EP0331804B1 - Endphasengelenktes Geschoss - Google Patents

Endphasengelenktes Geschoss Download PDF

Info

Publication number
EP0331804B1
EP0331804B1 EP88120227A EP88120227A EP0331804B1 EP 0331804 B1 EP0331804 B1 EP 0331804B1 EP 88120227 A EP88120227 A EP 88120227A EP 88120227 A EP88120227 A EP 88120227A EP 0331804 B1 EP0331804 B1 EP 0331804B1
Authority
EP
European Patent Office
Prior art keywords
projectile
detector
trajectory
end phase
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120227A
Other languages
English (en)
French (fr)
Other versions
EP0331804A2 (de
EP0331804A3 (de
Inventor
Bernd Dulat
Hellmuth Moebes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodenseewerk Geratetechnik GmbH
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Publication of EP0331804A2 publication Critical patent/EP0331804A2/de
Publication of EP0331804A3 publication Critical patent/EP0331804A3/de
Application granted granted Critical
Publication of EP0331804B1 publication Critical patent/EP0331804B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2213Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target

Definitions

  • the invention relates to a phase-guided projectile for firing from a cannon.
  • DE-C-36 44 456 shows a floor with an optically transparent window and a central spike.
  • US-A-4 500 051 shows a projectile shot from a cannon with an air bearing viewfinder.
  • the floor has a rear stabilization and middle wings, which are controlled by detector signals.
  • DE-A-34 38 544 shows an optical viewfinder with a Cassegrain system.
  • US-A-4 155 521 shows a projectile with a gimbal-mounted view finder and an air-bearing gyro.
  • the invention is based on the object of directing a projectile which is shot from a cannon, in particular an armored cannon, onto a movable target.
  • the projectile is accelerated extremely strongly for a short time during the launch. Steering means have to endure this high acceleration. A high lateral acceleration must be achievable in the steering phase. However, the air resistance of the projectile must not be impaired in such a way that this impairs the range of use of the projectile that has no propulsion after being fired. In order to meet a demanding steering law, the steering means must have an inertial reference. Only a small volume is available for the steering means. The high speed of the projectile in the supersonic area leads to heating.
  • the claimed combination of measures achieves the task of creating a final phase control for a projectile fired by a cannon under the unfavorable conditions described above.
  • the mentioned measures of the invention work together to achieve the object.
  • the viewfinder is designed as a gyro so that an inertial reference is available for the steering. Since the projectile is subjected to extreme accelerations when fired, the gyro is air-bearing. Any other Storage would be destroyed at high accelerations. However, it has been shown that an air-bearing gyro survives these accelerations and is then functional. An air-bearing gyroscope allows only limited squint angles. The projectile must therefore be aimed exactly at the target. The lateral accelerations that occur during target tracking must not be applied by an angle of attack of the projectile, as is the case with some other missiles. Such an angle of attack could cause the viewfinder to lose sight due to the limited squint angle.
  • a middle wing control consists of paired wings in a cross arrangement in the center of gravity of the floor. These wings can be swiveled by steering signals via servomotors. It has been shown that when using such a mid-wing control, the transverse accelerations required for steering the projectile into the target can be applied without the viewfinder losing the target with his squint angle limited by the air-bearing gyroscope.
  • This middle wing control also allows the use of a spike. Compared to conventional viewfinder domes, the spike significantly reduces the flow resistance. This is very important at the high speeds of the projectile and even makes it possible to provide such a projectile with a viewfinder.
  • the prerequisite for using a spike is that the projectile flies in the steering phase without any significant angle of attack. Otherwise the spike would have an aerodynamically unfavorable effect. This behavior is achieved anyway by the middle wing control because of the limited squint angle of the viewfinder.
  • a spike has the advantage that the damming temperature at the viewfinder window is reduced by the spike converting the straight compression shock into an oblique shock with high conversion of kinetic energy into thermal energy. This leads to less thermal shock load on the window material.
