EP0347581A1 - Einspritzpumpe für Brennkraftmaschinen - Google Patents

Einspritzpumpe für Brennkraftmaschinen Download PDF

Info

Publication number
EP0347581A1
EP0347581A1 EP19890108890 EP89108890A EP0347581A1 EP 0347581 A1 EP0347581 A1 EP 0347581A1 EP 19890108890 EP19890108890 EP 19890108890 EP 89108890 A EP89108890 A EP 89108890A EP 0347581 A1 EP0347581 A1 EP 0347581A1
Authority
EP
European Patent Office
Prior art keywords
storage space
pressure
fuel
valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890108890
Other languages
English (en)
French (fr)
Other versions
EP0347581B1 (de
Inventor
Jaroslaw Dipl.-Ing. Hlousek
Gerhard Dr. Dipl.-Ing. Lehner
Theodor Dr. Dipl.-Ing. Stipek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6356795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0347581(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0347581A1 publication Critical patent/EP0347581A1/de
Application granted granted Critical
Publication of EP0347581B1 publication Critical patent/EP0347581B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/001Pumps with means for preventing erosion on fuel discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • the invention relates to an injection pump for internal combustion engines, with a pump piston sleeve and a pump piston guided therein with control edges for controlling the beginning and end of an injection process, which interact with control holes provided in the wall of the pump piston sleeve, which open into a collecting space surrounding the pump piston sleeve. into which fuel can be supplied under pressure and from which excess fuel or fuel that overflows at the end of an injection process can be derived, a suction valve opening to the collecting space being connected to the collecting space for the fuel supply and an organ influencing the flow being connected to the collecting space for fuel discharge is.
  • the invention now aims to achieve the control of the injection pressure at the end of delivery against the highest possible pressure without complex design measures.
  • the invention essentially consists in the collecting space being designed as a storage space with a pressure-maintaining valve opening away from the storage space. Because the collecting space or suction space is now not open to the inlet as in the known measures, but is designed as a storage space closed by valves and a check valve is arranged as a pressure-maintaining valve, a predetermined and relatively high pressure can be ensured as the control pressure. The pressure in the working chamber of the piston then drops further and only when the pressure has dropped to a pressure level sufficient that the pump pressure can be used to refill the working chamber, is the filling again carried out with the much lower pump pressure.
  • the training is so made that the storage space concentric with a suction space Control holes of the pump piston liner is connected, which results in a particularly simple design.
  • the training can be carried out in such a way that the pressure-maintaining valve opening away from the storage space and the suction valve opening toward the storage space are jointly connected on the side facing away from the storage space to the suction space supplied with fuel and are formed by check valves.
  • the suction valve which is designed as a non-return valve and opens to the storage chamber, causes fuel to be sucked in again when the pressure in the pump chamber drops below the set pressure of the suction valve.
  • the low pressure suction frame i.e. the space under pre-pump pressure, fuel sucked in to fill the injection pump.
  • the design can advantageously be such that the pressure-maintaining valve opening away from the storage space is connected to the storage space via a throttle point known per se.
  • the pressure to be maintained in the storage space is hereby defined by the check valve and kept at an exactly predetermined level, such additional throttle bores allowing short-term peak pressures to be reduced.
  • the pressure level remains constant after the predetermined pressure level has been reached and that the corresponding pressure level can be ensured in a simple manner by dimensioning or adjusting the pressure control valve.
  • the arrangement is such that the axes of the mouths of the check valves on the storage space side are arranged offset with respect to the axes of the control bores.
  • impact protection devices In known injection pump designs, it is known to reduce the excessive wear during the control process by installing impact protection devices in the outflow openings.
  • Such impact protection rings are not suitable to prevent cavitation phenomena, but only serve to provide materials that are particularly wear-resistant in the place of particularly high wear and tear and to create an easily replaceable wear part that can be replaced in the event of excessive wear .
  • Impact protection devices of the usual type in particular, can in no way counteract cavitation phenomena on the outer wall of the pump piston.
  • the design within the scope of the present invention can advantageously be made such that the mouth on the storage space side At least one impact valve is arranged axially with a control bore check valve.
  • the design is such that a baffle plate that closes the bore is arranged in front of an axial bore of the check valve, on the rear side of which a transverse bore that cuts the axial bore of the check valve is provided with open ends, which in turn flushes away or flushes away of any bubbles that may arise.
  • the baffle plate can be formed in one piece with the housing of the check valve, which considerably simplifies the installation of the check valve.
  • a known design of such an impact protection body is that it is frustoconical in cross-section and is rounded on the side facing the bore.
