EP0349834A1 - Durchlaufdampferzeuger - Google Patents

Durchlaufdampferzeuger Download PDF

Info

Publication number
EP0349834A1
EP0349834A1 EP89111309A EP89111309A EP0349834A1 EP 0349834 A1 EP0349834 A1 EP 0349834A1 EP 89111309 A EP89111309 A EP 89111309A EP 89111309 A EP89111309 A EP 89111309A EP 0349834 A1 EP0349834 A1 EP 0349834A1
Authority
EP
European Patent Office
Prior art keywords
throttle cable
steam generator
height
gas
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89111309A
Other languages
English (en)
French (fr)
Other versions
EP0349834B1 (de
Inventor
Eberhard Dipl.-Ing. Wittchow
Wolfgang Dr. Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25869735&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0349834(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0349834A1 publication Critical patent/EP0349834A1/de
Application granted granted Critical
Publication of EP0349834B1 publication Critical patent/EP0349834B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/065Construction of tube walls involving upper vertically disposed water tubes and lower horizontally- or helically disposed water tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S122/00Liquid heaters and vaporizers
    • Y10S122/04Once through boilers

Definitions

  • the invention relates to a once-through steam generator according to the preamble of patent claim 1.
  • the transition from the pipes of the pipe walls of the lower part of the throttle cable into the pipes of the pipe walls of the upper part can either be done directly, for example by connecting three pipes of the upper part to a pipe of the lower part, or indirectly via a collector, to which both the pipes of the lower and the pipes of the upper part are connected.
  • the tubes of the lower part of the gas flue which are strongly heated by the burners of the once-through steam generator, can have very considerable temperature differences at their outlet points to the tubes of the upper part or to the collector due to inevitable heating differences. Since the pipes of the pipe walls are welded together gas-tight on their long sides, these temperature differences lead to considerable thermal stresses in the pipe walls of the gas train, which can lead to pipe breaks.
  • the invention has for its object to remedy this situation and to avoid such pipe tears due to excessive thermal stresses.
  • the diagonally rising pipes of the pipe walls of the lower part of the throttle cable can only absorb small weights. Therefore, vertical support strips made of iron are to be provided for such pipe walls on the outside, to which the individual pipes of the pipe walls of the lower part of the throttle cable are welded.
  • the length and the cross-section of these support bands as well as the number of welding points can be limited. This also limits the manufacturing and assembly costs and thus costs for the once-through steam generator.
  • Claims 2 to 5 are directed to advantageous developments of the subject matter of claim 1, through which thermal stresses and thus pipe tears in the pipe walls of the throttle cable can be avoided even better.
  • the subject of claim 6 causes a low wall temperature of the tubes of the tube walls of the upper part of the gas train of the once-through steam generator. Therefore, these tube walls are also adapted to the high heat radiation to which they are exposed due to the limited height of the lower part of the throttle cable.
  • the continuous steam generators according to FIGS. 1 to 3 have two vertical throttle cables 2 and 3, which are connected to one another at the top by a horizontal gas cable 4.
  • the continuous steam generator according to FIG. 4 has only a single vertical throttle cable 2.
  • the vertical throttle cables 2 have a funnel-shaped base 5 at the bottom, as is customary for coal-fired steam generators.
  • the bottom 5 can, however, also be designed in the same way as is customary for gas or oil-fired steam generators.
  • the vertical gas flues 3 according to FIGS. 1 to 3 have a flue gas outlet opening 6 on the bottom. This flue gas outlet opening 6 is located at the top of the single vertical gas flue 2 in the continuous steam generator according to FIG. 4.
  • the vertical throttle cable 2 has a lower part 7, the lower end of which is delimited by the base 5 and which has a height H in the vertical direction.
  • such heating surfaces 9 are not only arranged within the vertical gas train 3 but also within the horizontal gas train 4.
  • 3 has such heating surfaces 9 not only in the vertical throttle cable 3 and in the horizontal gas cable 4, but also in the vertical gas cable 2, while the continuous steam generator according to FIG. 4 has such heating surfaces 9 only in the vertical gas cable 2.