  • the lower one the damming temperature at the viewfinder window is reduced by the spike converting the straight compression shock into an oblique shock with high conversion of kinetic energy into thermal energy. This leads to less thermal shock load on the window material.
  • Temperature at the viewfinder window is favorable for detectors that respond to infrared radiation and improves the detection range of the system.
  • a spike requires the use of imaging optics of the viewfinder, which are not disturbed by the spike.
  • Such an imaging optic is a Cassegrain system.
  • a Cassegrain system also has a relatively high acceleration resistance.
  • Complicated scanning mechanisms have to be eliminated due to the high accelerations. It takes advantage of the fact that all projectiles, if they are not stabilized rollage with special control effort, perform a more or less strong rolling movement.
  • This is used according to the invention for visual field scanning.
  • the imaging optics mounted on the gyro perform a relatively fast scanning movement. This is expediently done in that the air-bearing gyro is excited to a controlled nutation movement. A second, slower scanning movement is caused by the rolling movement of the Receive bullet.
  • a wedge is provided instead of the usual dome as an optical window, which is delimited by two flat surfaces. This quasi-flat window carries the spike. This results in better imaging properties and a circular image movement relative to the detector, which complements the rosette scan with the movement of the imaging optics.
  • Embodiments of the invention are the subject of the dependent claims.
  • the floor 10 has a viewfinder at the top.
  • the viewfinder 12 carries a spike 14.
  • the gas supply 16 for the air storage of a gyro 18 is arranged behind the viewfinder 12.
  • the gyro 18 forms an essential part of the finder 12.
  • Behind the gas supply 16 there is a battery 20 for the power supply.
  • the battery 20 is followed by an assembly 22 which contains a rudder control system and the associated power electronics.
  • the viewfinder electronics 24 are located behind them.
  • a warhead 26 and a detonator 28 are arranged in the end part of the projectile 10.
  • the battery 20 feeds the viewfinder, the power electronics and the rudder control system and the viewfinder electronics. Tail stabilization is achieved by tail units 30 in the region of the end part.
  • control surfaces 32 are provided in a cross-wing arrangement, which effect a central wing control.
  • the control surfaces 32 are retracted at the end and are extended in the steering phase. Since the control surfaces are located in the area of the center of gravity of the projectile 10, transverse forces can thus be generated for the steering without a significant angle of attack of the projectile occurring.
  • the control surfaces 32 are actuated by the rudder control system in assembly 22, which is controlled by the viewfinder electronics 24 via the power electronics.
  • the viewfinder electronics 24 receives and processes signals from the viewfinder 12.
  • the viewfinder 12 is shown on an enlarged scale in FIG.
  • the gyroscope 18 of the finder 12 is mounted in a spherical bearing surface 34 by means of an air bearing. Air storage is a known technique and is therefore not described in detail here. A stream of compressed gas is introduced into the bearing surface so that the spherical outer surface 18 is kept suspended on an air layer.
  • the gyro 18 is driven electrically or pneumatically by a stator winding 36.
  • the gyro 18 rotates around a bullet-proof detector column 38. Infrared-sensitive detectors 40 are seated on the end face of the detector column 38.
  • the detector column 38 contains a cooling device, by means of which the detectors 40 are cooled.
  • the gyroscope 18 carries an imaging optics 42 in the form of a Cassegrain system with an annular concave mirror 44 as the primary mirror and a mirror 46 arranged in front of it as the secondary mirror.
  • the beam path of the imaging optics 42 runs, 3, from the object which is practically infinite, via the annular concave mirror 44 and the mirror 46 to the detector 40.
  • the mirror 46 is held on the gyroscope 18 via a stable mirror carrier 48.
  • the imaging optics 42 execute a circular scanning movement. This is achieved in that the gyro 18 is excited with the imaging optics to a controlled nutation movement.
  • the viewfinder 12 is closed by a flat window 54.
