EP0581760B1 - Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren - Google Patents

Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren Download PDF

Info

Publication number
EP0581760B1
EP0581760B1 EP91907522A EP91907522A EP0581760B1 EP 0581760 B1 EP0581760 B1 EP 0581760B1 EP 91907522 A EP91907522 A EP 91907522A EP 91907522 A EP91907522 A EP 91907522A EP 0581760 B1 EP0581760 B1 EP 0581760B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
continuous flow
tube diameter
quotient
internal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91907522A
Other languages
English (en)
French (fr)
Other versions
EP0581760A1 (de
EP0581760B2 (de
Inventor
Wolfgang Kastner
Wolfgang Köhler
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6863278&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0581760(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0581760A1 publication Critical patent/EP0581760A1/de
Application granted granted Critical
Publication of EP0581760B1 publication Critical patent/EP0581760B1/de
Publication of EP0581760B2 publication Critical patent/EP0581760B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • F22B37/103Internally ribbed tubes

Definitions

  • the invention relates to through-steam generators with a vertical gas train consisting of essentially vertically arranged and gas-tightly welded tubes, which together form combustion chamber walls and carry burners for fossil fuels, which have an inner tube diameter and on the inside of which a multi-thread ribs with a pitch h and a fin height H are formed have and which are connected in parallel for the flow of a coolant.
  • the mass flow density of the coolant in the tube is a determining variable for the fluidic design of the parallel tube system, which acts as an evaporator heating surface.
  • Typical mass flow densities for helical tubing of the combustion chamber with smooth tubes on the inside are between 2000 and 3000 kg / m 2 s, for vertical tubing with internally finned tubes between 1500 and 2000 kg / m 2 s.
  • the proportion of the friction pressure drop in the total pressure drop of the once-through evaporator is very high. Evaporators of this type therefore have a typical characteristic, according to which - starting from the design state - the mass flow rate in the individual tube decreases when it is heated more strongly and rises when it is heated less.
  • the invention is based on the object of producing and operating continuous steam generators at low cost, thereby economically reducing the temperature differences at the evaporator outlet to permissible values and, in addition, extending the application limit for continuous steam generators with vertical tubing of the combustion chamber walls to unit outputs well below 500 MW.
  • this object is achieved for continuous-flow steam generators of the type mentioned at the outset in that the inner pipe diameter is a function of a quotient K and that points, determined by pairs of values from the inner pipe diameter d and the quotient K, lie in a coordinate system between a curve A and a straight line B.
  • the total mass flow rate M of all pipes at 100% steam output is divided by the circumference of the gas flue in a horizontal section, measured on the connecting lines of the pipe centers of neighboring pipes.
  • points corresponding to the pairs of values and on the curve A which is continuously increasing and the straight line B is through points corresponding to the value pairs and Are defined.
  • the pitch h in m of the ribs forming a multi-start thread on the inside of the tubes is at most equal to 0.9 times the root of the tube inner diameter d in m and the rib height H is at least 0.04- times the inner pipe diameter d.
  • An advantageous embodiment of the invention consists in that the inner pipe diameter d assigned to a quotient K deviates by at most 30% from the inner pipe diameter d associated with this quotient K on curve A.
  • Curves A and B are determined in such a way that the continuous steam generator can still be operated with a minimum load of 50% of full load or less in safe continuous operation without the advantages according to the invention being lost.
  • the design of the continuous flow steam generator according to the invention is very advantageous because it lowers the mass flow density in the pipes through which it flows and the inner pipe diameter d is determined in such a way that the share of the geodetic pressure drop in the total pressure drop forces a change in the characteristics of continuous flow evaporators, according to - starting from the design state - the mass flow rate in the individual pipe is increased when it is heated more strongly and decreases when it is heated less.
  • This novel characteristic leads to a significant equalization of the steam and thus the tube wall temperatures at the outlet of the combustion chamber walls forming the evaporator heating surface.
  • the lowering of the mass flow density in the evaporator tubes has a further advantage because, with unchanged total mass throughput due to the parallel tube system of the evaporator and while maintaining the same inner tube diameter d, the number of tubes of the combustion chamber walls of the gas flue connected in parallel in flow terms increases compared to previously common designs. This makes it possible to increase the ratio of the combustion chamber circumference to the total mass throughput and to extend the application limit for continuous steam generators with vertically piped combustion chamber walls into a power range far below 500 MW.
  • a continuous steam generator with a vertical gas flue 1 is surrounded by combustion chamber walls 2.
  • the combustion chamber walls 2 consist of tubes 3 arranged vertically and next to one another, which are welded together in a gas-tight manner (FIG. 1).
  • the tubes which are welded to one another in a gas-tight manner form, for example in a tube-web-tube construction or in a fin tube construction, a gas-tight combustion chamber wall 2.
  • the tubes 3 have ribs 4 on their inside, which form a kind of multi-start thread with a pitch h and a rib height H.
  • the inner tube diameter d of the tubes 3 is defined by the calculated diameter of the circle, which has the same area as the free cross section of the tubes 3 narrowed by the ribs 4.
  • the inner tube diameter d and the pitch h are mutually determined by the function h Z 0, 9: Vd to cause the coolant flow to swirl sufficiently. Both h and d are used in the unit of meter.
  • the combustion chamber walls 2 of the vertical gas train 1 carry burner fossil fuels, not shown, which burn within the gas train 1 and thereby generate heat.
  • the heat is absorbed by a coolant which flows through the tubes 3 forming the combustion chamber walls 2 and evaporates in the process.
  • a coolant which flows through the tubes 3 forming the combustion chamber walls 2 and evaporates in the process.
  • appropriately treated water is used as the coolant.
  • the ribs 4 protrude at least 0.04 times the inner pipe diameter d into the pipe 3 in order to guide the water portion of the flowing coolant on the inside of the pipe, because the swirl presses especially in the area where the water evaporates, the water still present as a liquid to the inside of a tube 3, so that the tube 3 passes the heat it absorbs well to the liquid and is thereby reliably cooled.
  • the inner tube diameter d is not selected independently of the quotient K according to the invention.
  • the quotient K is determined by dividing the total mass throughput (kg / s) of all pipes 3 at 100% steam output by the circumference (m) of the throttle cable 1.
  • the circumference of the throttle cable 1 is measured along a line 5 shown in broken lines in FIG connects the pipe centers of the individual neighboring pipes 3 with each other.
  • the inner pipe diameter d can be represented as a function of the quotient K.
  • Four points of a curve A are through the pairs of values and given.
  • Every point in the field between this curve A and a straight line B represents a pair of values in which the proportions of frictional pressure drop and geodetic pressure drop are in such a favorable relationship to one another - in general, the geodetic pressure drop is then greater than the friction pressure drop - that at the additional heating of a single pipe increases the mass throughput through this pipe.
  • an inner pipe diameter d assigned to a quotient K should be at most 10% smaller or 30% larger than the inner pipe diameter d assigned to this quotient K on curve A.
  • This flow rate is at 100% steam output for the pipes up to a pipe inside diameter d of 25 mm at a maximum of around 800 and 850 kg / m 2 s (curve A). With inner pipe diameters d greater than 25 mm, the mass flow density increases slightly and is then a maximum of 850 and about 950 kg / m 2 s (curve A).
  • the total pressure drop in the pipes 3, i.e. the difference between the pressure in the inlet manifold below and the pressure in the outlet manifold above, is made up of the proportions of friction pressure drop, geodetic pressure drop and acceleration pressure drop.
  • the proportion of the acceleration pressure drop is 1 to 2% of the total pressure drop and can therefore be neglected here.
  • the geodetic pressure drop of an individual pipe 3 decreases when this pipe is heated more than other pipes due to increased steam formation, because the water-steam column becomes lighter.
  • the throughput through the multi-heated pipe increases due to this effect until the sum of the increased friction pressure drop and the decreased geodetic pressure drop reaches the pressure drop specified by the coupling via the inlet and outlet manifolds. This increase in throughput is desirable in order to keep the steam outlet temperature at the pipe end low despite the additional heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Air Humidification (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