  • the vertical throttle cable 2 also has an upper part 10, which in the continuous steam generator according to FIG. 1 at its upper end through the upper transverse wall 11 of the accelerator cable 2, in the continuous steam generator according to FIG. 2 through a cross-sectional constriction 12 which protrudes into the throttle cable 2 by a nose 13 a side wall of the throttle cable 2 is formed, and in the passage steam generators according to Figures 3 and 4 is limited by a lower edge 14 of the heating surfaces 9.
  • the vertical throttle cable 2 is formed by gas-tight tube walls, the tubes 15 of which are arranged at an incline. However, these tubes 15 can also be arranged alternately at an incline and horizontally.
  • the vertical throttle cable 2 is formed by gas-tight tube walls, the tubes 16 of which are arranged vertically. For example, three vertical pipes 16 of the pipe walls of the upper part 10 of the gas train 2 are connected to an obliquely rising pipe 15 of the pipe walls of the lower part 7 of the throttle cable 2.
  • the lower part 7 and the upper part 10 of the throttle cable 2 have a total height L.
  • the height H of this lower part 7 is advantageously 70% of the total height L of the parts 7 and 10 of this gas cable 2.
  • the height H can also advantageously be 65, 60, 55 or even be only 50% of the total height L. The smaller this percentage, the lower the thermal stresses in the tube walls of the lower part 7 of the throttle cable 2.
  • the percentage of the height H of the lower part 7 of the gas cable 2 is downwardly limited primarily by the burner arrangement, since in the area of the burner Tubes 15 are heated very strongly and the oblique arrangement of the tubes 15 allow particularly good cooling.
  • the tubes 16 of the tube walls of the upper part 10 of the throttle cable 2 advantageously have helical inner ribs 17. From the tubes 15 of the tube walls of the lower part 7 of the gas cable 2 into the tubes 16 according to FIGS. 5 and 6 flowing wet steam is subjected to a centrifugal force in these tubes 16, so that its water content predominantly collects on the inside of the tubes 16. This proportion of water increases the cooling of the tubes 16 there, so that these tubes 16 can easily absorb the high heat radiation from the interior of the throttle cable 2, which they are subject to because of the low height H of the lower part 7 of this gas cable 2.
  • a feed water preheater heating surface 22 is connected to a feed water pump 21.
  • An evaporator surface 23 is connected in series with the feed water preheater heating surface 22 and is connected laterally with its steam outlet line to a mostly vertically arranged water separator bottle 24.
  • a steam outlet line leads from the upper end of this water separating bottle 24 to the superheater heating surfaces 25.
  • the water separating bottle 24 is provided with a water discharge line 26 which leads to a feed water or a relaxation tank or is provided with a circulation pump which is located between the feed water preheater heating surface 22 and the evaporator surface 23 or between the feed water pump 21 and the feed water preheater heating surface.
  • the tube walls of both parts 7 and 10 of the throttle cable 2 belong to the evaporator surface 23 in FIG. 7, while the heating surfaces 9, the feed water preheater heating surface 22 and the superheater heating surfaces 25 in FIG. 7 are.
  • the evaporation area is not fixed locally, so that either overheating already occurs in the evaporator surfaces 23 of the tube walls of the gas flue 2, or evaporation still takes place in the superheater heating surfaces 25.
  • the water discharge line 26 in FIG. 7 is only flowed through by water during the start-up of the once-through steam generator and during operation with partial load.
  • the water discharge line 26 is therefore not connected to a horizontally arranged steam drum, water does not flow through it during the entire operation, and it does not open directly into the evaporator surface without the interposition of containers or pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ein Durchlaufdampferzeuger hat einen vertikalen Gaszug (2) mit gasdichten Rohrwänden, deren Rohre (15) in einem unteren Teil (7) des Gaszuges (2) schräg ansteigend und deren Rohre (16) in einem oberen, am Oberende durch eine Querwand (11) des Gaszuges (2), durch eine von den Rohrwänden gebildete Querschnittsverengung (12) oder durch eine Unterkante (14) von innerhalb des Gaszuges (2) befindlichen Heizflächen (9) begrenzten Teil (10) vertikal angeordnet sind; zum Vermeiden von Rohrreißern ist die Höhe (H) des unteren Teils (7) kleiner als 70 % der Gesamthöhe (L) von unterem (7) und oberem Teil (10).

