt, daß Zy­linder 4 der letzte Zylinder der zweiten Gruppe ist und somit die sequentielle Einspritzung mit Normalmenge mit dem Zylinder 5 beginnt.
  • Im Fall B von Figur 2 ist angenommen, daß der Start zum Zeit­punkt t4 erkannt wird und sich dementsprechend der Einspritzmo­dus ändert. Der Lagegeber liefert zum Zeitpunkt t4 B-Signal, dem als aktuelle Zylindergruppe die Zylinder 2, 3 und 4 zuge­ordnet sind. Diese erhalten gleichzeitig die Vorabmenge. Nach dem Signalwechsel des Lagesignals auf A-Signal folgt dann die gleichzeitige Einspritzung der Vorabmenge in die Zylinder 1, 5 und 6 der zweiten Zylindergruppe. An die Normalfolge der Zylin­der der zweiten Zylindergruppe - durch gestrichelte Kreise mar­kiert - schließt sich dann die sequentielle Einspritzung mit Normalmenge an; diese beginnt also mit dem Zylinder 2.
  • Beim Fall C in Figur 3 liegt der Zeitpunkt t1 der Starterken­nung und der folgende Referenzimpuls R (Zeitpunkt t2) innerhalb desselben Lagesignals - A-Signal. Daher wird in die zugeordnete Zylindergruppe mit den Zylindern 1, 5 und 6 gleichzeitig die Vorabmenge eingespritzt (t1). In diesem Fall folgt jedoch der Synchronisationszeitpunkt t2 zeitlich vor dem Signalwechsel des Lagesignals. Die Zylinder 4, 2, 3 der nächsten Zylindergruppe erhalten dementsprechend schon die Vorabmenge sequentiell, und zwar beginnend mit dem Zylinder dieser Gruppe, der in der Nor­malfolge als erster nach t2 kommt - hier Zylinder 4. Nach dem Einspritzen der Vorabmenge in den letzten Zylinder - 3 - dieser Zylindergruppe wird die sequentielle Einspritzung mit Normal­menge - beginnend mit Zylinder 4 - fortgesetzt.
  • Bei einem vierten Betriebsfall - D in Figur 3 - liegt der Zeit­punkt t3 der Starterkennung im Bereich des B-Signals, so daß die Zylinder 2, 3 und 4 der zugeordneten Zylindergruppe gleich­zeitig die Vorabmenge erhalten. Der Referenzimpuls R folgt wie­der vor dem nächsten Signalwechsel des Lagesignals, so daß die Zylinder 1, 5 und 6 der nächsten Zylindergruppe die Vorabmenge sequentiell erhalten. Mit Zylinder 1 beginnt dann die sequen­tielle Einspritzung mit Normalmenge.

Claims (3)