  • the window 54 is made of infrared casual material.
  • the window is wedge-shaped and is delimited by plane surfaces 58 and 60.
  • the control surfaces 32 are provided with a twist such that the projectile performs a continuous rolling movement.
  • the beam path for the imaging optics 42 is deflected and thus the point of the scanned field of view detected by the detector 40 is changed. If the projectile performs its rolling movement, an annular region of the field of view around the projectile axis would be scanned without the scanning movement of the imaging optics 42. However, this relatively slow scanning movement caused by the rolling movement of the projectile is superimposed on the fast scanning movement of the imaging optics 42. This results in a rosette scan as indicated in Fig.4.
  • the window 54 carries the spike 14. This reduces the flow resistance of the projectile 10. The flow is partially deflected by window 54, thereby reducing heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Telescopes (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein endphasengelenktes Geschoß zum Abschuß aus einer Kanone.
  • Zugrundeliegender Stand der Technik
  • Die DE-C-36 44 456 zeigt ein Geschoß mit einem optisch durchlässigen Fenster und einem zentralen Spike.
  • Die US-A-4 500 051 zeigt ein aus einer Kanone abgeschossenes Geschoß mit einem luftgelagerten Sucher. Das Geschoß hat eine Heckstabilisierung und Mittelflügel, die von Detektorsignalen gesteuert sind.
  • Die DE-A-34 38 544 zeigt einen optischen Sucher mit Cassegrain-System.
  • Die US-A-4 155 521 zeigt ein Geschoß mit einem kardanisch aufgehängten Sucher und einem luftgelagerten Kreisel.
  • Offenbarung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, ein Geschoß, das aus einer Kanone, insbesondere einer Panzerkanone, veschossen wird, in der Endphase auf ein bewegliches Ziel zu lenken.
  • Diese Aufgabe bietet eine Reihe recht erheblicher Probleme. Das Geschoß wird beim Abschuß kurzzeitig extrem stark beschleunigt. Lenkmittel müssen diese hohe Beschleunigung aushalten. In der Lenkphase muß eine hohe Querbeschleunigung erreichbar sein. Dabei darf aber der Luftwiderstand des Geschosses nicht so beeinträchtigt werden, daß dies zu Lasten der Einsatzweite des nach dem Abschuß antriebslosen Geschosses geht. Zur Erfüllung eines anspruchsvollen Lenkgesetzes müssen die Lenkmittel eine inertiale Referenz aufweisen. Für die Lenkmittel steht nur ein kleines Volumen zu Verfügung. Die hohe Geschwindigkeit des Geschosses im Überschallbereich führt zur Erwärmung.
  • Nach der Erfindung wird die gestellte Aufgabe gelöst durch die Kombination der nachstehenden Maßnahmen:
    • (a) Ein optischer Sucher enthält einen luftgelagerten Kreisel.
    • (b) Auf dem luftgelagerten Kreisel sind ein optischer Detektor sowie ein Cassegrain-System als optisches Abbildungssystem angeordnet, welches ein Gesichtsfeld mit einer kreisenden Abtastbewegung abtastet.
    • (c) Das Geschoß ist an der Spitze durch einen optisch durchlässigen Keil abgeschlossen, der von Planflächen begrenzt ist.
    • (d) Der optisch durchlässige Keil trägt einen zentralen Spike.
    • (e) Das Geschoß weist eine Heckstabilisierung und eine Mittelflügelsteuerung auf, die von Signalen des Detektors über Signalverarbeitungsmittel und einen Stellantrieb verstellbar ist.
    • (f) Das Geschoß wird aerodynamisch zu einer stetigen Rollbewegung veranlaßt. letzten Absatz von Anspruch 1 einfügen.
    • (g) Die Geometrie des Spikes (14) und der Abbildungsoptik (42) wird in Anpassung an den begrenzten Schielwinkel des Suchers (12) ausgelegt, so daß Strahlungsverluste durch Abschattung durch den Spike (14) weitgehend vermieden werden können.
  • Die angeführten Maßnahmen sind zum großen Teil an sich bekannt: Es sind luftgelagerte Kreisel bekannt. Es sind Sucher mit einem Cassegrain-System bekannt. Es ist bekannt, durch einen Keil eine Bilddrehung und damit in Verbindung mit einer weiteren, kreisenden Abtastbewegung eine Rosettenabtastung eines Gesichtsfeldes vorzunehmen. Es sind Spikes bei Flugkörpern hoher Geschwindigkeit bekannt. Es ist bei Flugkörpern sowohl eine Heckstabilisierung als auch eine Mittelflügelsteuerung bekannt. Und es ist bekannt, einem Geschoß eine Rollbewegung (Drall) zu erteilen.
  • Durch die beanspruchte Kombination von Maßnahmen wird jedoch die Aufgabe gelöst, unter den vorstehend geschilderten ungünstigen Bedingungen eine Endphasenlenkung für ein durch eine Kanone abgeschossenes Geschoß zu schaffen. Die erwähnten Maßnahmen der Erfindung wirken dabei zur Lösung der gestellten Aufgabe zusammen.