Description

  • Die Erfindung betrifft einen Durchlaufdampferzeuger nach dem Oberbegriff des Patentanspruchs 1.
  • Ein derartiger Durchlaufdampferzeuger ist bereits üblich. Der Übergang von den Rohren der Rohrwände des unteren Teiles des Gaszuges in die Rohre der Rohrwände des oberen Teiles kann entweder direkt erfolgen, indem beispielsweise drei Rohre des oberen Teiles an einem Rohr des unteren Teiles angeschlossen sind, oder indirekt über einen Sammler, an dem sowohl die Rohre des unteren als auch die Rohre des oberen Teiles angeschlossen sind.
  • Bei Betrieb eines solchen Durchlaufdampferzeugers können insbesondere die durch die Brenner des Durchlaufdampferzeugers stark beheizten Rohre des unteren Teiles des Gaszuges an ihren Austrittsstellen zu den Rohren des oberen Teiles bzw. zu dem Sammler aufgrund unvermeidlicher Beheizungsunterschiede ganz erhebliche Temperaturunterschiede aufweisen. Da die Rohre der Rohrwände an ihren Längsseiten miteinander gasdicht verschweißt sind, führen diese Temperaturunterschiede zu erheblichen Wärme­spannungen in den Rohrwänden des Gaszuges, die zu Rohrreißern führen können.
  • Der Erfindung liegt die Aufgabe zugrunde, hier Abhilfe zu schaffen und solche Rohrreißer aufgrund von zu großen Wärme­spannungen zu vermeiden.
  • Zur Lösung dieser Aufgabe hat ein Durchlaufdampferzeuger der eingangs erwähnten Art erfindungsgemäß die Merkmale des kenn­zeichnenden Teiles des Patentanspruches 1.
  • Durch die Begrenzung der Höhe des unteren Teiles des Gaszuges dieses Durchlaufdampferzeugers wird auch die Wärmeaufnahme der Rohrwände in diesem unteren Teil begrenzt. Deshalb führen die Rohre des unteren Teiles des Gaszuges an den Austrittsstellen zu den Rohren des oberen Teiles bzw. zu dem zwischengeschalte­ten Sammler überwiegend Naßdampf. Eine Mehrbeheizung einzelner Rohre des unteren Teiles des Gaszuges führt deshalb nur zu einer verstärkten Dampfbildung in diesen Rohren, nicht aber zur Bildung von Heißdampf mit hohen Temperaturen, so daß allenfalls nur geringe Wärmespannungen in den Rohrwänden des unteren Teiles des Gaszuges auftreten können.
  • Da die Anzahl strömungsseitig parallelgeschalteter Rohre in den Rohrwänden des oberen Teiles des Gaszuges in der Regel größer ist als in den Rohrwänden des unteren Teiles, ist die Massen­stromdichte, die ein Maß für die Strömungsgeschwindigkeit des Dampfes ist, in den Rohrwänden des oberen Teiles und damit auch der Reibungsdruckverlust in diesen Rohrwänden kleiner als in den Rohrwänden des unteren Teiles des Gaszuges. Wegen der Begrenzung der Höhe des unteren Teiles des Gaszuges ist deshalb auch der Reibungsdruckverlust in den zu den Rohrwänden des unteren Teiles des Gaszuges gehörenden Rohren begrenzt. Das bedeutet, daß der Reibungsdruckverlust in den Rohren der Rohr­wände des Gaszuges insgesamt niedrig ist. Deshalb ist für diesen Durchlaufdampferzeuger nur eine geringe Leistung zugeord­neter Speisewasserpumpen erforderlich, wodurch sich ein guter Wirkungsgrad für ein Kraftwerk ergibt, in dem der Durchlauf­dampferzeuger eingesetzt ist.
  • Sind die Rohre des unteren Teiles des Gaszuges unmittelbar an den Rohren des oberen Teiles angeschlossen, wird wegen der Be­grenzung der Höhe des unteren Teiles des Gaszuges auch eine Vergleichmäßigung des Massenstromes durch die Rohre der Rohr­wände des Gaszuges erzielt.