  • Such designs of impact protection bodies are characterized by particularly high wear resistance, and with such a design the arrangement of the check valve or pressure control valve opening to the storage space is advantageously made such that the control bore has a section that is frustoconically enlarged to the storage space such that the housing of the opening to the storage space
  • Non-return valve has a conical end part with a rounded tip that projects into the frustoconically widened section, leaving a gap, and that the outlet channel of the non-return valve opens off-center in the region of the conical jacket of the end part. The flow path resulting in this way in turn leads to a flushing out of particularly critical points.
  • FIG. 1 shows a partial section through the upper part of an injection pump for large diesel engines
  • 2 shows a development of a detail of the injection pump according to FIG. 1
  • 3 shows a diagram of the course of pump chamber pressure and storage chamber pressure over the cam angle
  • FIGS. 4, 5 and 6 in a representation similar to that of FIG Training of an impact protection.
  • a pump piston 2 is moved up and down in a pump piston liner 1 by a cam drive, not shown.
  • the pump piston liner 1 is supported in a housing 3 which has a suction space 4, into which fuel is supplied via a pipe screw connection 5 or from which excess fuel is derived.
  • When going up the pump piston 2 closes with its upper edge 6 control bores 7.
  • a throttle 13 can be installed in the inlet of the pressure-maintaining valve 11, which causes a quantity-dependent increase in the storage space pressure, so that a further reduction in the risk of cavity formation in the fuel is achieved with larger delivery rates and / or higher speeds or piston speeds.
  • the suction valve 10 and the pressure holding valve 11 are accommodated in a sleeve 14 which also contains the storage space 9.
  • a pressure seal of the storage space 9 and the suction space 4 is carried out by means of sealing rings 15, 16 and 17 down between pump piston 2 and pump piston liner 1, returned to the storage space 9.
  • valves 10, 11 or their flow openings are arranged in a sectional plane with the control bores 7 in the pump cylinder, but rather to arrange them rotated, for example, by 90 °.
  • two or more pressure-maintaining or suction valves can also be arranged in the sleeve 14 if required.
  • FIG. 3 shows the curves of pump chamber pressure p P and storage chamber pressure p S over the cam angle, the start of delivery of the injection pump being designated FB and the end of delivery being FE. From the diagram it can be seen that the pressure p S in the storage space 9 already reaches the holding value of the valve 11 at the start of delivery and that a short-term dynamic pressure increase in the storage space 9 occurs immediately after the end of the delivery due to the fired fuel emerging from the control bores 7, after which the Filling the pump chamber 8, the pressure initially drops to the delivery pressure of the backing pump, and then increases again after the upward gear of the pump piston 2 begins.
  • a throttle bore in front of the pressure-maintaining valve can also achieve a dependency of the storage space pressure on the delivery volume and the speed of the pump, different diameters of the throttle 13 resulting in different pressure profiles in the region of the pressure increase, as indicated in FIG. 3.
  • the axes of the bores towards the valves 10 and 11 are offset relative to the control bores 7, so that any cavities formed in the fuel can be quickly washed away by the jet emerging from the control bore 7 and any corrosion that may occur is kept away from hazardous areas.
  • feed 19 and discharge line 20 of the fuel lie coaxially with the control bores 7, but the bore of each of the valves 10, 11 facing the control bore 7 is connected upstream of a baffle plate 21 or 22, each of which with the Armature of the associated valve is integrally formed.
  • the suction valve 10 is installed on both sides in an impact protection which has a conical shape and projects far into the control bore 7.
  • the fuel is conveyed through a bore 23 coming from the suction valve 10 into the gap between the cone 24 of the impact protection and the conical extension 25 of the control bore.
  • the bore 23 is positioned such that it allows the fuel to emerge at the highest part of the gap, so that the cavities in the fuel are hit directly by the flushing stream and conveyed into the storage space 9.
  • a pressure control valve not shown, ensures the maintenance of an increased standing pressure in the storage space 9 after the end of the control process until it is sucked in again.
  • the fuel is advantageously supplied at a pressure of 5 to 20 bar, in order to achieve a sufficient flushing effect in the control bores 7.
  • a pressure accumulator in the fuel line between the feed pump and suction valve 10 appears expedient to equalize the inlet pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Eine Einspritzpumpe für Brennkraftmaschinen weist eine Pumpenkolbenbüchse (1) und einen in dieser geführten Pumpen­kolben (2) mit Steuerkanten (6,12) zur Steuerung von Beginn und Ende eines Einspritzvorganges auf, welche mit in der Wand der Pumpenkolbenbüchse (1) vorgesehenen Steuerbohrungen (7) zusammenwirken, die in einen die Pumpenkolbenbüchse (1) umgebenden Speicherraum (9) münden, in welchen Brennstoff unter Druck zuführbar ist und aus welchem überschüssiger Brennstoff bzw. bei Beendigung eines Einspritzvorganges überströmender Brennstoff ableitbar ist. Für die Brennstoff­zuführung ist ein zum Speicherraum (9) öffnendes Rückschlag­ventil (10) an den Speicherraum (9) angeschlossen und für die Brennstoffableitung ist ein vom Speicherraum (9) weg öffnen­des Rückschlagventil (11) als Druckhalteventil an den Speicherraum (9) angeschlossen. Diesem Druckhalteventil kann eingangsseitig eine Drosselstelle vorgeschaltet sein.