  • Der Sucher ist als Kreisel ausgeführt, damit eine inertiale Referenz für die Lenkung zur Verfügung steht. Da das Geschoß beim Abschuß extremen Beschleunigungen unterworfen ist, ist der Kreisel luftgelagert. Jede andere Lagerung würde bei den hohen Beschleunigungen zerstört. Es hat sich aber gezeigt, daß ein luftgelagerter Kreisel diese Beschleunigungen übersteht und dann funktionsfähig ist. Ein luftgelagerter Kreisel läßt aber nur begrenzte Schielwinkel zu. Das Geschoß muß daher recht genau auf das Ziel ausgerichtet sein. Die bei der Zielverfolgung auftretenden Querbeschleunigungen dürfen nicht wie bei manchen anderen Flugkörpern durch einen Anstellwinkel des Geschosses aufgebracht werden. Ein solcher Anstellwinkel könnte nämlich dazu führen, daß der Sucher wegen des begrenzten Schielwinkels das Ziel verliert. Deshalb erfolgt die Lenkung mittels einer Mittelflügelsteuerung gelenkt. Eine solche Mittelflügelsteuerung besteht aus paarweise gekoppelten Flügeln in Kreuzanordnung im Schwerpunktbereich des Geschosses. Diese Flügel sind von Lenksignalen über Stellmotoren verschwenkbar. Es hat sich gezeigt, daß bei Anwendung einer solchen Mittelflügelsteuerung die für die Lenkung des Geschosses ins Ziel erforderlichen Querbeschleunigungen aufgebracht werden können, ohne daß der Sucher mit seinem durch den luftgelagerten Kreisel begrenzten Schielwinkel das Ziel verliert.
  • Diese Mittelflügelsteuerung gestattet auch die Verwendung eines Spikes. Im Vergleich zu üblichen Sucherdomen bringt der Spike eine erhebliche Verminderung des Strömungswiderstandes. Das ist bei den hohen Geschwindigkeiten des Geschosses sehr wesentlich und ermöglicht es überhaupt, ein solches Geschoß mit einem Sucher zu versehen. Voraussetzung für die Verwendung eines Spikes ist allerdings, daß das Geschoß in der Lenkphase ohne nennenswerten Anstellwinkel fliegt. Anderenfalls würde sich der Spike aerodynamisch ungünstig auswirken. Dieses Verhalten wird aber schon wegen des begrenzten Schielwinkels des Suchers sowieso durch die Mittelflügelsteuerung erreicht.
  • Ein Spike hat den Vorteil, daß die Stautemperatur an dem Fenster des Suchers gesenkt wird, indem der Spike den geraden Verdichtungsstoß mit hoher Umwandlung von kinetischer Energie in Wärmeenergie in einen schrägen Stoß verwandelt. Das führt zu geringerer Thermoschockbelastung des Fenstermaterials. Außerdem ist die geringere
  • Temperatur am Fenster des Suchers günstig für Detektoren, die auf infrarote Strahlung ansprechen und verbessert die Auffaßweite des Systems.
  • Die Verwendung eines Spikes bedingt aber die Verwendung einer Abbildungsoptik des Suchers, die durch den Spike nicht gestört wird. Eine solche Abbildungsoptik ist ein Cassegrain-System. Bei geeigneter Auslegung der Geometrie des Spikes und der Abbildungsoptik in Anpassung an den begrenzten Schielwinkel des Suchers können Strahlungsverluste durch Abschattung weitgehend vermieden werden. Ein Cassegrain-System besitzt außerdem eine relativ hohe Beschleunigungsfestigkeit.
  • Es ergibt sich dann noch die Frage, wie eine Abtastung des Gesichtsfeldes erfolgen soll. Komplizierte Abtastmechanismen müssen wegen der hohen Beschleunigungen entfallen. Es wird dabei die Tatsache ausgenutzt, daß alle Geschosse, wenn sie nicht mit besonderem Regelaufwand rollagestabilisiert sind, eine mehr oder weniger starke Rollbewegung ausführen. Dies wird nach der Erfindung für die Gesichtsfeldabtastung ausgenutzt. Eine relativ schnelle Abtastbewegung führt die auf dem Kreisel montierte Abbildungsoptik aus. Das geschieht zweckmäßigerweise dadurch, daß der luftgelagerte Kreisel zu einer kontrollierten Nutationsbewegung erregt wird. Eine zweite, langsamere Abtastbewegung wird durch die Rollbewegung des Geschosses erhalten. Zu diesem Zweck ist statt des üblichen Domes als optisches Fenster ein Keil vorgesehen, der von zwei ebenen Flächen begrenzt ist. Dieses quasi-ebene Fenster trägt den Spike. Es ergeben sich damit bessere Abbildungseigenschaften und eine kreisende Bildbewegung relativ zu dem Detektor, die sich mit der Bewegung der Abbildungsoptik zu einer Rosettenabtastung ergänzt.
  • Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Kurze Beschreibung der Zeichnungen
  • Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.
  • Fig. 1
    ist eine Seitenansicht, teilweise im Schnitt, eines Geschosses mit Endphasenlenkung.
    Fig. 2
    zeigt einen Längsschnitt des Suchers.
    Fig. 3
    veranschaulicht schematisch die Bewegung des Suchers zur Abtastung des Gesichtsfeldes.
    Fig. 4
    veranschaulicht die rosettenförmige Abtastung des Gesichtsfeldes durch Kombination der Abtastbewegung des Suchers und der Rollbewegung des Geschosses.
    Bevorzugte Ausführung der Erfindung