1. Verfahren zum Einspritzen von Kraftstoff in die Zylinder einer mehrzylindrigen Brennkraftmaschine, bei dem nach einer Startphase eine von einem Steuergerät (11) ermittelte Normal­menge in die Zylinder sequentiell in Normalfolge und bei dem während der Startphase eine erhöhte Kraftstoffmenge, Vorabmen­ge, eingespritzt wird,
- mit einem statischen Lagegeber (LG), der ein periodisches Lagesignal mit zwei unterschiedlichen Teilsignalen, A-Signal und B-Signal, liefert, die sich jeweils über eine volle Kur­belwellendrehung erstrecken und denen eine erste bzw. zweite Zylindergruppe zugeordnet ist, sodaß durch das jeweils vor­handene Teilsignal eine aktuelle Zylindergruppe bestimmt ist,
- mit einem Positionsgeber (PG), der ein Positionssignal mit einem Referenzimpuls (R) je Umdrehung der Kurbelwelle lie­fert,
dadurch gekennzeichnet,
- daß jede Zylindergruppe diejenigen Zylinder umfaßt, deren Einlaßventile während des zugeordneten Teilsignals des Lage­gebers (LG) überwiegend geschlossen sind,
- daß nach der Starterkennung in jeden Zylinder der Brenn­kraftmaschine nur ein einziges Mal die Vorabmenge einge­spritzt wird und zwar
-- einerseits - ausgelöst durch die Starterkennung - gleich­zeitig in alle Zylinder der aktuellen Zylindergruppe und
-- andererseits in die Zylinder der zweiten Zylindergruppe
--- entweder gleichzeitig, ausgelöst durch den Wechsel des La­gesignals, wenn dieses vor dem ersten Referenzimpuls (R) auftritt,
--- oder sequentiell in Normalfolge, ausgelöst durch den Refe­renzimpuls, wenn dieser vor dem Wechsel des Lagesignals liegt,
- und daß die sequentielle Einspritzung der Normalmenge mit dem Zylinder beginnt, der auf den letzten Zylinder der zwei­ten Zylindergruppe folgt, wobei dieser durch Zählung der Zy­ linder in Normalfolge vom Beginn der Einspritzung in die Zy­linder der zweiten Zylindergruppe ermittelt wird. 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß bei gleichzeitiger Einspritzung in die zweite Zylinder­gruppe die Vorabmenge unmittelbar nach dem Wechsel des Lage­signals eingespritzt wird.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß bei gleichzeitiger Einspritzung in die zweite Zylinder­gruppe die Vorabmenge zu einem Zeitpunkt eingespritzt wird, der um einen solchen Winkel nach dem Wechsel des Lagesignals liegt, daß keines der Einlaßventile der zweiten Zylindergruppe geöff­net ist.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
daß der Winkel aus dem Positionssignal bestimmt wird.
EP88119832A 1988-11-28 1988-11-28 Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine Expired - Lifetime EP0371158B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES88119832T ES2024616B3 (es) 1988-11-28 1988-11-28 Procedimiento para inyectar combustible en una maquina de combustion interna
DE8888119832T DE3864829D1 (de) 1988-11-28 1988-11-28 Verfahren zum einspritzen von kraftstoff in eine brennkraftmaschine.
EP88119832A EP0371158B1 (de) 1988-11-28 1988-11-28 Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine
US07/431,199 US4998522A (en) 1988-11-28 1989-11-03 Method for injecting fuel into an internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88119832A EP0371158B1 (de) 1988-11-28 1988-11-28 Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0371158A1 true EP0371158A1 (de) 1990-06-06
EP0371158B1 EP0371158B1 (de) 1991-09-11

Family

ID=8199608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119832A Expired - Lifetime EP0371158B1 (de) 1988-11-28 1988-11-28 Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine

Country Status (4)