  • Die Erfindung betrifft Durchiaufdampferzeuger mit einem vertikalen Gaszug aus im wesentlichen vertikal angeordneten und miteinander gasdicht verschweißten Rohren, die gemeinsam Brennkammerwände bilden und Brennerfür fossile Brennstoffe tragen, die einen Rohrinnendurchmesser aufweisen und auf ihrer Innenseite ein mehrgängiges Gewinde bildende Rippen mit einer Steigung h und einer Rippenhöhe H aufweisen und die für den Durchfluß eines Kühlmittels parallel geschaltet sind.
  • Derartige Durchlaufdampferzeuger mit vertikaler Berohrung der Brennkammerwände sind gegenüber solchen mit schraubenförmiger Berohrung kostengünstiger herzustellen und haben außerdem einen niedrigeren wasser-/dampfseitigen Druckverlust. Allerdings können die nicht vermeidbaren Unterschiede in der Wärmezufuhr zu den einzelnen Rohren, z.B. infolge unterschiedlichen Verschlackungsgrades vor und nach dem Rußblasen, zu Temperaturdifferenzen zwischen einzelnen Rohren am Verdampferaustritt bis zu 160 °Cführen (Europäische Patentanmeldung 0 217 079), die Schäden aufgrund von unzulässigen Wärmespannungen verursachen. Außerdem können derartige Dampferzeuger bisher aus Gründen der Rohrkühlung nur für große Einheitenleistungen ausgeführt werden. In einer Veröffentlichung "Zwangdurchlaufkessel für Gleitdruckbetrieb mit vertikaler Brennkammerberohrung" von H. Juzie et al in der VGB KRAFTWERKSTECHNIK 64, Heft 4, ab Seite 292, wird für Dampferzeuger mit einer Brennkammer mit vertikaler Berohrung und Steinkohle- Tangentialfeuerung eine untere Leistungsgrenze von 500 MW angegeben.
  • Aus dieser Veröffentlichung ergibt sich auch, daß die Massenstromdichte des Kühlmittels im Rohr neben dem Rohrinnendurchmesser eine bestimmende Größe für die strömungstechnische Auslegung des Parallelrohrsystems ist, das als Verdampferheizfläche wirkt. Typische Massenstromdichten für schraubenförmige Berohrung der Brennkammer mit auf der Innenseite glatten Rohren liegen zwischen 2000 und 3000 kg/m2s, für vertikale Berohrung mit innenberippten Rohren zwischen 1500 und 2000 kg/m2s. Bei diesen Auslegungsparametern ist der Anteil des Reibungsdruckabfalls am gesamten Druckabfall der Durchlauf-Verdampfer sehr hoch. Derartige Verdampfer haben demzufolge eine typische Charakteristi k, gemäß der - ausgehend vom Auslegungszustand - der Massendurchsatz im Einzelrohr bei dessen stärkerer Beheizung zurückgeht und bei dessen schwächerer Beheizung ansteigt.
  • Diese Charakteristik ist eine Ursache für größere Temperaturdifferenzen zwischen einzelnen Rohren am Verdampferaustritt bei Gaszügen mit vertikal angeordneten Rohren. Zur Minderung dieser Temperaturdifferenzen ist es bekannt, Drosseln am Verdampfereintritt einzubauen und/oder im oberen Teil der Brennkammerwände außerhalb des Gaszuges Mischsammler anzuordnen, in welche die Rohre münden und in denen ein gewisser Enthalpieausgleich durch Mischung stattfindet. Bei Einheitsleistungen unter 500 MW ist bei bisher ausgeführten Durchlaufdampferzeugern für die Brennkammerwände eine schraubenförmige Berohrung vorgesehen worden, um die für die Kühlung der Glattrohre notwendige Massenstromdichte in den Rohren einhalten zu können und um einen gewissen Beheizungsausgleich bei der großen Rohrlänge zu erreichen. Diese Maßnahme führt jedoch zu höheren Herstellungskosten der Durchlaufdampferzeuger und erfordert verhältnismäßig große Speisepumpenleistungen aufgrund des auftretenden hohen Druckabfalls.
  • Der Erfindung liegt die Aufgabe zugrunde, Durchlaufdampferzeuger kostengünstig herzustellen und zu betreiben, dabei die Temperaturdifferenzen am Verdampferaustritt auf wirtschaftliche Art und Weise auf zulässige Werte zu reduzieren und darüber hinaus die Anwendungsgrenze für Durchlaufdampferzeuger mit vertikaler Berohrung der Brennkammerwände auf Einheitenleistungen deutlich unterhalb von 500 MWauszudehnen.