  • Die schräg ansteigend angeordneten Rohre der Rohrwände des unteren Teiles des Gaszuges können nur kleine Gewichtskräfte aufnehmen. Deshalb sind für solche Rohrwände auf der Außenseite in der Regel vertikale Tragbänder aus Eisen vorzusehen, an denen die einzelnen Rohre der Rohrwände des unteren Teiles des Gaszuges festgeschweißt sind. Infolge der begrenzten Höhe des unteren Teiles des Gaszuges des Durchlaufdampferzeugers können die Länge und der Querschnitt dieser Tragbänder sowie auch die Anzahl der Schweißstellen begrenzt werden. Dies begrenzt auch den Herstellungs-und Montageaufwand und damit Kosten für den Durchlaufdampferzeuger.
  • Die Patentansprüche 2 bis 5 sind auf vorteilhafte Weiterbil­dungen des Gegenstandes des Patentanspruchs 1 gerichtet, durch die Wärmespannungen und damit Rohrreißer in den Rohrwänden des Gaszuges noch besser vermieden werden.
  • Der Gegenstand des Patentanspruchs 6 bewirkt eine niedrige Wandtemperatur der Rohre der Rohrwände des oberen Teiles des Gaszuges des Durchlaufdampferzeugers. Deshalb sind diese Rohr­wände auch der hohen Wärmeeinstrahlung angepaßt, der sie auf­grund der begrenzten Höhe des unteren Teiles des Gaszuges ausgesetzt sind.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung an Ausführungsbeispielen näher erläutert:
    • FIG 1 bis 4 zeigen stark schematisiert Längsschnitte erfindungs­gemäßer Durchlaufdampferzeuger,
    • FIG 5 zeigt einen Längsschnitt durch ein Rohr der Rohrwände der Durchlaufdampferzeuger nach den Figuren 1 bis 4
    • FIG 6 den Querschnitt des Rohres nach FIG 5,
    • FIG 7 zeigt stark schematisiert das Wasser-Dampf-Schaltschema der Durchlaufdampferzeuger nach den Figuren 1 bis 4.
  • Die Durchlaufdampferzeuger nach den Figuren 1 bis 3 haben zwei vertikale Gaszüge 2 und 3, die oben durch einen horizontalen Gaszug 4 miteinander verbunden sind. Der Durchlaufdampferzeuger nach FIG 4 hat nur einen einzigen vertikalen Gaszug 2.
  • Die vertikalen Gaszüge 2 weisen unten einen trichterförmigen Boden 5 auf, wie er für kohlebefeuerte Dampferzeuger üblich ist. Der Boden 5 kann jedoch auch eben ausgeführt sein, wie er für gas- oder ölbefeuerte Dampferzeuger üblich ist. Die verti­kalen Gaszüge 3 nach den Figuren 1 bis 3 haben am Boden eine Rauchgasaustrittsöffnung 6. Diese Rauchgasaustrittsöffnung 6 befindet sich beim Durchlaufdampferzeuger nach FIG 4 oben am einzigen vertikalen Gaszug 2.
  • Der vertikale Gaszug 2 weist ein unteres Teil 7 auf, dessen Unterende durch den Boden 5 begrenzt ist und das eine Höhe H in vertikaler Richtung hat.
  • Am unteren Teil 7 sind Brenner 8 für fossilen Brennstoff, z.B. Kohle, angebracht. Ferner befinden sich innerhalb des vertika­len Gaszuges 3 des Durchlaufdampferzeugers nach FIG 1 Heiz­flächen 9. Beim Durchlaufdampferzeuger nach FiG 2 sind solche Heizflächen 9 nicht nur innerhalb des vertikalen Gaszuges 3, sondern auch innerhalb des horizontalen Gaszuges 4 angeordnet. Der Durchlaufdampferzeuger nach FIG 3 hat solche Heizflächen 9 nicht nur im vertikalen Gaszug 3 und im horizontalen Gaszug 4, sondern auch im vertikalen Gaszug 2, während der Durchlauf­dampferzeuger nach FIG 4 solche Heizflächen 9 nur oben im vertikalen Gaszug 2 aufweist.
  • Der vertikale Gaszug 2 hat ferner einen oberen Teil 10, der beim Durchlaufdampferzeuger nach FIG 1 an seinem Oberende durch die obere Querwand 11 des Gaszuges 2, beim Durchlauf­dampferzeuger nach FIG 2 durch eine Querschnittsverengung 12, die durch eine in den Gaszug 2 hineinragende Nase 13 an einer Seitenwand des Gaszuges 2 gebildet ist, und bei den Durchlauf­ dampferzeugern nach den Figuren 3 und 4 durch eine Unterkante 14 der Heizflächen 9 begrenzt ist.