Country Link
US (1) US4998522A (de)
EP (1) EP0371158B1 (de)
DE (1) DE3864829D1 (de)
ES (1) ES2024616B3 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012333A1 (de) * 1991-12-18 1993-06-24 Robert Bosch Gmbh GEBERANORDNUNG ZUR ZYLINDERERKENNUNG BEI EINER BRENNKRAFTMASCHINE MIT n ZYLINDERN
DE4303422A1 (de) * 1992-02-05 1993-08-12 Fuji Heavy Ind Ltd
FR2701515A1 (fr) * 1993-02-10 1994-08-19 Solex Procédé de commande d'injection pour moteur à injection multipoints à allumage commandé.
WO1994023192A1 (de) * 1993-03-31 1994-10-13 Robert Bosch Gmbh Geberanordnung zur schnellen zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
EP0638717A2 (de) * 1993-08-13 1995-02-15 Robert Bosch Gmbh Einrichtung zur Regelung der Kraftstoffeinspritzung und der Zündung bei einer Brennkraftmaschine
EP0640762A1 (de) * 1993-08-26 1995-03-01 Siemens Aktiengesellschaft Zylinder Synchronisation einer Mehrzylinder Brennkraftmaschine durch Detektion eines gezielten Verbrennungsaussetzers
WO2002040848A1 (de) * 2000-11-16 2002-05-23 Siemens Aktiengesellschaft Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
WO2002040847A2 (de) * 2000-11-16 2002-05-23 Siemens Aktiengesellschaft Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
US6571772B1 (en) 1999-09-01 2003-06-03 Robert Bosch Gmbh Method for starting an internal combustion engine having several cylinder banks and being operated with gasoline direct injection
DE10042842B4 (de) * 1999-09-01 2008-09-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Motorstart bei mit Benzindirekteinspritzung betriebenen Verbrennungsmotoren, insbesondere mit mehreren Zylinderbänken
FR2932225A1 (fr) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Strategie et commande de demarrage d'un moteur a combustion
CN115355096A (zh) * 2022-08-03 2022-11-18 中车大连机车车辆有限公司 一种发动机快速启动同步控制方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3617104A1 (de) * 1986-05-21 1987-11-26 Bosch Gmbh Robert Verfahren und elektronisches brennkraftmaschinensteuersystem zur kaltstartsteuerung
DE4040828C2 (de) * 1990-12-20 2000-05-18 Bosch Gmbh Robert Steuersystem für eine Kraftstoffpumpe
US5613473A (en) * 1993-08-26 1997-03-25 Siemens Aktiengesellschaft Method of identifying the stroke positions in an internal combustion engine upon startup
DE19517749C1 (de) * 1995-05-15 1996-07-04 Siemens Ag Kraftstoffeinspritz-Verfahren für mehrzylindrige Brennkraftmaschinen
JPH08338282A (ja) * 1995-06-09 1996-12-24 Toyota Motor Corp 多気筒内燃機関の燃料噴射制御装置
JP3223802B2 (ja) * 1996-08-09 2001-10-29 三菱自動車工業株式会社 内燃機関の燃料制御装置
US5890467A (en) * 1996-08-12 1999-04-06 Detroit Diesel Corporation Method for internal combustion engine start-up
EP0825337B1 (de) * 1996-08-12 2003-05-07 Detroit Diesel Corporation Verfahren zum Anlassen einer Brennkraftmaschine
ES2191734T3 (es) * 1996-12-03 2003-09-16 Fiat Ricerche Un metodo para sincronizar un motor de combustion interna sin un sensor de posicion de levas.
FR2765628B1 (fr) * 1997-07-07 1999-09-10 Siemens Automotive Sa Procede d'injection de carburant au demarrage d'un moteur a combustion interne
DE19741966C2 (de) * 1997-09-23 2002-11-07 Siemens Ag Verfahren zum Einspritzen von Kraftstoff bei einer Mehrzylinderbrennkraftmaschine
FR2782123B1 (fr) * 1998-08-06 2000-09-08 Renault Procede de commande d'un moteur a combustion interne
JP3783425B2 (ja) * 1998-09-04 2006-06-07 三菱自動車工業株式会社 内燃機関の始動制御装置
DE19929291A1 (de) * 1999-06-25 2000-12-28 Volkswagen Ag Ottomotor mit halbsequentieller Kraftstoffeinspritzung
DE10221393B4 (de) * 2002-05-14 2005-12-22 Siemens Ag Vorrichtung und Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine
US7124743B2 (en) * 2004-10-22 2006-10-24 Ford Global Technologies, Llc System and method for starting sequential fuel injection internal combustion engine
FR2881796B1 (fr) * 2005-02-09 2007-05-04 Siemens Vdo Automotive Sas Procede pour controler le demarrage d'un moteur a combustion interne
DE102007033045B4 (de) * 2007-07-16 2014-01-16 Continental Automotive Gmbh Verfahren und Vorrichtung zur dynamischen Bestimmung eines Segments für einen Winkelbereich, innerhalb dem eine Kraftstoffeinspritzung in eine Brennkraftmaschine durchführbar ist
CN104747309B (zh) * 2013-12-26 2017-04-12 联创汽车电子有限公司 发动机位置管理系统和管理方法
US9668494B2 (en) 2014-10-24 2017-06-06 FONA International Inc. Preserved cut fresh produce with true-to-nature flavor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058561A2 (de) * 1981-02-17 1982-08-25 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum Steuern der Kraftstoffeinspritzung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891338A (ja) * 1981-11-24 1983-05-31 Honda Motor Co Ltd 多気筒内燃エンジンの電子式燃料噴射制御装置