  • Erfindungsgemäß wird diese Aufgabe für Durchlaufdampferzeuger der eingangs genannten Art dadurch gelöst, daß der Rohrinnendurchmesser eine Funktion eines Quotienten K ist und daß Punkte, bestimmt durch Wertepaare aus Rohrinnendurchmesser d und Quotient K, in einem Koordinatensystem zwischen einer Kurve A und einer Geraden B liegen. Dabei wird zur Bildung des Quotienten K der summierte Massendurchsatz M aller Rohre bei 100% Dampfleistung dividiert durch den Umfang des Gaszugs in einem horizontalen Schnitt, gemessen auf den Verbindungslinien der Rohrmitten benachbarter Rohre. Dabei liegen Punkte entsprechend der Wertepaare
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    und
    Figure imgb0004
    auf der Kurve A, die stetig steigend ist und dabei ist die Gerade B durch Punkte entsprechend den Wertepaaren
    Figure imgb0005
    und
    Figure imgb0006
    definiert.
  • Nach zweckmäßigen Ausgestaltungen des erfindungsgemäßen Durchlaufdampferzeugers ist die Steigung h in m der ein mehrgängiges Gewinde bildenden Rippen auf der Innenseite der Rohre höchstens gleich dem 0,9-fachen der Wurzel aus dem Rohrinnendurchmesser d in m und die Rippenhöhe H beträgt mindestens das 0,04-fache des Rohrinnendurchmessers d.
  • Eine vorteilhafte Ausgestaltung der Erfindung besteht darin, daß der jeweils einem Quotienten K zugeordnete Rohrinnendurchmesser d um höchstens 30% von dem auf der Kurve A diesem Quotienten K zugehörigen Rohrinnendurchmesser d abweicht.
  • Die Kurven A und B sind so bestimmt, daß der Durchlaufdampferzeuger noch mit einer Mindestlast von 50% der Vollast oder darunter im sicheren Durchlaufbetrieb betrieben werden kann, ohne daß die erfindungsgemäßen Vorteile verloren gehen.
  • Die erfindungsgemäße Ausgestaltung des Durchlaufdampferzeugers ist sehr vorteilhaft, weil durch sie die Massenstromdichte in den durchströmten Rohren so weit abgesenkt und der Rohrinnendurchmesser d so bestimmt sind, daß der Anteil des geodätischen Druckabfalls am gesamten Druckabfall eine Veränderung der Charakteristik von Durchlaufverdampfern erzwingt, gemäß der - ausgehend vom Auslegungszustand - der Massendurchsatz im Einzelrohr bei dessen stärkerer Beheizung erhöht wird und bei dessen schwächerer Beheizung zurückgeht. Diese neuartige Charakteristikführt zu einer bedeutenden Vergleichmäßigung der Dampf-und damit der Rohrwandtemperaturen am Austritt der die Verdampferheizfläche bildenden Brennkammerwände.
  • Die Absenkung der Massenstromdichte in den Verdampferrohren hat einen weiteren Vorteil, weil sich bei unverändertem Gesamtmassendurchsatz durch das Parallelrohrsystem des Verdampfers und bei Beibehaltung gleicher Rohrinnendurchmesser d die Anzahl der durchflußmäßig parallel geschalteten Rohre der Brennkammerwände des Gaszugs gegenüber bisher üblichen Auslegungen vergrößert. Dadurch ist es möglich, das Verhältnis von Brennkammerumfang zum Gesamtmassendurchsatz zu vergrößern und die Anwendungsgrenze für Durchlaufdampferzeugermitvertikal berohrten Brennkammerwänden in einen Leistungsbereich bis weit unterhalb von 500 MW auszudehnen.
  • Um jedoch dabei eine sichere Kühlung dereinzelnen Rohre zu gewährleisten, müssen diese innen berippt sein. Dabei muß die Rippengeometrie so beschaffen sein, daß nahezu im gesamten Verdampfungsgebiet, erzwungen durch den Drall des Kühlmittelstroms, stets Wasser auf der Rohrinnenwand vorhanden ist und somit die Gefahr von Filmverdampfung beseitigt ist.
  • Die erfindungsgemäße Gestaltung von Durchlaufdampferzeugern wird anhand einer Zeichnung näher erläutert. Im einzelnen zeigen:
    • FIG 1 einen Ausschnitt aus einem horizontalen Schnitt durch einen vertikalen Gaszug und