  • Das Geschoß 10 weist an der Spitze einen Sucher auf. Der Sucher 12 trägt einen Spike 14. Hinter dem Sucher 12 ist die Gasversorgung 16 für die Luftlagerung eines Kreisels 18 angeordnet. Der Kreisel 18 bildet einen wesentlichen Teil des Suchers 12. Hinter der Gasversorgung 16 sitzt eine Batterie 20 für die Stromversorgung. An die Batterie 20 schließt sich eine Baugruppe 22 an, die ein Ruderstellsystem und die zugehörige Leistungselektronik enthält. Dahinter sitzt die Sucherelektronik 24. Im Endteil des Geschosses 10 sind ein Sprengkopf 26 und ein Zünder 28 angeordnet. Die Batterie 20 speist den Sucher, die Leistungselektronik und das Ruderstellsystem sowie die Sucherelektronik. Durch Leitwerke 30 im Bereich des Endteils wird eine Heckstabilisierung erreicht. Im Bereich der Baugruppe 22 des Ruderstellsystems sind Steuerflächen 32 in Kreuzflügelanordnung vorgesehen, die eine Mittelflügelsteuerung bewirken. Die Steuerflächen 32 sind beim Abschluß eingezogen und werden in der Lenkphase ausgefahren. Da die Steuerflächen im Bereich des Schwerpunktes des Geschosses 10 sitzen, können damit Querkräfte für die Lenkung erzeugt werden, ohne daß dabei ein wesentlicher Anstellwinkel des Geschosses auftritt. In der Lenkphase werden die Steuerflächen 32 von dem Ruderstellsystem in Baugruppe 22 betätigt, das über die Leistungselektronik von der Sucherelektronik 24 gesteuert ist. Die Sucherelektronik 24 erhält und verarbeitet Signale von dem Sucher 12.
  • Der Sucher 12 ist in Fig.2 in vergrößertem Maßstab dargestellt. Der Kreisel 18 des Suchers 12 ist in einer sphärischen Lagerfläche 34 mittels einer Luftlagerung gelagert. Die Luftlagerung ist eine bekannte Technik und daher hier nicht im einzelnen beschrieben. Es wird ein Druckgasstrom in die Lagerfläche eingeleitet, so daß der Kreisel 18 mit seiner sphärischen Außenfläche auf einer Luftschicht schwebend gehalten wird. Der Kreisel 18 wird durch eine Statorwicklung 36 elektrisch oder pneumatisch angetrieben. Der Kreisel 18 rotiert um eine geschoßfeste Detektorsäule 38. Auf der Stirnfläche der Detektorsäule 38 sitzen infrarotempfindliche Detektoren 40. Die Detektorsäule 38 enthält eine Kühlvorrichtung, mittels derer die Detektoren 40 gekühlt werden.
  • Der Kreisel 18 trägt, wie aus der schematischen Fig.3 am besten ersichtlich ist, eine Abbildungsoptik 42 in Form eines Cassegrain-Systems mit einem ringförmigen Hohlspiegel 44 als Primärspiegel und einem im Abstand davor angeordneten Spiegel 46 als Sekundärspiegel Der Strahlengang der Abbildungsoptik 42 verläuft, wie in Fig.3 dargestellt, vom Objekt, das praktisch im Unendlichen liegt, über den ringförmigen Hohlspiegel 44 und den Spiegel 46 auf den Detektor 40. Der Spiegel 46 ist über einen stabilen Spiegelträger 48 an dem Kreisel 18 gehaltert.
  • Wie aus Fig.3 ersichtlich ist, führt die Abbildungsoptik 42 eine kreisende Abtastbewegung aus. Das wird dadurch erreicht, daß der Kreisel 18 mit der Abbildungsoptik zu einer kontrollierten Nutationsbewegung angeregt wird.
  • Der Sucher 12 ist durch ein planes Fenster 54 abgeschlossen. Das Fenster 54 besteht aus infrarotdurch lässigem Material. Das Fenster ist keilförmig ausgebildet und wird durch Planflächen 58 und 60 begrenzt.
  • Die Steuerflächen 32 sind mit einer Verwindung versehen, derart, daß das Geschoß eine stetige Rollbewegung ausführt. Wie aus Fig.3 ersichtlich ist, wird dabei der Strahlengang für die Abbildungsoptik 42 abgelenkt und damit der von dem Detektor 40 jeweils erfaßte Punkt des abgetasteten Gesichtsfeldes verändert. Wenn das Geschoß seine Rollbewegung ausführt, würde ohne die Abtastbewegung der Abbildungsoptik 42 ein ringförmiger Bereich des Gesichtsfeldes um die Geschoßachse abgetastet. Diese durch die Rollbewegung des Geschosses hervorgerufene relativ langsame Abtastbewegung wird jedoch der schnellen Abtastbewegung der Abbildungsoptik 42 überlagert. Es resultiert eine Rosettenabtastung, wie sie in Fig.4 angedeutet ist. Durch die Nutationsbewegung des Kreisels 18 und die dadurch bedingte relativ schnelle Abtastbewegung der Abbildungsoptik 42 werden die einzelnen "Blätter" 62 der Rosette durchlaufen. Die Rollbewegung des Geschosses 10 bewirkt durch den damit umlaufenden Keil eine überlagerte langsamere Drehung längs des Abtastkreises 64. Dadurch, daß mehrere Detektoren 40 vorgesehen sind, wird mit jedem Blatt 62 der Rosette, also bei jedem Nutationsumlauf des Kreisels 18 ein ringförmiger Streifen 66 abgetastet, wie in Fig.4 dargestellt ist.
  • Das Fenster 54 trägt den Spike 14. Dadurch wird der Strömungswiderstand des Geschosses 10 vermindert. Die Strömung wird von dem Fenster 54 teilweise abgelenkt, wodurch die Erwärmung vermindert wird.

Claims (6)

  1. Endphasengelenktes Geschoß zum Abschuß aus einer Kanone oder Start aus Launcher, gekennzeichnet durch die Kombination der nachstehenden Merkmale
    (a) Ein optischer Sucher (12) enthält einen luftgelagerten Kreisel (18).
    (b) Auf dem luftgelagerten Kreisel (18) ist ein Cassegrain- System als Abbildungsoptik (42) angeordnet, welche Zielstrahlung auf einem optischen Detektor (40) abbildet und ein Gesichtsfeld mit einer kreisenden Bewegung abtastet.
    (c) Das Geschoß (10) ist an der Spitze durch ein optisch durchlässiges planes Fenster (54) abgeschlossen.
    (d) Das optisch durchlässige Fenster (54) trägt einen zentralen Spike (14).
    (e) Das Geschoß (10) weist eine Heckstabilisierung und Mittelflügel auf, die von Signalen des Detektors (40) und des Kreisels (18) über Signalverarbeitungsmittel (24) und einen Stellantrieb (22) angesteuert werden.
    (f) Das Geschoß (10) wird aerodynamisch zu einer stetigen Rollbewegung veranlaßt.
    (g) Die Geometrie des Spikes (14) und der Abbildungsoptik (42) wird in Anpassung an den begrenzten Schielwinkel des Suchers (12) ausgelegt, so daß Strahlungsverluste durch Abschattung durch den Spike (14) weitgehend vermieden werden können.
  2. Endphasengelenktes Geschoß nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzeugung einer kreisenden Abtastbewegung der Kreisel (18) zu einer kontrollierten Nutationsbewegung anregbar ist.
  3. Endphasengelenktes Geschoß nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzeugung einer kreisenden Abtastbewegung das optische Fenster (54) keilförmig ausgebildet ist.
  4. Endphasengelenktes Geschoß nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß der Detektor (40) ein Infrarotdetektor und das Fenster (54) für infrarote Strahlung durchlässig ist.
  5. Endphasengelenktes Geschoß nach Anspruch 4, dadurch gekennzeichnet, daß der Detektor (40) gekühlt ist.
  6. Endphasengelenktes Geschoß nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Detektor (40) mehrere Detektorelemente enthält, so daß bei jedem Umlauf der kreisenden Abtastbewegung ein ringförmiger Streifen (66) des Gesichtsfeldes abgetastet wird.
EP88120227A 1988-03-09 1988-12-03 Endphasengelenktes Geschoss Expired - Lifetime EP0331804B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3807725 1988-03-09
DE3807725A DE3807725A1 (de) 1988-03-09 1988-03-09 Endphasengelenktes geschoss

Publications (3)

Publication Number Publication Date
EP0331804A2 EP0331804A2 (de) 1989-09-13
EP0331804A3 EP0331804A3 (de) 1991-07-31
EP0331804B1 true EP0331804B1 (de) 1994-10-19

Family

ID=6349248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120227A Expired - Lifetime EP0331804B1 (de) 1988-03-09 1988-12-03 Endphasengelenktes Geschoss

Country Status (3)

Country Link
US (1) US4917330A (de)
EP (1) EP0331804B1 (de)
DE (2) DE3807725A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029895A1 (de) * 2009-06-23 2011-01-05 Diehl Bgt Defence Gmbh & Co. Kg Optisches System für einen Flugkörper und Verfahren zum Abbilden eines Gegenstands

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033948A1 (de) * 1990-10-25 1992-04-30 Bodenseewerk Geraetetech Sucher zur abtastung eines gesichtsfeldes
DE4226024C1 (de) * 1992-08-06 1993-07-15 Bodenseewerk Geraetetechnik Gmbh, 7770 Ueberlingen, De
DE4325589B4 (de) * 1993-07-30 2007-11-22 Diehl Bgt Defence Gmbh & Co. Kg Zielsuchkopf für Lenkflugkörper oder Geschosse
DE19611595B4 (de) * 1996-03-23 2004-02-05 BODENSEEWERK GERäTETECHNIK GMBH Suchkopf für zielverfolgende Flugkörper oder Geschosse
DE19953701C2 (de) 1999-11-08 2002-01-24 Lfk Gmbh Verfahren und Vorrichtungen zur Verminderung von Druck und Temperatur auf der Vorderseite eines Flugkörpers bei Überschallgeschwindigkeit
IL143694A (en) 2001-06-12 2006-10-31 Geo T Vision Ltd Projectile fuse imaging device and method
US7943914B2 (en) * 2003-05-30 2011-05-17 Bae Systems Information And Electronic Systems Integration, Inc. Back illumination method for counter measuring IR guided missiles
US7718936B2 (en) * 2004-06-03 2010-05-18 Lockheed Martin Corporation Bulk material windows for distributed aperture sensors
US7295947B2 (en) * 2004-09-10 2007-11-13 Honeywell International Inc. Absolute position determination of an object using pattern recognition
US7698064B2 (en) * 2004-09-10 2010-04-13 Honeywell International Inc. Gas supported inertial sensor system and method
US7289902B2 (en) * 2004-09-10 2007-10-30 Honeywell International Inc. Three dimensional balance assembly
US7340344B2 (en) * 2004-09-10 2008-03-04 Honeywell International Inc. Spherical position monitoring system
US7366613B2 (en) * 2004-09-10 2008-04-29 Honeywell International Inc. RF wireless communication for deeply embedded aerospace systems
US7617070B2 (en) * 2004-09-10 2009-11-10 Honeywell International Inc. Absolute position determination of an object using pattern recognition
US7274439B2 (en) * 2004-09-10 2007-09-25 Honeywell International Inc. Precise, no-contact, position sensing using imaging
US20060054660A1 (en) * 2004-09-10 2006-03-16 Honeywell International Inc. Articulated gas bearing support pads
US7458264B2 (en) * 2004-09-10 2008-12-02 Honeywell International Inc. Generalized inertial measurement error reduction through multiple axis rotation during flight
US7647176B2 (en) * 2007-01-11 2010-01-12 Honeywell International Inc. Method and system for wireless power transfers through multiple ports
US7425097B1 (en) 2007-07-17 2008-09-16 Honeywell International Inc. Inertial measurement unit with wireless power transfer gap control
US7762133B2 (en) * 2007-07-17 2010-07-27 Honeywell International Inc. Inertial measurement unit with gas plenums
US7671607B2 (en) * 2007-09-06 2010-03-02 Honeywell International Inc. System and method for measuring air bearing gap distance
US8686326B1 (en) * 2008-03-26 2014-04-01 Arete Associates Optical-flow techniques for improved terminal homing and control
US8921748B2 (en) * 2011-05-19 2014-12-30 Lockheed Martin Corporation Optical window and detection system employing the same
US9568280B1 (en) 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
DE102014002822A1 (de) * 2014-02-26 2015-08-27 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Start eines Lenkflugkörpers und Flugkörpersystem
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816721A (en) * 1953-09-15 1957-12-17 Taylor Richard John Rocket powered aerial vehicle
US2990699A (en) * 1958-12-08 1961-07-04 Specialties Dev Corp Cooling apparatus
US4009393A (en) * 1967-09-14 1977-02-22 General Dynamics Corporation Dual spectral range target tracking seeker
US4500051A (en) * 1972-10-06 1985-02-19 Texas Instruments Incorporated Gyro stabilized optics with fixed detector
US3920200A (en) * 1973-12-06 1975-11-18 Singer Co Projectile having a gyroscope
US4004754A (en) * 1974-07-11 1977-01-25 The United States Of America As Represented By The Secretary Of The Army High-speed, high-G air bearing optical mount for Rosette scan generator
US4034807A (en) * 1975-08-12 1977-07-12 Edgar N. Prince Inside pipe wiper
US4009848A (en) * 1975-10-15 1977-03-01 The Singer Company Gyro seeker
US4155521A (en) * 1975-12-08 1979-05-22 The Singer Company Cannon launched platform
US4039246A (en) * 1976-01-22 1977-08-02 General Dynamics Corporation Optical scanning apparatus with two mirrors rotatable about a common axis
DE2921228C3 (de) * 1979-05-25 1981-11-26 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Zielsuchkopf für einen Flugkörper
DE2923547C2 (de) * 1979-06-09 1981-04-09 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Zielsuchvorrichtung für Flugkörper
US4413177A (en) * 1981-11-30 1983-11-01 Ford Motor Company Optical scanning apparatus incorporating counter-rotation of primary and secondary scanning elements about a common axis by a common driving source
DE3438544A1 (de) * 1984-10-20 1986-04-24 Bodenseewerk Geraetetech Optischer sucher
DE3505198C1 (de) * 1985-02-15 1986-07-24 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Vorrichtung zur Abtastung eines Gesichtsfeldes
US4690351A (en) * 1986-02-11 1987-09-01 Raytheon Company Infrared seeker
DE3642683A1 (de) * 1986-12-13 1988-06-16 Bodenseewerk Geraetetech Kryostat zur kuehlung eines detektors
DE3644456C1 (de) * 1986-12-24 1988-01-21 Rheinmetall Gmbh Geschoss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029895A1 (de) * 2009-06-23 2011-01-05 Diehl Bgt Defence Gmbh & Co. Kg Optisches System für einen Flugkörper und Verfahren zum Abbilden eines Gegenstands
DE102009029895B4 (de) * 2009-06-23 2018-01-25 Diehl Defence Gmbh & Co. Kg Optisches System für einen Flugkörper und Verfahren zum Abbilden eines Gegenstands