  • Im unteren Teil 7 mit der Höhe H ist der vertikale Gaszug 2 durch gasdichte Rohrwände gebildet, deren Rohre 15 schräg an­steigend angeordnet sind. Diese Rohre 15 können jedoch auch abwechselnd schräg ansteigend und waagerecht angeordnet sein. Im oberen Teil 10 ist der vertikale Gaszug 2 hingegen durch gasdichte Rohrwände gebildet, deren Rohre 16 vertikal angeord­net sind. An einem schräg ansteigenden Rohr 15 der Rohrwände des unteren Teiles 7 des Gaszuges 2 sind beispielsweise drei vertikale Rohre 16 der Rohrwände des oberen Teiles 10 des Gas­zuges 2 angeschlossen. Der untere Teil 7 und der oberer Teil 10 des Gaszuges 2 haben eine Gesamthöhe L.
  • Zum Vermeiden von Wärmespannungen insbesondere in den Rohr­wänden des unteren Teiles 7 des Gaszuges 2 beträgt die Höhe H dieses unteren Teiles 7 vorteilhafterweise 70 % der Gesamthöhe L der Teile 7 und 10 dieses Gaszuges 2. Die Höhe H kann auch günstigerweise 65, 60, 55 oder sogar nur 50 % der Gesamthöhe L betragen. Je kleiner dieser Prozentsatz ist, desto geringer sind die Wärmespannungen in den Rohrwänden des unteren Teiles 7 des Gaszuges 2. Der Prozentsatz der Höhe H des unteren Teils 7 des Gaszuges 2 ist nach unten vor allem durch die Brenneran­ordnung begrenzt, da im Bereich der Brenner die Rohre 15 sehr stark beheizt werden und die schräge Anordnung der Rohre 15 eine besonders gute Kühlung ermöglichen.
  • Wie die Figuren 5 und 6 verdeutlichen, haben die Rohre 16 der Rohrwände des oberen Teiles 10 des Gaszuges 2 vorteilhafter­weise wendelartig geführte Innenrippen 17. Aus den Rohren 15 der Rohrwände des unteren Teils 7 des Gaszuges 2 in die Rohre 16 entsprechend Fig. 5 und 6 strömender Naßdampf unterliegt in diesen Rohren 16 einer Zentrifugalkraft, so daß sein Wasser­anteil sich überwiegend an der Innenseite der Rohre 16 ansammelt. Dieser Wasseranteil verstärkt dort die Kühlung der Rohre 16, so daß diese Rohre 16 ohne weiteres die hohe Wärmeeinstrahlung aus dem Innenraum des Gaszuges 2 aufnehmen können, der sie wegen der niedrigen Höhe H des unteren Teiles 7 dieses Gaszuges 2 unterliegen.
  • Im Wasser-Dampfschaltschema des Durchlaufdampferzeugers nach FIG 7 ist eine Speisewasservorwärmer-Heizfläche 22 an einer Speisewasserpumpe 21 angeschlossen. Zu der Speisewasservorwärmer-­Heizfläche 22 ist eine Verdampferfläche 23 in Serie geschaltet, die mit ihrer Dampfaustrittsleitung seitlich an einer meist senkrecht angeordneten Wasserabscheideflasche 24 angeschlossen ist. Vom oberen Ende dieser Wasserabscheideflasche 24 führt eine Dampfaustrittsleitung zu den Überhitzerheizflächen 25. Am unteren Ende ist die Wasserabscheideflasche 24 mit einer Wasser­abführleitung 26 versehen, die zu einem Speisewasser- oder einem Entspannungsbehälter führt oder mit einer Umwälzpumpe versehen ist, die zwischen der Speisewasservorwärmer-Heizfläche 22 und der Verdampferfläche 23 oder zwischen der Speisewasser­pumpe 21 und der Speisewasservorwärmerheizfläche mündet.
  • Die Rohrwände beider Teile 7 und 10 des Gaszuges 2 gehören zu der Verdampferfläche 23 in FIG 7, während die Heizflächen 9, die Speisewasservorwärmer-Heizfläche 22 und die Überhitzer­heizflächen 25 in FIG 7 sind. In vielen Betriebsfällen ist der Verdampfungsbereich örtlich nicht fixiert, so daß entweder in den Verdampferflächen 23 der Rohrwände des Gaszuges 2 bereits Überhitzung erfolgt, oder Verdampfung noch in den Überhitzer­heizflächen 25 stattfindet.
  • Die Wasserabführleitung 26 in FIG 7 wird nur während des An­fahrens des Durchlaufdampferzeugers und bei Betrieb mit Teil­last von Wasser durchströmt. Die Wasserabführleitung 26 ist also im Gegensatz zu den wasserführenden Fallrohren eines Naturumlaufdampferzeugers nicht an eine waagerecht angeordnete Dampftrommel angeschlossen, sie wird nicht während des gesamten Betriebs von Wasser durchströmt und sie mündet auch nicht ohne Zwischenschaltung von Behältern oder Pumpen direkt in die Verdampferfläche.