    • FIG 2 einen Längsschnitt durch ein einzelnes Rohr;
    • FIG 3 ein Koordinatensystem mit Kurven A und B.
  • Ein Durchlaufdampferzeuger mit einem vertikalen Gaszug 1 ist von Brennkammerwänden 2 umfaßt. Die Brennkammerwände 2 bestehen aus vertikal und nebeneinander angeordneten Rohren 3, die miteinander gasdicht verschweißt sind (Figur 1). Die miteinander gasdicht verschweißten Rohre bilden beispielsweise in einer Rohr-Steg-Rohr-Konstruktion oder in einer Flossenrohr-Konstruktion eine gasdichte Brennkammerwand 2.
  • Die Rohre 3 tragen nach Figur 2 auf ihrer Innenseite Rippen 4, die eine Art mehrgängiges Gewinde mit einer Steigung h bilden und eine Rippenhöhe H haben. Der Rohrinnendurchmesser d der Rohre 3 ist definiert durch den rechnerischen Durchmesser des Kreises, der den gleichen Flächeninhalt hat wie der durch die Rippen 4 eingeengte freie Querschnitt der Rohre 3. Der Rohrinnendurchmesser d und die Steigung h bestimmen sich gegenseitig durch die Funktion h Z 0,9 :Vd , um die Strömung des Kühlmittels in einen ausreichend großen Drall zu versetzen. Dabei ist sowohl h als auch d in der Maßeinheit Meter eingesetzt.
  • Die Brennkammerwände 2 des vertikalen Gaszuges 1 tragen nicht dargestellte Brennerfürfossile Brennstoffe, die innerhalb des Gaszuges 1 verbrennen und dabei Wärme erzeugen. Die Wärme wird von einem Kühlmittel aufgenommen, welches die die Brennkammerwände 2 bildenden Rohre 3 durchströmt und dabei verdampft. Im Normalfall dient als Kühlmittel entsprechend aufbereitetes Wasser. Die Rippen 4 ragen mindestens um das 0,04-fache des Rohrinnendurchmessers d in das Rohr 3 hinein, um den Wasseranteil des strömenden Kühlmittels auf der Innenseite des Rohres zu führen, denn der Drall preßt vor allem auch in dem Bereich, in dem das Wasser verdampft, das jeweils noch als Flüssigkeit vorhandene Wasser an die Innenseite eines Rohres 3, so daß das Rohr 3 die von ihm aufgenommene Wärme gut an die Flüssigkeit weitergibt und dadurch sicher gekühlt wird.
  • Um dies jeweils in ausreichendem Maße zu gewährleisten, ist der Rohrinnendurchmesser d gemäß der Erfindung nicht unabhängig vom Quotienten K gewählt. Dabei ist der Quotient Kdurch Division des summierten Massendurchsatzes (kg/s) aller Rohre 3 bei 100% Dampfleistung durch den Umfang (m) des Gaszugs 1 bestimmt. Der Umfang des Gaszugs 1 ist entlang einer in Figur 1 gestrichelt dargestellten Linie 5 gemessen, die die Rohrmitten der einzelnen benachbarten Rohre 3 miteinander verbindet.
  • In dem Koordinatensystem gemäß Figur 3 ist der Rohrinnendurchmesser d als Funktion des Quotienten K darstellbar. Vier Punkte einer Kurve A sind durch die Wertepaare
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    und
    Figure imgb0010
    gegeben.
  • Jeder Punkt in dem Feld zwischen dieser Kurve A und einer Geraden B stellt ein Wertepaar dar, bei dem die Anteile von Reibungsdruckabfall und geodätischem Druckabfall in einem so günstigen Verhältnis zueinander stehen - im allgemeinen ist dann der geodätische Druckabfall größer als der Reibungsdruckabfall - , daß bei der Mehrbeheizung eines einzelnen Rohres der Massendurchsatz durch dieses Rohr ansteigt.
  • Eine sichere Kühlung der Rohre erlaubt daher bei einem vorgegebenen Quotienten K keine beliebige Wahl des Rohrinnendurchmessers d. Deshalb wird das Feld auf in der Praxis üblicherweise vorkommende Wertepaare durch eine Gerade B begrenzt, die durch die Punkte entsprechend den Wertepaaren
    • d5 = 14,3 mm bei K5 = 1,8 kg/s m und
    • d6 = 38,4 mm bei K6 = 7,6 kg/s m
      bestimmt ist. Erfindungsgemäß liegen damit die aus Rohrinnendurchmesser d und Quotienten K gebildeten Wertepaare zwischen den Kurven A und B des Koordinatensystems nach Figur 3.
  • Bei besonders ungünstigen Beheizungsverhältnissen sollte ein einem Quotienten K zugeordneter Rohrinnendurchmesser d höchstens 10% kleiner bzw. 30% größer als der auf der Kurve A diesem Quotienten K zugeordnete Rohrinnendurchmesser d sein.
  • Durch die Ermittlung der Größe des Rohrinnendurchmessers d auf die angegebene Art und Weise werden in den Rohren 3 Strömungsverhältnisse erzwungen, bei denen ein durch Reibung erzeugter Anteil des Druckabfalls in einem günstigen Verhältnis zum geodätisch verursachter Anteil des Druckabfalls am Gesamtdruckabfall steht, und zwar sowohl bei Vollast- als auch bei Teillastbetrieb, bis zu einer Teillast von 50% der Vollast und darunter. Infolge der erfindungsgemäß aufeinander abgestimmten Abmessungen der Rohre 3 sowie des Gaszugs 1 werden diese günstigen Verhältnisse gewährleistet durch eine relativ niedrige, auf die Masse des Kühlmittels bezogene Strömungsgeschwindigkeit des Kühlmittels in axialer Richtung bei gleichzeitig starker Drallbewegung desselben. Diese Strömungsgeschwindigkeit, ausgedrückt als Massenstromdichte, liegt bei 100% Dampfleistung für die Rohre bis zu einem Rohrinnendurchmesser d von 25 mm maximal bei etwa 800 und 850 kg/m2s (Kurve A). Bei Rohrinnendurchmessern d größer als 25 mm steigt die Massenstromdichte etwas an und liegt dann maximal bei 850 und etwa 950 kg/m2s (Kurve A).
  • Der Gesamtdruckabfall in den Rohren 3, also der Unterschied zwischen dem Druck im unten liegenden Eintrittssammler und dem Druck im oben liegenden Austrittssammler, setzt sich zusammen aus den Anteilen Reibungsdruckabfall, geodätischer Druckabfall und Beschleunigungsdruckabfall. Der Anteil des Beschleunigungsdruckabfalls liegt bei 1 bis 2% des Gesamtdruckabfalls und kann deshalb hier vernachlässigt werden.
  • Der Reibungsdruckabfall eines einzelnen Rohres 3 erhöht sich bei einer gegenüber anderen Rohren vorhandenen Mehrbeheizung infolge der erhöhten Volumenzunahme des Wasser-Dampf-Gemisches. Da allen parallel geschalteten Rohren einer Verdampferheizfläche eines Durchlaufdampferzeugers durch ihre Kopplung an einen gemeinsamen Eintritts- und einen gemeinsamen Austrittssammler der gleiche Druckabfall vorgegeben ist, muß zum Ausgleich dieses Druckabfallanteils bei einem stärker beheizten Rohr der Durchsatz zurückgehen. Dieser zurückgehende Durchsatz führt in Verbindung mit der stärkeren Beheizung des Rohres demzufolge zu stark erhöhten Dampfaustrittstemperaturen am Rohrende gegenüber durchschnittlich oder schwächer beheizten Rohren.
  • Der geodätische Druckabfall eines einzelnen Rohres 3 sinkt dagegen bei Mehrbeheizung dieses Rohres gegenüber anderen Rohren infolge erhöhter Dampfbildung, weil die Wasser-Dampf-Säule leichter wird. Der Durchsatz durch das mehrbeheizte Rohr steigt aufgrund dieses Effekts also an, bis die Summe von erhöhtem Reibungsdruckabfall und gesunkenem geodätischen Druckabfall den durch die Kopplung über Eintritts- und Austrittssammler vorgegebenen Druckabfall erreicht. Diese Steigerung des Durchsatzes ist erwünscht, um die Dampfaustrittstemperatur am Rohrende trotz der Mehrbeheizung niedrig zu halten. Dieser erfindungsgemäß vergleichsweise große Einfluß des geodätisch verursachten Druckabfalls ist die Ursache für die Veränderung der Charakteristik des Durchlaufdampferzeugers hin zu einem Verhalten, bei dem größere Temperaturunterschiede am Rohrende des Verdampfers vermieden sind, weil eine stärkere Beheizung eines einzelnen Rohres durch einen höheren Durchsatz des Kühlmittels durch dasselbe größtenteils kompensiert wird.
  • Diese Vorteile der Erfindung werden bei mit festen Brennstoffen wie Kohle befeuerten Durchlaufdampferzeugern besonders deutlich, da dort aufgrund der unterschiedlichen Verschmutzung der Brennkammerwände die Mehr- oder Minderbeheizung einzelner Rohre sehr groß ist.

Claims (7)

1. Durchlaufdampferzeuger mit einem aus miteinander gasdicht verschweißten Rohren gebildeten vertikalen Gaszug, an dem sich Brennerfürfossilen Brennstoff befinden, wobei die Rohre des Gaszuges im wesentlichen vertikal angeordnet sind, einen Rohrinnendurchmesser d aufweisen, auf ihrer Innenseite ein mehrgängiges Gewinde bildende Rippen tragen und für den Durchfluß eines Kühlmittels parallel geschaltet sind,
dadurch gekennzeichnet,
- daß der Rohrinnendurchmesser d eine Funktion eines Quotienten K ist,
- daß durch Wertepaare des Rohrinnendurchmessers d und des Quotienten K bestimmte Punkte in einem Koordinatensystem zwischen einer Kurve A und einer Geraden B liegen,
--wobei zur Bildung des Quotienten K der summierte Massendurchsatz aller Rohre bei 100% Dampfleistung dividiert ist durch den Umfang des Gaszugs in einem horizontalen Schnitt, gemessen auf den Verbindungslinien der Rohrmitten der benachbarten Rohre und
-- wobei Punkte entsprechend den Wertepaaren
Figure imgb0011
Figure imgb0012
Figure imgb0013
und
Figure imgb0014
auf der Kurve A liegen, die stetig steigend ist, und
-- wobei die Punkte entsprechend den Wertepaaren
Figure imgb0015
und
Figure imgb0016
auf der Geraden B liegen.
2. Durchlaufdampferzeuger nach Anspruch 1,
dadurch gekennzeichnet, daß eine Steigung h (angegeben in der Maßeinheit "Meter") der Rippen in den Rohren höchstens gleich dem 0,9-fachen der Wurzel aus dem Rohrinnendurchmesser d (angegeben in der Maßeinheit "Meter") ist und daß eine Höhe H der das Gewinde bildende Rippen mindestens gleich dem 0,04-fachen des Rohrinnendurchmessers d ist.
3. Durchlaufdampferzeuger nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß der einem Quotienten K zugeordnete Rohrinnendurchmesser d um höchstens 10% kleiner bzw. um höchstens 30% größer ist als der auf der Kurve A diesem Quotienten K zugeordnete Rohrinnendurchmesser d.
4. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß die Mindestlast im Durchlaufbetrieb gleich oder kleiner als 50% der Vollast ist.
5. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß der fossile Brennstoff Kohle oder ein anderer fester Brennstoff ist.
6. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß die elektrische Leistung des Kraftwerkblocks, zu dem der Durchlaufdampferzeuger gehört, deutlich kleiner als 500 MW ist.
7. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß eine Massenstromdichte in den Rohren (3) bei einem Rohrinnendurchmesser bis zu 25 mm maximal im Bereich von etwa 800 bis 850 kg/m2s und bei einem Rohrinnendurchmesser über 25 mm maximal im Bereich von etwa 850 bis etwa 950 kg/m2s liegt.
EP91907522A 1991-04-18 1991-04-18 Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren Expired - Lifetime EP0581760B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1991/000319 WO1992018807A1 (de) 1991-04-18 1991-04-18 Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren

Publications (3)

Publication Number Publication Date
EP0581760A1 EP0581760A1 (de) 1994-02-09
EP0581760B1 true EP0581760B1 (de) 1995-01-18
EP0581760B2 EP0581760B2 (de) 2001-10-31

Family

ID=6863278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91907522A Expired - Lifetime EP0581760B2 (de) 1991-04-18 1991-04-18 Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren

Country Status (11)

Country Link
US (1) US5662070A (de)
EP (1) EP0581760B2 (de)
JP (1) JP3091220B2 (de)
AT (1) ATE117420T1 (de)
DE (1) DE59104348D1 (de)
DK (1) DK0581760T4 (de)
ES (1) ES2067227T5 (de)
GR (1) GR3015181T3 (de)
RU (1) RU2075690C1 (de)
UA (1) UA27775C2 (de)
WO (1) WO1992018807A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302194B1 (en) * 1991-03-13 2001-10-16 Siemens Aktiengesellschaft Pipe with ribs on its inner surface forming a multiple thread and steam generator for using the pipe
DE4333404A1 (de) * 1993-09-30 1995-04-06 Siemens Ag Durchlaufdampferzeuger mit vertikal angeordneten Verdampferrohren
DE4431185A1 (de) * 1994-09-01 1996-03-07 Siemens Ag Durchlaufdampferzeuger
FI102396B1 (fi) * 1995-03-22 1998-11-30 Tampella Power Oy Menetelmä ja järjestely soodakattilan jäähdytysväliainekierrossa
DE19600004C2 (de) * 1996-01-02 1998-11-19 Siemens Ag Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
DE19602680C2 (de) * 1996-01-25 1998-04-02 Siemens Ag Durchlaufdampferzeuger
DE19644763A1 (de) * 1996-10-28 1998-04-30 Siemens Ag Dampferzeugerrohr
DE19645748C1 (de) * 1996-11-06 1998-03-12 Siemens Ag Verfahren zum Betreiben eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
DK1086339T3 (da) * 1998-06-10 2002-04-15 Siemens Ag Fossilt fyret gennemløbsdampgenerator
DE19858780C2 (de) 1998-12-18 2001-07-05 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
AU2003275378A1 (en) * 2002-10-04 2004-05-04 Nooter/Eriksen, Inc. Once-through evaporator for a steam generator
US7021106B2 (en) 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
US20080156236A1 (en) * 2006-12-20 2008-07-03 Osamu Ito Pulverized coal combustion boiler
DE102009012322B4 (de) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102010040214A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Berohrung einer Verdampferheizfläche für Durchlaufdampferzeuger in Solarturm-Kraftwerken mit direkter Verdampfung und Naturumlauf-Charakteristik
DE102011004266A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Sonnenkollektor mit innenberippten Rohren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1288755A (fr) * 1960-12-27 1962-03-30 Babcock & Wilcox Co Tube de production de vapeur nervuré
JPS5623603A (en) * 1979-08-01 1981-03-06 Mitsubishi Heavy Ind Ltd Forced flowinggthrough boiler
JPS6042361B2 (ja) * 1981-06-04 1985-09-21 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン 炉壁を構成する旋条付内孔型流体管のためにクロスオ−バ−回路を使用した可変圧型蒸気発生装置
JPH0613921B2 (ja) * 1986-01-31 1994-02-23 三浦工業株式会社 多管式貫流ボイラ−の伝熱面構造
EP0349834B1 (de) * 1988-07-04 1996-04-17 Siemens Aktiengesellschaft Durchlaufdampferzeuger
US5069171A (en) * 1990-06-12 1991-12-03 Foster Wheeler Agency Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with a transverse outlet chamber
US5094191A (en) * 1991-01-31 1992-03-10 Foster Wheeler Energy Corporation Steam generating system utilizing separate fluid flow circuitry between the furnace section and the separating section