Also Published As

Publication number Publication date
US4917330A (en) 1990-04-17
DE3807725A1 (de) 1989-09-21
EP0331804A2 (de) 1989-09-13
DE3851880D1 (de) 1994-11-24
EP0331804A3 (de) 1991-07-31

Similar Documents

Publication Publication Date Title
EP0331804B1 (de) Endphasengelenktes Geschoss
DE2336040C3 (de) Abwehrsystem mit mehreren Geschossen
DE3042063C2 (de) Munitionssystem mit einem Geschoß
EP0141010B1 (de) Suchkopf für zielsuchende Flugkörper
EP0924490B1 (de) Suchkopf für zielverfolgende Flugkörper
EP0446413A1 (de) Geschoss mit einem bugseitig angeordneten IR-Suchsystem
DE1954540A1 (de) Spin- und rippenstabilisierte Rakete
DE19611595B4 (de) Suchkopf für zielverfolgende Flugkörper oder Geschosse
DE3323685A1 (de) Einrichtung zur bekaempfung von bodenzielen aus der luft
DE60021822T2 (de) Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses
DE4442520A1 (de) Rakete
DE3435634C2 (de)
DE3522154C2 (de)
DE3300709A1 (de) Flugkoerper zum bekaempfen von luftzielen
DE3906372C2 (de)
DE3337873A1 (de) Geschoss fuer granatwerfersysteme
DE3317528C2 (de)
DE3603497C1 (de) Geschoss fuer eine Panzerabwehrwaffe zur Bekaempfung eines Panzers von oben
DE3609774C2 (de)
DE2824059C2 (de) Regelvorrichtung für die Endphasenlenkung von Geschossen
DE102019109360A1 (de) Inventionssystem zur Abwehr von RAM-Zielen und/oder UAVs sowie Verfahren zur Abwehr von RAM-Zielen und/oder UAVs
DE102006015952A1 (de) Flugkörper für den Überschallbereich
DE3529897A1 (de) Flugkoerper zur bekaempfung von zielen beim ueberfliegen
DE4133405A1 (de) Submunition fuer tiefflugeinsatz
DE2815206C2 (de) Verfahren, Lenkflugkörper sowie Waffensystem zur Bekämpfung von Bodenzielen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19920127

17Q First examination report despatched

Effective date: 19920807

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3851880

Country of ref document: DE

Date of ref document: 19941124

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950113

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990227

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051203