Claims (6)

1. Durchlaufdampferzeuger mit einem vertikalen Gaszug, der aus gasdichten Rohrwänden gebildet ist, deren Rohre an einem unteren Teil des Gaszuges, an dem sich Brenner für fossilen Brennstoff befinden, schräg ansteigend und an einen oberen Teil des Gas­zuges vertikal angeordnet sind, und dessen unterer Teil am Unter­ende durch einen Boden des Gaszuges und dessen oberer Teil am Oberende durch eine Querwand des Gaszuges, durch eine von den Rohrwänden gebildete Querschnittsverengung des Gaszuges oder durch eine Unterkante von innerhalb des Gaszuges angeordneten Heizflächen begrenzt ist, dadurch gekenn­zeichnet, daß die Höhe (H) des unteren Teiles (7) des Gaszuges (2) mit den schräg ansteigend angeordneten Rohren (15) kleiner als 70 % der Gesamthöhe (L) von unterem und oberem Teil (7; 10) des vertikalen Gaszuges (2) ist.
2. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe (H) des unteren Teiles (7) des Gaszuges (2) kleiner als 65 % der Gesamthöhe (L) ist.
3. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe (H) des unteren Teiles (7) des Gaszuges (2) kleiner als 60 % der Gesamthöhe (L) ist.
4. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe (H) des unteren Teiles (7) des Gaszuges (2) kleiner als 55 % der Gesamthöhe (L) ist.
5. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe (H) des unteren Teiles (7) des Gaszuges (2) kleiner als 50 % der Gesamthöhe (L) ist.
6. Durchlaufdampferzeuger nach Anspruch 1, dadurch gekennzeichnet, daß die Rohre (16) der Rohrwände des oberen Teiles (10) des Gaszuges (2) wendelartig geführte Innenrippen (17) aufweisen.
EP89111309A 1988-07-04 1989-06-21 Durchlaufdampferzeuger Expired - Lifetime EP0349834B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3822606 1988-07-04
DE3822606 1988-07-04
IN478CA1989 IN172355B (de) 1988-07-04 1989-06-22

Publications (2)

Publication Number Publication Date
EP0349834A1 true EP0349834A1 (de) 1990-01-10
EP0349834B1 EP0349834B1 (de) 1996-04-17

Family

ID=25869735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89111309A Expired - Lifetime EP0349834B1 (de) 1988-07-04 1989-06-21 Durchlaufdampferzeuger

Country Status (5)

Country Link
US (1) US4987862A (de)
EP (1) EP0349834B1 (de)
JP (1) JP3014699B2 (de)
GR (1) GR3019861T3 (de)
IN (1) IN172355B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010501A1 (de) * 1992-11-02 1994-05-11 Siemens Aktiengesellschaft Dampferzeuger
DE19510033A1 (de) * 1994-05-25 1995-11-30 Babcock & Wilcox Co Verwendung einer eingängigen und mehrgängigen gerippten Verrohrung für Gleitdruck-Zwangsdurchlaufkessel
WO1997024555A2 (de) * 1996-01-02 1997-07-10 Siemens Aktiengesellschaft Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
DE102005023082A1 (de) * 2005-05-13 2006-11-16 Alstom Technology Ltd. Durchlaufdampferzeuger