JPS58107871A (ja) * 1981-12-22 1983-06-27 Nissan Motor Co Ltd 内燃機関の燃料噴射装置
JPS58167837A (ja) * 1982-03-30 1983-10-04 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JPS5912137A (ja) * 1982-07-13 1984-01-21 Nippon Denso Co Ltd 多気筒エンジン用燃料噴射制御装置
JPS5999044A (ja) * 1982-11-26 1984-06-07 Toyota Motor Corp 燃料噴射時期制御装置
JPS60222541A (ja) * 1984-04-19 1985-11-07 Toyota Motor Corp 内燃機関の電子燃料噴射装置
JPS60240875A (ja) * 1984-05-14 1985-11-29 Nissan Motor Co Ltd 多気筒内燃機関の気筒判別装置
JPS6181549A (ja) * 1984-09-25 1986-04-25 Honda Motor Co Ltd 多気筒内燃エンジンの燃料供給制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058561A2 (de) * 1981-02-17 1982-08-25 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum Steuern der Kraftstoffeinspritzung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 109 (M-472)[2166], 23. April 1986; & JP-A-60 240 875 (NISSAN JIDOSHA K.K.) 29-11-1985 *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 81 (M-465)[2138], 29. März 1986; & JP-A-60 222 541 (TOYOTA JIDOSHA K.K.) 07-11-1985 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 210 (M-328)[1647], 26. September 1984; & JP-A-59 99 044 (TOYOTA JIDOSHA K.K.) 07-06-1984 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 96 (M-294)[1533], 4. Mai 1984; & JP-A-59 12 137 (NIPPON DENSO K.K.) 21-01-1984 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460134A (en) * 1991-12-18 1995-10-24 Robert Bosch Gmbh Transmitter arrangement for cylinder identification in an internal combustion engine having n cylinders
WO1993012333A1 (de) * 1991-12-18 1993-06-24 Robert Bosch Gmbh GEBERANORDNUNG ZUR ZYLINDERERKENNUNG BEI EINER BRENNKRAFTMASCHINE MIT n ZYLINDERN
DE4141713C2 (de) * 1991-12-18 2003-11-06 Bosch Gmbh Robert Geberanordnung zur Zylindererkennung und zum Notlaufbetrieb bei einer Brennkraftmaschine mit n Zylindern
DE4303422A1 (de) * 1992-02-05 1993-08-12 Fuji Heavy Ind Ltd
FR2701515A1 (fr) * 1993-02-10 1994-08-19 Solex Procédé de commande d'injection pour moteur à injection multipoints à allumage commandé.
EP0614005A2 (de) * 1993-02-10 1994-09-07 Magneti Marelli France Einspritzsteuerungs-Mehrfahren für mehrpunkt Einspritzmotoren mit gesteuerter Zündung
EP0614005A3 (de) * 1993-02-10 1994-12-07 Solex Einspritzsteuerungs-Mehrfahren für mehrpunkt Einspritzmotoren mit gesteuerter Zündung.
DE4310460C2 (de) * 1993-03-31 2003-12-18 Bosch Gmbh Robert Geberanordnung zur schnellen Zylindererkennung bei einer mehrzylindrigen Brennkraftmaschine
WO1994023192A1 (de) * 1993-03-31 1994-10-13 Robert Bosch Gmbh Geberanordnung zur schnellen zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
EP0638717A2 (de) * 1993-08-13 1995-02-15 Robert Bosch Gmbh Einrichtung zur Regelung der Kraftstoffeinspritzung und der Zündung bei einer Brennkraftmaschine
EP0638717A3 (de) * 1993-08-13 1996-12-11 Bosch Gmbh Robert Einrichtung zur Regelung der Kraftstoffeinspritzung und der Zündung bei einer Brennkraftmaschine.
EP0640762A1 (de) * 1993-08-26 1995-03-01 Siemens Aktiengesellschaft Zylinder Synchronisation einer Mehrzylinder Brennkraftmaschine durch Detektion eines gezielten Verbrennungsaussetzers
DE10042842B4 (de) * 1999-09-01 2008-09-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Motorstart bei mit Benzindirekteinspritzung betriebenen Verbrennungsmotoren, insbesondere mit mehreren Zylinderbänken
US6571772B1 (en) 1999-09-01 2003-06-03 Robert Bosch Gmbh Method for starting an internal combustion engine having several cylinder banks and being operated with gasoline direct injection
WO2002040847A2 (de) * 2000-11-16 2002-05-23 Siemens Aktiengesellschaft Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
WO2002040847A3 (de) * 2000-11-16 2003-02-20 Siemens Ag Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
US6769412B2 (en) 2000-11-16 2004-08-03 Siemens Aktiengesellschaft Method for injecting fuel during the start phase of an internal combustion engine
US6880531B2 (en) 2000-11-16 2005-04-19 Siemens Aktiengesellschaft Method for injecting fuel during the starting phase of an internal combustion engine
WO2002040848A1 (de) * 2000-11-16 2002-05-23 Siemens Aktiengesellschaft Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
FR2932225A1 (fr) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Strategie et commande de demarrage d'un moteur a combustion
CN115355096A (zh) * 2022-08-03 2022-11-18 中车大连机车车辆有限公司 一种发动机快速启动同步控制方法
CN115355096B (zh) * 2022-08-03 2023-11-28 中车大连机车车辆有限公司 一种发动机快速启动同步控制方法

Also Published As

Publication number Publication date
US4998522A (en) 1991-03-12
DE3864829D1 (de) 1991-10-17
ES2024616B3 (es) 1992-03-01
EP0371158B1 (de) 1991-09-11

Similar Documents

Publication Publication Date Title
EP0371158B1 (de) Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine
DE2845356C2 (de)
EP0643803B1 (de) Geberanordnung zur schnellen zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
EP0483166B1 (de) Sequentielles kraftstoffeinspritzverfahren
EP0640762B1 (de) Zylinder Synchronisation einer Mehrzylinder Brennkraftmaschine durch Detektion eines gezielten Verbrennungsaussetzers
DE69301280T2 (de) Verfahren zur Zylinderidentifikation für die Steuerung eines elektronischen Einspritzsystems eines Verbrennungsmotors
DE69633642T2 (de) Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine.
DE19521277A1 (de) Einrichtung zur Zylindererkennung bei einer mehrzylindrigen Brennkraftmaschine
DE4304163A1 (de) Einrichtung zur Steuerung der Kraftstoffeinspritzung bei einer Brennkraftmaschine
EP0862692A1 (de) Verfahren zur bestimmung der phasenlage bei einer 4-takt brennkraftmaschine mit ungerader zylinderzahl
DE19650250A1 (de) Einrichtung zur Regelung einer Brennkraftmaschine
DE3312950A1 (de) Kraftstoffeinspritz-steuersystem fuer einen motor mit innerer verbrennung des direkteinspritzungstypes
DE69916547T2 (de) Verfahren zur Synchronisation einer Brennkraftmaschine
DE3044520A1 (de) Motoranalysator
EP1336040B1 (de) Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
DE4143094C2 (de) Verfahren und Anordnung für eine elektronische Steuerung von Brennstoffinjektoren für einen Verbrennungsmotor
DE2929797A1 (de) Steuer-schaltungsanordnung fuer brennkraftmaschine
DE2845357C2 (de)
EP0684375A1 (de) Einrichtung zur Regelung einer Brennkraftmaschine
DE4418579B4 (de) Einrichtung zur Regelung einer Brennkraftmaschine
EP0638717A2 (de) Einrichtung zur Regelung der Kraftstoffeinspritzung und der Zündung bei einer Brennkraftmaschine
EP1129280B1 (de) Einrichtung und verfahren zur erkennung und beeinflussung der phasenlage bei einer brennkraftmaschine
DE19912770A1 (de) Zündsteuervorrichtung und -verfahren
DE19600975C2 (de) Steuereinrichtung für eine Brennkraftmaschine mit Viertakt-Zyklus
DE4418578B4 (de) Einrichtung zur Erkennung der Phasenlage bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19900726

17Q First examination report despatched

Effective date: 19910226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 3864829

Country of ref document: DE

Date of ref document: 19911017

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024616

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991118

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011112

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021128

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080121

Year of fee payment: 20