Description

  • Die Erfindung bezieht sich auf eine Einspritzpumpe für Brennkraftmaschinen, mit einer Pumpenkolbenbüchse und einem in dieser geführten Pumpenkolben mit Steuerkanten zur Steuerung von Beginn und Ende eines Einspritzvorganges, welche mit in der Wand der Pumpenkolbenbüchse vorgesehenen Steuerbohrungen zusammenwirken, die in einen die Pumpen­kolbenbüchse umgebenden Sammelraum münden, in welchen Brenn­stoff unter Druck zuführbar ist und aus welchem über­schüssiger Brennstoff bzw. bei Beendigung eines Einspritz­vorganges überströmender Brennstoff ableitbar ist, wobei für die Brennstoffzuführung ein zum Sammelraum öffnendes Saug­ventil an den Sammelraum angeschlossen ist und für die Brennstoffableitung ein die Strömung beeinflussendes Organ an den Sammelraum angeschlossen ist.
  • Beim Betrieb von Einspritzpumpen unter hohem Druck bestehen beim Absteuern an der Niederdruckseite Korrosions­probleme, welche auf Kavitationserscheinungen zurückgeführt werden. Beim Absteuern des Hochdruckbrennstoffes aus dem Pumpenraum in den Saugraum der Einspritzpumpe im Augenblick des Förderendes entstehen Druckschwingungen mit hohen Spitzenwerten. Im Saugraum befindliche Hohlräume, welche vom vorhergehenden Zusteuervorgang herrühren, können dabei implodieren und zu Kavitationsschäden am Kolbenumfang, in der Steuerbohrung und im Saugraum führen. Weiters erzeugt der Absteuerstrahl in seinen Rand- und Auftreffzonen sekundäre Hohlräume, die beim anschließenden Implodieren ebenfalls Schäden an den genannten Stellen bewirken können. Aus der CH-PS 594 134 ist es bereits bekannt geworden, den abge­steuerten Brennstoff, welcher in den Saugraum rückgeführt wird, über Drosseln abzufördern, um auf diese Weise ein gewisses Ausmaß einer Druckerhöhung zu erzielen. Das Ausmaß der erzielbaren Druckerhöhung mit derartigen Maßnahmen ist relativ gering und ein entscheidender Vorteil könnte erst dann erreicht werden, wenn ein entsprechend hoher Pumpen­vordruck gewählt wird. Dies erfordert aber wiederum einen hohen Aufwand an Pumpenergie und eine entsprechend aufwendige Abdichtung der Pumpe im Saugraumbereich.
  • Die Erfindung zielt nun darauf ab, die Absteuerung des Einspritzdruckes bei Förderende gegen einen möglichst hohen Druck ohne aufwendige konstruktive Maßnahmen zu erzielen. Zur Lösung dieser Aufgabe besteht die Erfindung im wesentlichen darin, daß der Sammelraum als Speicherraum mit einem vom Speicherraum weg öffnenden Druckhalteventil ausgebildet ist. Dadurch, daß der Sammelraum bzw. Saugraum nunmehr nicht wie bei den bekannten Maßnahmen zum Zulauf hin offen ist, sondern als durch Ventile abgeschlossener Speicherraum ausgebildet ist und ein Rückschlagventil als Druckhalteventil angeordnet ist, läßt sich ein vorgegebener und relativ hoher Druck als Absteuerdruck sicherstellen. Der Druck im Arbeitsraum des Kolbens sinkt in der Folge weiter ab und erst wenn der Druck insgesamt auf ein Druckniveau abgesunken ist, welches aus­reicht, daß der Pumpenvordruck für eine neuerliche Füllung des Arbeitsraumes herangezogen werden kann, erfolgt die neuerliche Füllung mit dem wesentlich niedrigeren Pumpenvor­druck. Es wird somit die Absteuerung nicht unmittelbar in den zum Zulauf offenen Saugraum vorgenommen, sondern in den Speicherraum und dieser Speicherraum kann mittels des vom Speicherraum weg öffnenden Rückschlagventils bzw. des Druck­halteventils auf einen Druck von bis zu 50 bar oder auch höher gehalten werden, so daß der Ausbildung von Kavitations­erscheinungen wirksam entgegengetreten wird. Beim Saugvorgang des Pumpenkolbens wird der Brennstoff zuerst aus diesem Speicherraum entnommen und erst in der Folge beispielsweise unter Verwendung eines Saugventils weiterer Brennstoff angesaugt.
  • Mit Vorteil ist die Ausbildung hiebei so getroffen, daß der Speicherraum konzentrisch zu einem Saugraum an die Steuerbohrungen der Pumpenkolbenbüchse angeschlossen ist, wodurch sich eine konstruktiv besonders einfache Ausgestal­tung ergibt.
  • In besonders einfacher Weise kann die Ausbildung hiebei so getroffen werden, daß das vom Speicherraum weg öffnende Druckhalteventil und das zum Speicherraum öffnende Saugventil an der vom Speicherraum abgewendeten Seite gemeinsam an den mit Brennstoff versorgten Saugraum angeschlossen sind und von Rückschlagventilen gebildet sind. Durch das zum Speicherraum öffnende, als Rückschlagventil ausgebildete Saugventil erfolgt ein neuerliches Ansaugen von Brennstoff dann, wenn der Druck im Pumpenraum unter den eingestellten Druck des Saugventils absinkt. In diesem Fall wird aus dem Nieder­drucksaugram, d.h. dem unter Vorpumpendruck stehenden Raum, Brennstoff zur Füllung der Einspritzpumpe angesaugt.
  • Um unerwünschte Druckspitzen bei Aufbau des Druckes im Speicherraum zu vermeiden, kann die Ausbildung mit Vorteil so getroffen sein, daß das vom Speicherraum weg öffnende Druck­halteventil über eine an sich bekannte Drosselstelle an den Speicherraum angeschlossen ist. Der im Speicherraum aufrecht zu erhaltende Druck wird hiebei vom Rückschlagventil defi­niert und auf einem exakt vorgegebenen Niveau gehalten, wobei derartige zusätzliche Drosselbohrungen kurzfristige Spitzen­drücke abzubauen gestatten. Gegenüber der Verwendung von Drosseln ohne ein Druckhalteventil ergibt sich in jedem Fall der Vorteil, daß das Druckniveau nach Erreichen des vorgege­benen Druckniveaus konstant bleibt und daß das entsprechende Druckniveau in einfacher Weise durch die Dimensionierung bzw. Einstellung des Druckhalteventils sichergestellt werden kann.