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0581760T4 (da) * 1991-04-18 2001-12-03 Siemens Ag Gennemstrømningsdampgenerator med et lodret gastræk af i det væsentlige lodret anbragte rør
DE4206657C2 (de) * 1992-03-03 1997-01-09 Siemens Ag Anordnung eines Dampferzeugers in einer Tragkonstruktion
DE4232880A1 (de) * 1992-09-30 1994-03-31 Siemens Ag Dampferzeuger
DE4333404A1 (de) * 1993-09-30 1995-04-06 Siemens Ag Durchlaufdampferzeuger mit vertikal angeordneten Verdampferrohren
US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
US5755188A (en) * 1995-05-04 1998-05-26 The Babcock & Wilcox Company Variable pressure once-through steam generator furnace having all welded spiral to vertical tube transition with non-split flow circuitry
DE19602680C2 (de) * 1996-01-25 1998-04-02 Siemens Ag Durchlaufdampferzeuger
DE19645748C1 (de) * 1996-11-06 1998-03-12 Siemens Ag Verfahren zum Betreiben eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
KR100597883B1 (ko) * 1998-06-10 2006-07-13 지멘스 악티엔게젤샤프트 화석 연료 증기 발생기
DE19858780C2 (de) * 1998-12-18 2001-07-05 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
US6213059B1 (en) * 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
KR20050086420A (ko) * 2002-10-04 2005-08-30 누터/에릭슨 인코퍼레이티드 증기 발생기용 관류 증발기
US6718915B1 (en) * 2002-12-16 2004-04-13 The Babcock & Wilcox Company Horizontal spiral tube boiler convection pass enclosure design
EP1533565A1 (de) * 2003-11-19 2005-05-25 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102006005208A1 (de) * 2006-02-02 2007-08-16 Hitachi Power Europe Gmbh Hängender Dampferzeuger
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
US8240370B2 (en) 2009-12-18 2012-08-14 Air Products And Chemicals, Inc. Integrated hydrogen production and hydrocarbon extraction
US9541280B2 (en) 2014-06-04 2017-01-10 Fives North American Combustion, Inc. Ultra low NOx combustion for steam generator
US10634341B2 (en) * 2016-08-23 2020-04-28 General Electric Technology Gmbh Overfire air system for low nitrogen oxide tangentially fired boiler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240883B (de) * 1964-02-27 1967-05-24 Ver Kesselwerke Ag Zwangdurchlaufkessel mit oben am Kesselgeruest aufgehaengtem Kesselkoerper
GB1163301A (en) * 1965-08-27 1969-09-04 Babcock & Wilcox Ltd Improvements in or relating to Supporting Tubular Walls of a Vapour Generator
FR2149892A5 (de) * 1971-08-05 1973-03-30 Babcock Atlantique Sa
DE2621189A1 (de) * 1976-05-13 1977-11-17 Balcke Duerr Ag Vorrichtung zur aufhaengung einer rohrwand
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores
DE2941623A1 (de) * 1979-10-13 1981-04-23 Deutsche Babcock Ag, 4200 Oberhausen Vorrichtung zur aufhaengung einer rohrwand
DE3544504A1 (de) * 1984-12-27 1986-08-07 Mustafa Dr.-Ing. Zürich Youssef Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202138A (en) * 1961-07-27 1965-08-24 Combustion Eng Vapor temperature control method
NL130376C (de) * 1963-03-25
US4344388A (en) * 1977-11-07 1982-08-17 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
DE3173990D1 (en) * 1981-09-15 1986-04-10 Sulzer Ag Steam generator with a superheater tubular wall
DE3525676A1 (de) * 1985-07-18 1987-01-22 Kraftwerk Union Ag Dampferzeuger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240883B (de) * 1964-02-27 1967-05-24 Ver Kesselwerke Ag Zwangdurchlaufkessel mit oben am Kesselgeruest aufgehaengtem Kesselkoerper
GB1163301A (en) * 1965-08-27 1969-09-04 Babcock & Wilcox Ltd Improvements in or relating to Supporting Tubular Walls of a Vapour Generator
FR2149892A5 (de) * 1971-08-05 1973-03-30 Babcock Atlantique Sa
DE2621189A1 (de) * 1976-05-13 1977-11-17 Balcke Duerr Ag Vorrichtung zur aufhaengung einer rohrwand
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores
DE2941623A1 (de) * 1979-10-13 1981-04-23 Deutsche Babcock Ag, 4200 Oberhausen Vorrichtung zur aufhaengung einer rohrwand
DE3544504A1 (de) * 1984-12-27 1986-08-07 Mustafa Dr.-Ing. Zürich Youssef Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010501A1 (de) * 1992-11-02 1994-05-11 Siemens Aktiengesellschaft Dampferzeuger
DE19510033A1 (de) * 1994-05-25 1995-11-30 Babcock & Wilcox Co Verwendung einer eingängigen und mehrgängigen gerippten Verrohrung für Gleitdruck-Zwangsdurchlaufkessel
DE19510033C2 (de) * 1994-05-25 1999-10-14 Babcock & Wilcox Co Zwangsdurchlauf-Dampferzeuger, insbesondere für einen Gleitdruckbetrieb
WO1997024555A2 (de) * 1996-01-02 1997-07-10 Siemens Aktiengesellschaft Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
WO1997024555A3 (de) * 1996-01-02 1997-08-21 Siemens Ag Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
DE102005023082A1 (de) * 2005-05-13 2006-11-16 Alstom Technology Ltd. Durchlaufdampferzeuger
CN100491820C (zh) * 2005-05-13 2009-05-27 阿尔斯通技术有限公司 直通式蒸汽发生器
DE102005023082B4 (de) * 2005-05-13 2014-05-28 Alstom Technology Ltd. Durchlaufdampferzeuger