Also Published As

Publication number Publication date
ES2067227T5 (es) 2002-04-01
ATE117420T1 (de) 1995-02-15
DE59104348D1 (de) 1995-03-02
JPH06500850A (ja) 1994-01-27
EP0581760A1 (de) 1994-02-09
DK0581760T4 (da) 2001-12-03
WO1992018807A1 (de) 1992-10-29
JP3091220B2 (ja) 2000-09-25
DK0581760T3 (da) 1995-06-26
UA27775C2 (uk) 2000-10-16
US5662070A (en) 1997-09-02
ES2067227T3 (es) 1995-03-16
RU2075690C1 (ru) 1997-03-20
EP0581760B2 (de) 2001-10-31
GR3015181T3 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
EP0581760B1 (de) Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren
EP0617778B1 (de) Fossil befeuerter durchlaufdampferzeuger
EP0349834B1 (de) Durchlaufdampferzeuger
EP0657010B1 (de) Dampferzeuger
EP0503116B2 (de) Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
EP0720714A1 (de) Durchlaufdampferzeuger und Verfahren zu dessen Betrieb
WO1999064787A1 (de) Fossilbeheizter dampferzeuger
EP0778932A1 (de) Durchlaufdampferzeuger
EP1141625B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP1144910B1 (de) Fossilbeheizter dampferzeuger
EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP0937218A1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
DE4427859A1 (de) Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
DE4236835A1 (de) Dampferzeuger
EP0873489B1 (de) Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE1751641A1 (de) Zwangdurchlaufdampferzeuger mit aus vertikalen verschweissten Rohren gebildeter Wandberohrung und Verfahren zum Betrieb des Dampferzeugers
EP0352488A1 (de) Durchlaufdampferzeuger
WO2005050089A1 (de) Durchlaufdampferzeuger
EP1447622B1 (de) Staubgefeuerter Flammrohrkessel
DE381001C (de) Wasserrohrkessel
CH666532A5 (de) Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern.
DE19644763A1 (de) Dampferzeugerrohr
DE2327892B2 (de) Zwangdurchlauf-Dampferzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19940623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 117420

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59104348

Country of ref document: DE

Date of ref document: 19950302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2067227

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950305

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015181

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

Effective date: 19951018

Opponent name: ABB MANAGEMENT AG, BADEN TEI/IMMATERIALGUETERRECHT

Effective date: 19951018

NLR1 Nl: opposition has been filed with the epo

Opponent name: ABB MANAGEMENT AG, BADEN TEI/IMMATERIALGUETERRECHT

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH * 951018 AB

Effective date: 19951018

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

NLR1 Nl: opposition has been filed with the epo

Opponent name: ABB MANAGEMENT AG IMMATERIALGUETERRECHT (TEI)

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH * 951018 AS

Effective date: 19951018

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 951018 ASEA BROWN BOV

Effective date: 19951018

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 19951018 ASEA BROWN B

Effective date: 19951018

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

Opponent name: ASEA BROWN BOVERI AG

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: ABB ALSTOM POWER COMBUSTION GMBH * 19951018 ASEA B

Effective date: 19951018

NLR1 Nl: opposition has been filed with the epo

Opponent name: ABB ALSTOM POWER COMBUSTION GMBH

Opponent name: ASEA BROWN BOVERI AG

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20011031

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLR2 Nl: decision of opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20020201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020313

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20020329

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20020115

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020410

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020426

Year of fee payment: 12

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400274

Country of ref document: GR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020711

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030419

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030419

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100408

Year of fee payment: 20

Ref country code: FR

Payment date: 20100423

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100427

Year of fee payment: 20

Ref country code: DE

Payment date: 20100621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100412

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59104348

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110418