  • Gemäß einer weiteren bevorzugten Ausbildung zur Verrin­gerung des Verschleißes ist die Anordnung so getroffen, daß die Achsen der speicherraumseitigen Mündungen der Rückschlag­ventile bezüglich der Achsen der Steuerbohrungen versetzt angeordnet sind. Eine derartige versetzte Anordnung der Steuerbohrungen ermöglicht es, die besonders verschleißge­fährdeten Bereiche, in welchen Kavitation auftreten könnte, durch geeignete Orientierung des eintretenden Strahles rasch zu spülen, so daß gegebenenfalls dennoch entstandene Blasen weggeschwemmt werden. Gegebenenfalls dennoch auftretende Korrosionserscheinungen können hiebei von besonders ge­fährdeten Stellen ferngehalten werden.
  • Bei bekannten Einspritzpumpenkonstruktionen ist es bekannt, den übermäßigen Verschleiß beim Absteuervorgang dadurch zu mindern, daß in die Abströmöffnungen Prallschutz­einrichtungen eingebaut werden. Derartige Prallschutzringe sind nicht geeignet Kavitationserscheinungen zu verhindern, sondern dienen lediglich dazu, an der Stelle besonders hoher Abnutzung und besonders großen Verschleißes Materialien vorzusehen, welche besonders verschleißbeständig sind, und dazu, einen leicht austauschbaren Verschleißteil zu schaffen, welcher im Fall übermäßigen Verschleißes getauscht werden kann. Mit Prallschutzeinrichtungen üblicher Art kann aber insbesondere Kavitationserscheinungen an der Außenwand des Pumpenkolbens in keiner Weise begegnet werden. Wenn nun zusätzlich der lediglich auf große Strömungsgeschwindigkei­ten, nicht aber auf Kavitation zurückzuführende Verschleiß weiter herabgemindert werden soll und an derartigen Stellen ein leicht austauschbarer Bauteil geschaffen werden soll, kann mit Vorteil die Ausbildung im Rahmen der vorliegenden Erfindung so getroffen werden, daß bei der speicherraumseiti­gen Mündung wenigstens eines mit einer Steuerbohrung axial ausgerichteten Rückschlagventils ein Prallschutz angeordnet ist. Mit Vorteil ist die Ausbildung hiebei so getroffen, daß als Prallschutz vor einer axialen Bohrung des Rückschlagven­tils eine die Bohrung verschließende Prallplatte angeordnet ist, bei deren Rückseite eine die axiale Bohrung des Rück­schlagventils schneidende Querbohrung mit offenen Enden vorgesehen ist, wodurch wiederum ein Freispülen bzw. Weg­spülen von gegebenenfalls entstehenden Blasen sichergestellt wird. In besonders einfacher Weise kann hiebei die Prall­platte mit dem Gehäuse des Rückschlagventils einstückig ausgebildet sein, wodurch der Einbau des Rückschlagventils wesentlich vereinfacht wird.
  • Eine an sich bekannte Ausbildung eines derartigen Prallschutzkörper besteht darin, daß dieser im Querschnitt kegelstumpfförmig ausgebildet ist und an der der Bohrung zugewandten Seite verrundet ist. Derartige Ausbildungen von Prallschutzkörpern zeichnen sich durch besonders hohe Ver­schleißbeständigkeit aus und bei einer derartigen Ausbildung ist die Anordnung des zum Speicherraum öffnenden Rückschlag­ventils bzw. Druckhalteventils mit Vorteil so getroffen, daß die Steuerbohrung einen zum Speicherraum kegelstumpfförmig erweiterten Abschnitt aufweist, daß das Gehäuse des zum Speicherraum öffnenden Rückschlagventils einen in den kegel­stumpfförmig erweiterten Abschnitt unter Freilassung eines Zwischenraumes hineinragenden kegeligen Endteil mit abgerun­deter Spitze hat und daß der Auslaßkanal des Rückschlagven­tils außermittig im Bereich des Kegelmantels des Endteiles mündet. Der sich auf diese Weise ergebende Strömungsweg führt wiederum zu einem Freispülen von besonders kritischen Stellen.
  • Die Erfindung wird nachfolgend an Hand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläu­tert. In dieser zeigt: Fig.1 einen Teilschnitt durch den Oberteil einer Einspritzpumpe für große Dieselmotoren; Fig.2 eine Weiterbildung einer Einzelheit der Einspritzpumpe nach Fig.1; Fig.3 in einem Diagramm den Verlauf von Pumpenraum­druck und Speicherraumdruck über dem Nockenwinkel und die Fig.4, 5 und 6 in ähnlicher Darstellung wie Fig.1 Varianten der Konstruktion einer Einspritzpumpe mit unmittelbarer Zu­und Ableitung von Brennstoff in den bzw. aus dem Speicherraum sowie Ausbildung eines Prallschutzes.
  • Bei der in Fig.1 dargestellten Einspritzpumpe wird in einer Pumpenkolbenbüchse 1 ein Pumpenkolben 2 durch einen nicht dargestellten Nockenantrieb auf und ab bewegt. Die Pumpenkolbenbüchse 1 ist in einem Gehäuse 3 abgestützt, das einen Saugraum 4 aufweist, in welchen über eine Rohrver­schraubung 5 Brennstoff zugeführt wird bzw. aus welchem überschüssiger Brennstoff abgeleitet wird. Beim Aufwärtsgang des Pumpenkolbens 2 verschließt dieser mit seiner Oberkante 6 Steuerbohrungen 7. Bereits kurz vorher baut sich wegen der Drosselung des aus dem Pumpenraum 8 durch den aufwärtsgehen­den Kolben 2 verdrängten Brennstoffes im Speicherraum 9 ein Brennstoffdruck auf, weil ein Saugventil 10 mit seinem Öffnungsdruck von einigen Zehntel bar in Richtung zum Saug­raum 4 geschlossen hat und ein Druckhalteventil 11 einen Druck von etwa 20 bis 50 bar im Speicherraum aufrecht hält. Durch den im Speicherraum 9 aufgebauten Druck kommen Hohl­räume bzw. Dampfblasen im Brennstoff, die beim Zusteuervor­gang dort und in den Steuerbohrungen 7 entstehen können, zu einem verhältnismäßig weichen und damit unschädlichen Zu­sammenbrechen. Wenn der Pumpenkolben 2 bei seinem Aufwärts­gang mit seinen unteren Steuerkanten 12 die Verbindung zwischen Pumpenraum 8 und Steuerbohrungen 7 wieder öffnet, dann entspannt sich der Brennstoff von einem hohen Druck von etwa 1500 bar auf den vom Druckhalteventil 11 im Speicherraum 9 gehaltenen Druck von etwa 20 bis 50 bar. Wegen des großen Sicherheitsabstandes zum Dampfdruck des Brennstoffes kommt es im Bereich der Absteuerstrahlen nicht zu Hohlraumbildungen im Brennstoff und es wird daher auch die sogenannte Strahlkavi­tation im Auftreffbereich des Absteuerstrahls auf die Wand der Steuerbohrungen und des Speicherraumes vermieden. Sobald der Druck im Speicherraum 9 den Einstellwert des Druckhalte­ventils 11 überschreitet, öffnet dieses und läßt den über­schüssigen Brennstoff aus dem Speicherraum 9 in den Saugraum 4 abströmen. Beide Ventile 10,11 sind als Rückschlagventile ausgebildet.
  • In den Einlaß des Druckhalteventils 11 kann gemäß Fig.2 eine Drossel 13 eingebaut sein, die eine mengenabhängige Erhöhung des Speicherraumdruckes bewirkt, so daß bei größeren Fördermengen und/oder höheren Drehzahlen bzw. Kolbengeschwin­digkeiten eine weitere Verringerung der Gefahr der Hohlraum­bildung im Brennstoff erreicht wird. Das Saugventil 10 und das Druckhalteventil 11 sind in einer Hülse 14 untergebracht, die auch den Speicherraum 9 enthält. Durch Dichtungsringe 15, 16 und 17 erfolgt eine Druckabdichtung von Speicherraum 9 und Saugraum 4. Über eine Leckölbohrung 18 wird Brennstoff, der nach unten zwischen Pumpenkolben 2 und Pumpenkolbenbüchse 1 hindurchgelangt, in den Speicherraum 9 zurückgeführt.
  • Es ist zweckmäßig, die beiden Ventile 10, 11 bzw. deren Durchflußöffnungen nicht in einer Schnittebene mit den Steuerbohrungen 7 im Pumpenzylinder anzuordnen, sondern sie beispielsweise um 90° verdreht anzuordnen. Weiters können bei Bedarf auch zwei oder mehr Druckhalte- bzw. Saugventile in der Hülse 14 angeordnet werden.
  • Es ist schließlich möglich, die Auftreffbereiche der Absteuerstrahlen im Speicherraum 9 zu härten oder mit be­sonders harten Metallen zu panzern, um eine besonders hohe Standfestigkeit dieser Bereiche zu erzielen.
  • Fig.3 zeigt die Verläufe von Pumpenraumdruck pP und Speicherraumdruck pS über dem Nockenwinkel, wobei der Förderbeginn der Einspritzpumpe mit FB und das Förderende mit FE bezeichnet sind. Aus dem Diagramm ist ersichtlich, daß bereits bei Förderbeginn der Druck pS im Speicherraum 9 den Haltewert des Ventils 11 erreicht und daß unmittelbar nach dem Förderende durch den aus den Steuerbohrungen 7 heraus­schießenden abgesteuerten Brennstoff eine kurzzeitige dyna­mische Drucküberhöhung im Speicherraum 9 auftritt, wonach bei der Füllung des Pumpenraumes 8 der Druck zunächst bis auf den Förderdruck der Vorpumpe absinkt, um dann nach Beginn des Aufwärtsganges des Pumpenkolbens 2 neuerlich anzusteigen. Durch eine Drosselbohrung vor dem Druckhalteventil kann auch noch eine Abhängigkeit des Speicherraumdruckes von der Fördermenge und der Drehzahl der Pumpe erzielt werden, wobei verschiedene Durchmesser der Drossel 13 unterschiedliche Druckverläufe im Bereich der Drucküberhöhung ergeben, wie dies in Fig.3 angedeutet ist.
  • Bei den in den Fig.4 und 5 dargestellten Varianten ist kein eigener Saugraum vorgesehen, sondern Zuführung 19 und Ableitung 20 des Brennstoffes erfolgen unmittelbar in den bzw. aus dem Speicherraum 9, u.zw. über das Saugventil 10 bzw. das Druckhalteventil 11, so daß sich im Speicherraum 9 während des Zusteuervorganges unmittelbar vor dem geometri­schen Förderbeginn ein höheres Druckniveau - bestimmt durch den eingestellten Druck des Druckhalteventils 11 - aufbauen kann. Beim Absteuern der Steuerbohrungen 7 stößt der Hoch­druckstrahl in ein Brennstoffvolumen ohne Resthohlräume vom vorhergehenden Zusteuern. Auch die Strahlkavitation wird auf Grund des hohen Druckniveaus vermieden.
  • Zweckmäßig erscheint es, in die Brennstoffleitung von der Förderpumpe einen Druckspeicher (Windkessel) einzubauen, dessen Volumen etwa das 5 bis 20-fache des Speicherraumvo­lumens betragen sollte. Dadurch wird eine zuverlässige Füllung des Speicherraumes und des Pumpenraumes erreicht.
  • Die Achsen der speicherraumseitigen Bohrungen zu den Ventilen 10 und 11 sind gegenüber den Steuerbohrungen 7 versetzt, so daß im Brennstoff gegebenenfalls gebildete Hohlräume von dem aus der Steuerbohrung 7 austretenden Strahl rasch weggespült werden können und eine allenfalls auftre­tende Korrosion von gefährdeten Bereichen ferngehalten wird.
  • Bei der Ausführung nach Fig.5 liegen Zuführung 19 und Ableitung 20 des Brennstoffes gleichachsig mit den Steuer­bohrungen 7, jedoch ist der der Steuerbohrung 7 zugewendeten Bohrung eines jeden der Ventile 10, 11 als Prallschutz eine Prallplatte 21 bzw. 22 vorgeschaltet, deren jede mit der Armatur des zugeordneten Ventils einstückig ausgebildet ist.
  • In einer weiteren Variante nach Fig.6 ist das Saugventil 10 auf beiden Seiten in einen Prallschutz eingebaut, der eine kegelige Form aufweist und weit in die Steuerbohrung 7 hineinragt. Der Brennstoff wird durch eine Bohrung 23 vom Saugventil 10 kommend in den Spalt zwischen dem Kegel 24 des Prallschutzes und der konischen Erweiterung 25 der Steuer­bohrung gefördert. Die Bohrung 23 ist dabei derart positio­niert, daß sie den Brennstoff am höchstgelegenen Teil des Spaltes austreten läßt, so daß die dort befindlichen Hohl­räume im Brennstoff direkt vom Spülstrom getroffen und in den Speicherraum 9 befördert werden. Ein nicht dargestelltes Druckhalteventil sorgt für die Aufrechterhaltung eines erhöhten Standdruckes im Speicherraum 9 nach dem Ende des Zusteuervorganges bis zum Wiederansaugen. Die Brennstoffzu­führung erfolgt zweckmäßig mit einem Druck von 5 bis 20 bar, um eine ausreichende Spülwirkung in den Steuerbohrungen 7 zu erzielen. Auch hier erscheint zur Vergleichmäßigung des Zulaufdruckes ein Druckspeicher in der Brennstoffleitung zwischen Förderpumpe und Saugventil 10 zweckmäßig.
    Figure imgb0001

Claims (9)

1. Einspritzpumpe für Brennkraftmaschinen, mit einer Pumpenkolbenbüchse und einem in dieser geführten Pumpenkolben mit Steuerkanten zur Steuerung von Beginn und Ende eines Einspritzvorganges, welche mit in der Wand der Pumpenkolben­büchse vorgesehenen Steuerbohrungen zusammenwirken, die in einen die Pumpenkolbenbüchse umgebenden Sammelraum münden, in welchen Brennstoff unter Druck zuführbar ist und aus welchem überschüssiger Brennstoff bzw. bei Beendigung eines Ein­spritzvorganges überströmender Brennstoff ableitbar ist, wobei für die Brennstoffzuführung ein zum Sammelraum öffnen­des Saugventil an den Sammelraum angeschlossen ist und für die Brennstoffableitung ein die Strömung beeinflussendes Organ an den Sammelraum angeschlossen ist, dadurch gekenn­zeichnet, daß der Sammelraum als Speicherraum (9) mit einem vom Speicherraum (9) weg öffnenden Druckhalteventil (11) ausgebildet ist.
2. Einspritzpumpe nach Anspruch 1, dadurch gekennzeich­net, daß der Speicherraum (9) konzentrisch zu einem Saugraum (4) an die Steuerbohrungen (7) der Pumpenkolbenbüchse (1) angeschlossen ist.
3. Einspritzpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das vom Speicherraum (9) weg öffnende Druckhalteventil (11) und das zum Speicherraum (9) öffnende Saugventil (10) an der vom Speicherraum (9) abgewendeten Seite gemeinsam an den mit Brennstoff versorgten Saugraum (4) angeschlossen sind und von Rückschlagventilen gebildet sind.
4. Einspritzpumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das vom Speicherraum (9) weg öffnende Druckhalteventil (11) über eine an sich bekannte Drossel­stelle (13) an den Speicherraum (9) angeschlossen ist.
5. Einspritzpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Achsen der speicherraumseiti­ gen Mündungen der Rückschlagventile (10,11) bezüglich der Achsen der Steuerbohrungen (7) versetzt angeordnet sind.
6. Einspritzpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß bei der speicherraumseitigen Mündung wenigstens eines der mit einer Steuerbohrung (7) axial ausgerichteten Rückschlagventile (10,11) ein Prall­schutz angeordnet ist.
7. Einspritzpumpe nach Anspruch 6, dadurch gekennzeich­net, daß als Prallschutz vor einer axialen Bohrung des Rückschlagventils (10,11) eine die Bohrung verschließende Prallplatte (21,22) angeordnet ist, bei deren Rückseite eine die axiale Bohrung des Rückschlagventils schneidende Quer­bohrung mit offenen Enden vorgesehen ist.
8. Einspritzpumpe nach Anspruch 7, dadurch gekennzeich­net, daß die Prallplatte (21,22) mit dem Gehäuse des Rück­schlagventils (10,11) einstückig ausgebildet ist.
9. Einspritzpumpe nach Anspruch 6, dadurch gekennzeich­net, daß die Steuerbohrung (7) einen zum Speicherraum (9) kegelstumpfförmig erweiterten Abschnitt (25) aufweist, daß das Gehäuse des zum Speicherraum (9) öffnenden Rückschlag­ventils (10,11) einen in den kegelstumpfförmig erweiterten Abschnitt (25) unter Freilassung eines Zwischenraumes hinein­ragenden kegeligen Endteil (24) mit abgerundeter Spitze hat und daß der Auslaßkanal (23) des Rückschlagventils (10,11) außermittig im Bereich des Kegelmantels des Endteiles (24) mündet.
EP89108890A 1988-06-18 1989-05-18 Einspritzpumpe für Brennkraftmaschinen Expired - Lifetime EP0347581B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3820707 1988-06-18
DE3820707A DE3820707A1 (de) 1988-06-18 1988-06-18 Einspritzpumpe fuer brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP0347581A1 true EP0347581A1 (de) 1989-12-27
EP0347581B1 EP0347581B1 (de) 1993-02-03

Family

ID=6356795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89108890A Expired - Lifetime EP0347581B1 (de) 1988-06-18 1989-05-18 Einspritzpumpe für Brennkraftmaschinen

Country Status (4)

Country Link
US (1) US5015160A (de)
EP (1) EP0347581B1 (de)
JP (1) JP2721243B2 (de)
DE (2) DE3820707A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921305A2 (de) * 2006-11-06 2008-05-14 Mitsubishi Heavy Industries, Ltd. Kraftstoffeinspritzpumpe mit drehbarer Prallfläche
EP3054144A1 (de) * 2015-02-03 2016-08-10 Robert Bosch Gmbh Überströmventil für eine hochdruckpumpe, insbesondere steckpumpe, sowie hoch-druckpumpe mit einem solchen überströmventil

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541507A1 (de) * 1995-11-08 1997-05-15 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DK176162B1 (da) * 1997-04-21 2006-10-23 Man B & W Diesel As Brændstofpumpe til forbrændingsmotorer, især store langsomtgående marinedieselmotorer
DE19719046A1 (de) * 1997-05-06 1998-11-12 Man B & W Diesel Ag Brennstoffeinspritzpumpe
JP3471587B2 (ja) * 1997-10-27 2003-12-02 三菱電機株式会社 筒内噴射用高圧燃料ポンプ
FR2774132B1 (fr) * 1998-01-27 2000-04-07 Semt Pielstick Dispositif pour eviter la cavitation dans les pompes a injection
EP1471247B1 (de) * 1999-02-09 2006-10-18 Hitachi, Ltd. Hochdruckbrennstoffpumpe für eine Brennkraftmaschine
DE10220281A1 (de) * 2002-05-07 2003-11-27 Bosch Gmbh Robert Kraftstoffpumpe, insbesondere für eine Brennkraftmaschine mit Direkteinspritzung
DE102004013307B4 (de) * 2004-03-17 2012-12-06 Robert Bosch Gmbh Kraftstoffhochdruckpumpe mit einem Druckbegrenzungsventil
FI118055B (fi) * 2005-11-23 2007-06-15 Waertsilae Finland Oy Mäntämoottorin ruiskutuspumppu
JP4595996B2 (ja) * 2007-11-16 2010-12-08 トヨタ自動車株式会社 内燃機関の高圧燃料供給装置
KR100992227B1 (ko) * 2008-10-27 2010-11-05 현대중공업 주식회사 디젤엔진 연료분사펌프의 캐비테이션 손상방지장치
IT1396473B1 (it) * 2009-03-30 2012-12-14 Magneti Marelli Spa Pompa carburante con una valvola di massima pressione perfezionata per un sistema di iniezione diretta
US20130312706A1 (en) * 2012-05-23 2013-11-28 Christopher J. Salvador Fuel system having flow-disruption reducer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2131779A (en) * 1934-06-16 1938-10-04 Deckel Friedrich Fuel injection pump
DE673809C (de) * 1936-06-16 1939-07-14 Bosch Gmbh Robert Brennstoff-Foerderanlage fuer Einspritzbrennkraftmaschinen
DE843763C (de) * 1942-08-19 1952-07-14 Bosch Gmbh Robert Einspritzpumpe fuer Brennkraftmaschinen
DE762581C (de) * 1943-06-27 1952-08-14 Bosch Gmbh Robert Kraftstoffeinspritzanlage fuer Brennkraftmaschinen
FR2076971A5 (de) * 1970-01-29 1971-10-15 Bosch
CH594134A5 (de) * 1975-07-15 1977-12-30 Sulzer Ag

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157737A (en) * 1936-07-15 1939-05-09 Bosch Gmbh Robert Fuel delivery apparatus for injection internal combustion engines
US2298936A (en) * 1940-12-07 1942-10-13 Ernest C Gambrell Fuel injection pump
CH295782A (de) * 1950-10-19 1954-01-15 Gmbh Robert Bosch Einspritzpumpe mit drehzahlabhängiger Fördermengenregelung, insbesondere für Brennkraftmaschinen.
FR2093250A5 (de) * 1970-06-08 1972-01-28 Peugeot
DE2309916C3 (de) * 1973-02-28 1981-03-26 Franz Prof. Dipl.-Ing. Dr.Techn. 5100 Aachen Pischinger Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
US4118156A (en) * 1976-12-01 1978-10-03 Sulzer Brothers Limited Fuel injection pump having choke means in overflow line
US4355961A (en) * 1978-04-03 1982-10-26 Ingersoll-Rand Company Controlling means for a fuel valve
JPS5947359U (ja) * 1982-09-22 1984-03-29 株式会社小松製作所 エンジンの燃料噴射装置
DE3245142A1 (de) * 1982-12-07 1984-06-07 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zum einspritzen von kraftstoff
DE3535808A1 (de) * 1985-10-08 1987-04-09 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2131779A (en) * 1934-06-16 1938-10-04 Deckel Friedrich Fuel injection pump
DE673809C (de) * 1936-06-16 1939-07-14 Bosch Gmbh Robert Brennstoff-Foerderanlage fuer Einspritzbrennkraftmaschinen
DE843763C (de) * 1942-08-19 1952-07-14 Bosch Gmbh Robert Einspritzpumpe fuer Brennkraftmaschinen
DE762581C (de) * 1943-06-27 1952-08-14 Bosch Gmbh Robert Kraftstoffeinspritzanlage fuer Brennkraftmaschinen
FR2076971A5 (de) * 1970-01-29 1971-10-15 Bosch
CH594134A5 (de) * 1975-07-15 1977-12-30 Sulzer Ag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921305A2 (de) * 2006-11-06 2008-05-14 Mitsubishi Heavy Industries, Ltd. Kraftstoffeinspritzpumpe mit drehbarer Prallfläche
EP1921305A3 (de) * 2006-11-06 2008-06-18 Mitsubishi Heavy Industries, Ltd. Kraftstoffeinspritzpumpe mit drehbarer Prallfläche
US7415973B2 (en) 2006-11-06 2008-08-26 Mitsubishi Heavy Industries, Ltd. Fuel injection pump equipped with rotary deflector
CN100549407C (zh) * 2006-11-06 2009-10-14 三菱重工业株式会社 设有旋转式导流器的燃料喷射泵
EP3054144A1 (de) * 2015-02-03 2016-08-10 Robert Bosch Gmbh Überströmventil für eine hochdruckpumpe, insbesondere steckpumpe, sowie hoch-druckpumpe mit einem solchen überströmventil

Also Published As

Publication number Publication date
DE58903432D1 (de) 1993-03-18
DE3820707A1 (de) 1989-12-21
US5015160A (en) 1991-05-14
JP2721243B2 (ja) 1998-03-04
JPH0237166A (ja) 1990-02-07
EP0347581B1 (de) 1993-02-03

Similar Documents

Publication Publication Date Title
EP0685646B1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
EP0657642B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0347581B1 (de) Einspritzpumpe für Brennkraftmaschinen
EP1774166B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE2803049A1 (de) Pumpe-duese fuer brennkraftmaschinen
EP2852754B1 (de) Injektor eines kraftstoffeinspritzsystems
EP3532245B1 (de) Vorrichtung zum abrasiven fluidstrahlschneiden
AT500302B1 (de) Auf- und abgehende ventilvorrichtung und mit der vorrichtung ausgerüstete, elektronisch gesteuerte brennstoffeinspritzvorrichtung
DE60213018T2 (de) Common Rail Kraftstoffeinspritzgerät und Steuermethode dafür
DE19548497C1 (de) Hochdruckreinigungsger{t
DE19648690A1 (de) Kraftstoffeinspritzsystem
DE10154133C1 (de) Kraftstoffsystem
EP0840004B1 (de) Magnetventil
DE3902764C2 (de) Kraftstoffeinspritzpumpe
DE69805999T2 (de) Brennstoffeinspritzpumpe für verbrennungsmotoren, insbesondere langsamlaufende grossdieselmotoren für die schiffahrt
DE10002109A1 (de) Einspritzsystem
EP1682771B1 (de) Ventil für eine kraftstoffeinspritzpumpe
DE10209527A1 (de) Einrichtung zur druckmodulierten Formung des Einspritzverlaufes
AT512437B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102006050033A1 (de) Injektor, insbesondere Common-Rail-Injektor
AT511731B1 (de) Kavitationsoptimierte drosselbohrungen
EP4077908B1 (de) Einspritzdüse zur einspritzung von kraftstoff unter hohem druck
DE19812011A1 (de) Verfahren zur Einspritzung von Kraftstoff in den Brennraum einer Brennkraftmaschine und Kraftstoffeinspritzsystem
AT414159B (de) Einspritzdüse
DE60206453T2 (de) Kraftstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900518

17Q First examination report despatched

Effective date: 19910510

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58903432

Country of ref document: DE

Date of ref document: 19930318

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930226

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000511

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000518

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010518

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518