Also Published As

Publication number Publication date
EP0349834B1 (de) 1996-04-17
JPH0271001A (ja) 1990-03-09
JP3014699B2 (ja) 2000-02-28
GR3019861T3 (en) 1996-08-31
US4987862A (en) 1991-01-29
IN172355B (de) 1993-06-26

Similar Documents

Publication Publication Date Title
EP0349834B1 (de) Durchlaufdampferzeuger
EP0657010B2 (de) Dampferzeuger
EP0581760B1 (de) Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren
DE19929088C1 (de) Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
EP0977964B1 (de) Durchlaufdampferzeuger und verfahren zum anfahren eines durchlaufdampferzeugers
WO1999064787A1 (de) Fossilbeheizter dampferzeuger
WO2006032556A1 (de) Fossil beheizter durchlaufdampferzeuger
EP0937218B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP1144910B1 (de) Fossilbeheizter dampferzeuger
WO2000037851A1 (de) Fossilbeheizter durchlaufdampferzeuger
DE4232880A1 (de) Dampferzeuger
WO2000042353A1 (de) Fossilbeheizter dampferzeuger
EP0352488B1 (de) Durchlaufdampferzeuger
EP1570208B1 (de) Verfahren zur herstellung eines durchlaufdampferzeugers und durchlaufdampferzeuger
DE19600004C2 (de) Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
EP1533565A1 (de) Durchlaufdampferzeuger
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE1949963A1 (de) Dampfkessel mit einem Wasserraum
DE2558127B1 (de) Dampferzeuger mit u-foermig gebogenen waermetauscherrohren
DE19608381C1 (de) Zentralheizungskessel
DE2540024B2 (de) Selbsttragender wasserrohr-dampferzeuger
AT227726B (de) Wasserrohrkessel
WO1994005950A1 (de) Dampferzeuger
DE1244802B (de) Steilrohrkessel mit OElfeuerung, insbesondere Schiffskessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB GR IT SE

17P Request for examination filed

Effective date: 19900206

17Q First examination report despatched

Effective date: 19910218

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB GR IT SE

REF Corresponds to:

Ref document number: 58909655

Country of ref document: DE

Date of ref document: 19960523

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960529

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960717

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019861

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: EVT ENERGIE- UND VERFAHRENSTECHNIK GMBH

Effective date: 19970117

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19980508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010823

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20020531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020610

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050621

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO