EP0446413A1 - Geschoss mit einem bugseitig angeordneten IR-Suchsystem - Google Patents

Geschoss mit einem bugseitig angeordneten IR-Suchsystem Download PDF

Info

Publication number
EP0446413A1
EP0446413A1 EP90119791A EP90119791A EP0446413A1 EP 0446413 A1 EP0446413 A1 EP 0446413A1 EP 90119791 A EP90119791 A EP 90119791A EP 90119791 A EP90119791 A EP 90119791A EP 0446413 A1 EP0446413 A1 EP 0446413A1
Authority
EP
European Patent Office
Prior art keywords
projectile
scanning
target
laser
deflection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90119791A
Other languages
English (en)
French (fr)
Inventor
Helmut Dr. Neff
Jürgen Heinrich
Gerhard Dr. Glotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH
Original Assignee
Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH filed Critical Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH
Publication of EP0446413A1 publication Critical patent/EP0446413A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2246Active homing systems, i.e. comprising both a transmitter and a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2213Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • the invention relates to a projectile as specified in more detail by the features of the preamble of claim 1.
  • the successful combat of tactical and ballistic missiles with barrel weapons requires the use of sensor-supported ammunition with a comparatively high target range and accuracy.
  • the sensors for target determination can be based on active and passive systems. Active systems offer the possibility of autonomously determining the target distance, thus allowing modified proportional navigation with the result of improved hit accuracy.
  • Most of the systems for guided missiles that have been implemented so far require gyro-stabilized systems with high mechanical complexity. These systems can often not be exposed to the stresses that occur during launch.
  • a target search device for missiles which contains a passive sensor.
  • This essentially consists of a gyroscopic rotor which is mounted in a housing, a detector being arranged fixed to the housing in the central swivel arm.
  • There is an optical on the gyro rotor System that maps an infinite viewfinder field of view as a field of view image in the plane of the detector.
  • a torque generator which acts on the gyro rotor and receives corresponding scanning signals from a scanning signal generator, is provided as means for generating the relative movement between the visual field image and the detector. With a suitable choice of the scanning signals, it is possible to achieve a rosette-shaped scanning of the target area.
  • U.S. Patent No. 3,035,818 discloses a missile that includes both an optical homing device and an optical proximity detonator.
  • the receiving device of the passive targeting device serves at the same time as the receiver of the active proximity detonator.
  • An active method for the target search device is not disclosed in this document.
  • the invention has for its object to develop a projectile with an IR target search system of the type mentioned in such a way that mechanical components are dispensed with on the one hand and rosette-shaped scanning of the target area is possible on the other hand.
  • the invention is therefore based on an active laser-assisted sensor system for target recognition and steering.
  • the target area is scanned by means of an acousto-optical sensor system mounted in the search head of the rotating projectile.
  • the storey position relative to the target or the line of sight angle can then be determined from the scanning parameters of the acousto-optical device by receiving and evaluating the laser light scattered back from the target.
  • At least two control nozzles are used for projectile guidance, which are attached in a fixed predetermined plane relative to the scanning plane of the laser.
  • 10 designates a spin-stabilized projectile which rotates about its longitudinal axis 10 '.
  • the floor 10 has a dome 11 which is transparent to the IR rays.
  • the laser beam emanating from the laser transmission and scanning module 12 is designated 18 and the corresponding scan plane 19 .
  • the structure of the laser transmitter and scan module 12 is shown in FIG. 2. It essentially consists of a laser (e.g. DC solid-state laser) 120, a lens arrangement 121 connected downstream of the laser and indicated only schematically for beam conditioning, and a preferably electro-optical modulator 122 for amplitude modulation of the laser beam. Amplitude modulation is necessary because the signal bandwidth can be increased due to the reduced signal bandwidth. Furthermore, amplitude modulation of the laser beam is necessary to determine the distance between the projectile and the target (see below).
  • the laser beam is deflected with the aid of an acousto-optical deflection device 123.
  • the solid-state laser 120 is supplied with power with the aid of a power supply source 124, which is controlled by a control device 125.
  • control devices 127 and 128 of the electro-optical modulator 122 or the are also connected via a synchronization device 126 acousto-optical deflector 123 connected.
  • the control devices 127 and 128 are also connected via lines 129 and 129 'to the evaluation electronics 14 described below.
  • the receiving module 13 consists essentially of a fast photodiode 130. This is preceded by a schematically illustrated focusing optics 131, with which the incident laser light 132 reflected from the target is focused on the photodiode.
  • the output signals of the photodiode 130 are amplified in a signal preprocessing device and, if necessary, filtered and then fed to the evaluation electronics 14 via a line 134.
  • the evaluation electronics 14 essentially consist of a microcomputer (/ u C) 140.
  • the devices / devices 141, 142, 143 and 144 for measuring the distance, the line-of-sight angle, the floor swing and the roll rate are connected upstream of the / u C.
  • the path correction of the projectile is calculated from the determined distance of the target, the line-of-sight angle and the line-of-sight rotation speed derived therefrom, as well as the roll rate and, if applicable, the projectile swing (pitch and yaw movement).
  • the corresponding correction signals are then fed to the thrusters 16 and 17 so that the projectile can change its trajectory accordingly.
  • the distance data can also be used to trigger the ignition.
  • the distance measurement is preferably carried out using the method described in the publication by RS Rogowsky et al "Proceedings of the International Society for Optical Engineering", vol. 663, page 86. This is done using a method used, which is used in an anologic way to determine the distance with FMCW-RADAR (frequency modulated continous wave).
  • FMCW-RADAR frequency modulated continous wave
  • the emitted laser radiation is modulated so that the amplitude increases linearly in the modulation frequency within a predetermined period.
  • the output signal and the laser light reflected from the target are superimposed using a mixer. The difference in transit time between the two signals produces a low-frequency beat frequency at the mixer output, which is proportional to the distance.
  • the line of sight angle is the angle between the line of sight and the longitudinal axis of the projectile.
  • the line-of-sight angle is derived from the electrical operating parameters of the acousto-optical deflection unit in such a way that the operating voltage required for deflecting the laser beam is proportional (linear or square) to the deflection angle.
  • the line-of-sight rotation speed follows from the change in the line-of-sight angle over time and is obtained by differentiation, for example by evaluating two successive projectile rotations.
  • an acceleration pickup 15 can be used, for example, with which the rotational rate ⁇ of the projectile can be determined from the radial acceleration is determined, where b r means the radial acceleration and r the distance of the acceleration sensor 15 from the axis of rotation of the projectile (cf. also FIG. 5).
  • the corresponding correction signals are fed to the thrusters 16 and 17 shown schematically in FIG. 5.
  • 5 also shows the position of the scanning plane 19 relative to the thrusters and the position of the roll rate sensor 15.
  • the thrusters 16 and 17 are preferably attached in a line running through the center of gravity of the projectile.
  • Known hot gas or pulse engines are preferably used.
  • Scanning plane 19 and thrusters 16 and 17 are rotated by the angle ⁇ . This results in a lead time ⁇ in which the path correction can be carried out from the input parameters.
  • the time T for triggering the thrust nozzles is determined at a fixed angle ⁇ from - as described in more detail above - the rotation rate ⁇ of the projectile obtained by means of the roll rate sensor 15.
  • the roll rate sensor 15 is attached at a distance r from the axis of rotation of the projectile.
  • the scanning process can be seen in FIGS. 6 and 7.
  • the rotating projectile is designated by 10, the laser beam by 18 and a target by 20.
  • the rotation of the projectile at the angular velocity ⁇ in the range from 50 to 200 Hz results in a rosette-shaped scanning figure in the target area with periodic linear deflection of the laser beam (cf. (Fig. 2) and the distance - as described in more detail above - can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Die Erfindung betrifft ein Geschoß (10) mit einem bugseitig angeordneten IR-Zielsuchsystem (12-14) und Mitteln (16, 17) zur Korrektur des Geschosses (10), wobei das Zielsuchsystem (12-14) zur Abtastung des Zielgebietes Ablenkvorrichtungen (123) aufweist. Um eine rosettenförmige Abtastung des Zielgebietes ohne die Verwendung kreiselstabilisierter mechanischer Systeme zu erreichen, wird vorgeschlagen, daß das Geschoß (10) um seine Längsachse (10') rotiert. Das Zielsuchsystem (12-14) enthält einen Laser, dem die Ablenkvorrichtung (123) nachgeschaltet ist. Die Ablenkvorrichtung (123) lenkt den Laserstrahl beim Abtastvorgang periodisch linear in einer festen in der Geschoßachse (10') liegenden Scanebene (19) ab, so daß aufgrund der Rotation des Geschosses (10) im Zielbereich eine rosettenförmige Abtastung erfolgt. <IMAGE>

Description

  • Die Erfindung betrifft ein Geschoß, wie es durch die Merkmale des Gattungsbegriffes des Anspruchs 1 näher spezifiziert ist.
  • Die erfolgreiche Bekämpfung taktischer und ballistischer Flugkörper mit Rohrwaffen erfordert den Einsatz von sensorunterstützter Munition mit vergleichsweise hoher Zielauffassungsreichweite und Treffgenauigkeit. Die Sensorik zur Zielbestimmung kann dabei auf aktiven und passiven Systemen beruhen. Aktive Systeme bieten dabei die Möglichkeit zur autonomen Bestimmung der Zielentfernung, erlauben damit eine modifizierte proportionale Navigation mit dem Resultat einer verbesserten Treffergenauigkeit. Bei der Mehrzahl der bisher realisierten Systeme für Lenkwaffen sind kreiselstabilisierte Systeme mit hoher mechanischer Komplexität erforderlich. Diese Systeme können den beim Abschuß auftretenden Belastungen häufig nicht ausgesetzt werden.
  • So ist beispielsweise aus der DE-AS 29 23 547 eine Zielsuchvorrichtung für Flugkörper bekannt, die einen passiven Sensor enthält. Diese besteht im wesentlichen aus einem Kreiselrotor, der in einem Gehäuse gelagert ist, wobei gehäusefest in dem zentralen Schwenkarm ein Detektor angeordnet ist. Auf dem Kreiselrotor befindet sich ein optisches System, welches ein im Unendlichen liegendes Suchergesichtsfeld als Gesichtsfeldbild in der Ebene des Detektors abbildet. Als Mittel zur Erzeugung der Relativbewegung zwischen Gesichtsfeldbild und Detektor ist ein Drehmomentenerzeuger vorgesehen, der auf den Kreiselrotor wirkt und von einem Abtastsignalgenerator entsprechende Abtastsignale erhält. Bei geeigneter Wahl der Abtastsignale ist es möglich, eine rosettenförmige Abtastung des Zielgebietes zu erreichen. Dieses hat insbesondere den Vorteil, daß ein in der Umgebung des Mittelpunktes erfaßtes Ziel von allen Schleifen der Rosette mehr oder weniger überstrichen wird. Es läßt sich aus den erhaltenen Detektorsignalen dann mit verhältnismäßig geringem Aufwand die Ablage des Zieles in bezug auf den Mittelpunkt ermitteln und die Zielsuchvorrichtung entsprechend nachführen.
  • Die vorstehend beschriebene Vorrichtung einer passiven Zielsuchvorrichtung mit Rosettenabtastung wird in der DE-PS 36 23 343 weiterentwickelt. Auch in diesem Fall ist ein kreiselstabilisiertes System mit hoher mechanischer Komplexität erforderlich.
  • In der US-PS 3,035,818 ist eine Rakete offenbart, die sowohl eine optische Zielsuchvorrichtung als auch einen optischen Annäherungszünder enthält. Dabei dient die Empfangsvorrichtung der passiven Zielsuchvorrichtung gleichzeitig als Empfänger des aktiven Annäherungszünders. Ein aktives Verfahren für die Zielsuchvorrichtung wird in dieser Schrift nicht offenbart.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Geschoß mit einem IR-Zielsuchsystem der eingangs erwähnten Art derart weiterzuentwickeln, daß einerseits auf mechanische Komponenten verzichtet wird und andererseits eine rosettenförmige Abtastung des Zielgebietes möglich ist.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des kennzeichnenden Teiles des Anspruchs 1 gelöst.
  • Besonders vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Erfindung basiert also auf einem aktiven laserunterstützten Sensorsystem zur Zielerkennung und Lenkung. Mittels eines im Suchkopf des rotierenden Geschosses angebrachten akusto-optischenen Sensorsystems wird der Zielbereich abgetastet. Die Geschoßlage relativ zum Ziel bzw. der Sichtlinienwinkel kann dann aus den Abtastparametern der akusto-optischenen Einrichtung durch Empfang und Auswertung des vom Ziel zurückgestreuten Laserlichtes ermittelt werden. Zur Geschoßlenkung werden mindestens zwei Steuerdüsen verwendet, die in einer festen vorgegebenen Ebene relaltiv zur Scanebene des Lasers angebracht sind.
  • Weitere Einzelheiten und Vorteile der Erfindung werden im folgenden anhand eines Ausführungsbeispieles und mit Hilfe von Figuren näher erläutert:
  • Es zeigen:
  • Fig. 1
    den schematischen Aufbau eines erfindungsgemäßen Geschosses;
    Fig. 2
    den Aufbau eines Lasersende- und Scanmoduls;
    Fig. 3
    die Anordnung eines Empfangsmoduls des vom Ziel rückgestreuten Laserlichtes;
    Fig. 4
    eine Auswerteelektronik der empfangenen Signale;
    Fig. 5
    die schematische Ansicht der Anordnung der Schubdüsen; und
    Fig. 6
    und
    Fig. 7
    schematisch den Scanvorgang.
  • In Fig. 1 ist mit 10 ein drallstabilisiertes Geschoß bezeichnet, welches um seine Längsachse 10' rotiert. Das Geschoß 10 besitzt einen für die IR-Strahlen durchlässigen Dom 11.
  • Im Inneren des Geschosses 10 befinden sich ein Lasersendeund Scanmodul 12, ein Empfangsmodul 13 und eine Auswerteelektronik 14 sowie ein Rollratesensor 15 und radiale Schubdüsen 16 und 17. Der von dem Lasersende- und Scanmodul 12 ausgehende Laserstrahl ist mit 18 und die entsprechende Scanebene mit 19 bezeichnet.
  • Der Aufbau des Lasersende- und Scanmoduls 12 ist in Fig. 2 dargestellt. Er besteht im wesentlichen aus einem Laser (z. B. DC-Festkörperlaser) 120, einer dem Laser nachgeschalteten und nur schematisch angedeuteten Linsenanordnung 121 zur Strahlkonditionierung sowie einem vorzugsweise elektro-optischen Modulator 122 zur Amplitudenmodulation des Laserstrahls. Die Amplitutenmodulation ist erforderlich, weil aufgrund der dadurch verminderten Signalbandbreite eine Erhöhung des Signal/Rausch-Verhältnisses erzielt werden kann. Weiterhin ist eine Amplitudenmodulation des Laserstrahles zur Bestimmung des Abstandes von Geschoß und Ziel notwendig (vgl. weiter unten). Die Ablenkung des Laserstrahles erfolgt mit Hilfe einer akusto-optischen Ablenkvorrichtung 123. Die Stromversorgung des Festkörperlasers 120 erfolgt mit Hilfe einer Stromversorgungsquelle 124, die von einer Steuervorrichtung 125 angesteuert wird. Mit der Steuervorrichtung 125 sind ebenfalls über eine Synchronisationsvorrichtung 126 Ansteuervorrichtungen 127 und 128 des elektro-optischen Modulators 122 bzw. der akusto-optischen Ablenkvorrichtung 123 verbunden. Die Ansteuervorrichtungen 127 bzw. 128 sind ferner über Leitungen 129 bzw. 129' mit der weiter unten beschriebenen Auswerteelektronik 14 verbunden.
  • Das Empfangsmodul 13 besteht im wesentlichen aus einer schnellen Fotodiode 130. Dieser ist eine schematisch dargestellte Fokussieroptik 131 vorgeschaltet, mit der das einfallende, vom Ziel zurück reflektierte Laserlicht 132 auf die Fotodiode fokussiert wird. Die Ausgangssignale der Fotodiode 130 werden in einer Signalvorverarbeitungsvorrichtung verstärkt und ggf. gefiltert und dann über eine Leitung 134 der Auswerteelektronik 14 zugeführt.
  • Ein Blockschaltbild der Auswerteelektronik ist in Fig. 4 wiedergegeben. Im wesentlichen besteht die Auswerteelektronik 14 aus einem Mikrocomputer (/u C) 140. Dem /u C sind Vorrichtungen 141, 142, 143 und 144 zur Messung der Entfernung, des Sichtlinienwinkels, der Geschoßpendelung und der Rollrate vorgeschaltet. Aus der ermittelten Entfernung des Zieles, dem Sichtlinienwinkel und der daraus abgeleiteteten Sichtliniendrehgeschwindigkeit sowie der Rollrate und ggf. der Geschoßpendelung (Nick- und Gierbewegung) wird die Bahnkorrektur des Geschosses berechnet. Die entsprechenden Korrektursignale werden dann den Schubdüsen 16 und 17 zugeführt, so daß das Geschoß seine Flugbahn entsprechend ändern kann. Außerdem können die Entfernungsdaten für die Zündauslösung herangezogen werden.
  • Die Entfernungsmessung erfolgt vorzugsweise mit dem in der Publikation von R. S. Rogowsky et al "Proceedings of the International Society for Optical Engineering", vol. 663, page 86, beschriebenen Verfahren. Hierzu wird eine Methode verwendet, die in anologer Weise zur Entfernungsbestimmung beim FMCW-RADAR (frequency modulated continous wave) Anwendung findet. Die emittierte Laserstrahlung wird jedoch so moduliert, daß die Amplitude innerhalb einer vorgegebenen Periode linear in der Modulationsfrequenz ansteigt. Das Ausgangssignal und das vom Ziel reflektierte Laserlicht werden mit Hilfe eines Mischers überlagert. Durch den Laufzeitunterschied zwischen beiden Signalen entsteht am Ausgang des Mischers eine niederfrequente sog. Beatfrequenz, die der Entfernung proportional ist.
  • Im folgenden einige Anmerkungen zur Ermittlung des aktuellen Sichtlinienwinkels bzw. zur daraus abgeleiteten Sichtliniendrehgeschwindigkeit: Der Sichtlinienwinkel ist der Winkel zwischen Sichtlinie und Geschoßlängsdrehachse. Der Sichtlinienwinkel wird aus den elektrischen Betriebsparametern der akusto-optischen Ablenkeinheit abgeleitet derart, daß die zur Ablenkung des Laserstrahles notwendige Betriebsspannung proportional (linear oder quadratisch) zum Ablenkwinkel ist. Die Sichtliniendrehgeschwindigkeit folgt aus der zeitlichen Änderung des Sichtlinienwinkels und wird durch Differentiation erhalten, beispielsweise durch Auswertung zweier aufeinanderfolgender Geschoßdrehungen.
  • Zur Ermittlung der Rollrate kann beispielsweise ein Beschleunigungslaufnehmer 15 eingesetzt werden, mit dem aus der Radialbeschleunigung die Drehrate ω des Geschosses gemäß
    Figure imgb0001
    ermittelt wird, wobei br die Radialbeschleunigung und r der Abstand des Beschleunigungsaufnehmers 15 von der Drehachse des Geschosses bedeutet (vgl. auch Fig. 5).
  • Unter Umständen kann es erforderlich sein, eine Korrektur des Sichtlinienwinkels aufgrund von Geschoßpendelungen (Nick- und Gierbewegung) vorzunehmen. Dies kann entweder durch den Einsatz von Kreiseln oder von Beschleunigungsaufnehmern erfolgen. Der Sichtlinienwinkel ergibt sich dabei aus den allgemeinen bekannten Formeln der sog. Body Fixed Guidance.
  • Die Berechnung der Bahnkorrektur soll am Beispiel der vereinfachten Proportionalnavigation dargestellt werden. Für den Fall einer ebenen Flugbewegung ergibt sich folgende Beziehung für die Querbeschleunigung b mit der ein anfliegender Flugkörper ins Ziel gelenkt wird:

    b = k · v · ( dϑ/dt + q )
    Figure imgb0002


    dabei bedeuten
  • k
    eine Proportionalitätskonstante
    v
    die Fluggeschwindigkeit
    dϑ/dt
    die Sichtliniendrehgeschwindigkeit
    q
    die Nickwinkelgeschwindigkeit

    v wird dabei aus der zeitlichen Änderung des Abstandes von Geschoß und Ziel erhalten; die Sichtliniendrehgeschwindigkeit folgt aus der zeitlichen Änderung des Sichtlinienwinkels. Die Nickwinkelgeschwindigkeit kann entweder mit Hilfe der Kreiselsignale oder entsprechend angeordneter - hier nicht näher erläuterter Konfiguration von Beschleunigungsaufnehmern korrigiert werden. Für die im allgemeinen Fall auftretende Geschoßbewegung im Raum müssen zusätzlich Roll- und Gierbewegung einbezogen werden.
  • Die entsprechenden Korrektursignale werden den in Fig. 5 schematisch dargestellten Schubdüsen 16 und 17 zugeführt. Aus Fig. 5 geht ebenfalls die Lage der Scanebene 19 relativ zu den Schubdüsen sowie die Lage des Rollratesensors 15 hervor. Die Schubdüsen 16 und 17 werden vorzugsweise in einer durch den Schwerpunkt des Geschosses verlaufenden Linie angebracht. Vorzugsweise werden an sich bekannte Heißgas- oder Impulstriebwerke verwendet. Scanebene 19 und Schubdüsen 16 und 17 sind um den Winkel δ verdreht. Damit ergibt sich eine Vorhaltezeit τ, in der die Durchführung der Bahnkorrektur aus den Eingangsparametern erfolgen kann. Die Ermittelung der Zeit T zur Auslösung der Schubdüsen erfolgt bei festem Winkel δ aus - wie oben näher beschrieben - der mittels des Rollratesensors 15 gewonnenen Drehrate ω des Geschosses. Der Rollratesensor 15 wird dabei im Abstand r von der Drehachse des Geschosses angebracht.
  • Der Scanvorgang ist aus den Fig. 6 und 7 entnehmbar. Dabei ist mit 10 wiederum das rotierende Geschoß, mit 18 der Laserstrahl und mit 20 ein Ziel bezeichnet. Durch die Rotation des Geschosses mit der Winkelgeschwindigkeit ω im Bereich von 50 bis 200 Hz entsteht bei periodischer linearer Ablenkung des Laserstrahls im Zielbereich eine rosettenförmige Abtastfigur (vgl. Fig. 7), in der der Sichtlinienwinkel λ aus den Abtastparametern des akusto-optischen Moduls 123 (Fig. 2) und die Entfernung - wie oben näher beschrieben - ermittelt werden.
  • Bezugszeichenliste:
  • 10
    Geschoß
    10'
    Längsachse des Geschosses
    11
    Dom
    12
    Lasersende- und Scanmodul
    120
    Laser
    121
    Linsenoptik
    122
    elektro-optischer Modulator
    123
    akusto-optische Ablenkvorrichtung
    124
    Stromversorgungsquelle
    125
    Steuervorrichtung
    126
    Synchronisationsvorrichtung
    127
    Ansteuervorrichtung für 122
    128
    Ansteuervorrichtung für 123
    129
    elektrische Leitung
    129'
    elektrische Leitung
    13
    Empfangsmodul
    130
    Photodiode
    131
    Fokussieroptik
    132
    vom Ziel rückgestreutes Laserlicht
    133
    Signalvorverarbeitungsvorrichtung
    134
    elektrische Leitung
    14
    Auswerteelektronik
    140
    Rechner (/u C)
    141
    Vorrichtung zur Messung der Entfernung
    142
    Vorrichtung zur Messung des Sichtlinienwinkels
    143
    Vorrichtung zur Messung der Geschoßpendelung
    144
    Vorrichtung zur Messung der Rollrate
    145
    Schubdüsensteuervorrichtung u. Zündvorrichtung
    146
    elektrische Leitung
    147
    elektrische Leitung
    15
    Rollratesensor
    16
    radiale Schubdüse
    17
    radiale Schubdüse
    18
    Laserstrahl
    19
    Scanebene
    20
    Ziel
    21
    rosettenförmige Abtastfigur
    22
    Schubdüsenebene

Claims (4)

  1. Geschoß (10) mit einem bugseitig angeordneten IR-Zielsuchsystem (12, 13, 14) und Mitteln (16, 17) zur Flugkorrektur des Geschosses (10), wobei das Zielsuchsystem (12-14) zur Abtastung des Zielgebietes Ablenkvorrichtungen (123) aufweist, dadurch gekennzeichnet, daß das Geschoß (10) um seine Längsachse (10') rotiert, daß das Zielsuchsystem (12-14) einen Laser enthält, dem die Ablenkvorrichtung (123) nachgeschaltet ist, und daß die Ablenkvorrichtung (123) den Laserstrahl beim Abtastvorgang periodisch linear in einer festen, in der Geschoßachse (10') liegenden Scanebene (19) ablenkt, so daß aufgrund der Rotation des Geschosses (10) im Zielbereich eine rosettenförmige Abtastung (Fig. 7) erfolgt.
  2. Geschoß nach Anspruch 1, dadurch gekennzeichnet, daß als Ablenkvorrichtung des Laserstrahls (123) eine akusto-optische Ablenkvorrichtung verwendet wird.
  3. Geschoß nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß dem Laser (120) zusätzlich zur Ablenkvorrichtung (123) ein elektro-optischer Modulator (122) zur Amplitudenmodulation des Laserstrahles nachgeschaltet ist.
  4. Geschoß nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Mittel zur Kurskorrektur mindestens zwei Schubdüsen (16, 17) vorgesehen sind, die in einer fest vorgegebenen Ebene (22) relativ zur Scanebene (19) des Lasertrahles (18) angeordnet sind.
EP90119791A 1990-03-10 1990-10-16 Geschoss mit einem bugseitig angeordneten IR-Suchsystem Withdrawn EP0446413A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4007712 1990-03-10
DE4007712A DE4007712A1 (de) 1990-03-10 1990-03-10 Geschoss mit einem bugseitig angeordneten ir-suchsystem

Publications (1)

Publication Number Publication Date
EP0446413A1 true EP0446413A1 (de) 1991-09-18

Family

ID=6401936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119791A Withdrawn EP0446413A1 (de) 1990-03-10 1990-10-16 Geschoss mit einem bugseitig angeordneten IR-Suchsystem

Country Status (4)

Country Link
US (1) US5088659A (de)
EP (1) EP0446413A1 (de)
DE (1) DE4007712A1 (de)
IL (1) IL97230A0 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322709B1 (en) 1992-07-13 2001-11-27 Pall Corporation Automated method for processing biological fluid

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309295A1 (de) * 1992-06-29 1995-10-05 Daimler Benz Aerospace Ag Verfahren zur eigenständigen Steuerung eines lenkbaren und mit einem Gefechtskopf versehenen Flugkörpers und Anordnung zur Durchführung des Verfahrens
US5275354A (en) * 1992-07-13 1994-01-04 Loral Vought Systems Corporation Guidance and targeting system
US5424823A (en) * 1993-08-17 1995-06-13 Loral Vought Systems Corporation System for identifying flat orthogonal objects using reflected energy signals
US5669581A (en) * 1994-04-11 1997-09-23 Aerojet-General Corporation Spin-stabilized guided projectile
DE19706958C2 (de) * 1997-02-21 2001-11-08 Lfk Gmbh Schwenkbarer Sucher
WO2001016547A2 (en) * 1999-07-21 2001-03-08 Primex Technologies, Inc. Ring array projectile steering with optically-triggered diverter elements
US6817569B1 (en) 1999-07-21 2004-11-16 General Dynamics Ordnance And Tactical Systems, Inc. Guidance seeker system with optically triggered diverter elements
FR2797042B1 (fr) * 1999-07-30 2002-09-06 Aerospatiale Matra Missiles Procede et dispositif de guidage a balayage laser d'un missile vers une cible
KR100374323B1 (ko) * 2000-08-10 2003-03-03 최종수 로젯 주사 영상을 위한 클러스터링 방법
DE10153094A1 (de) * 2001-10-30 2003-05-15 Bodenseewerk Geraetetech Optischer Sensor mit einem Sensorstrahlengang und einem parallel zu der optischen Achse des Sensorstrahlenganges emittierenden Laserstrahler
UA63801A (en) * 2003-07-01 2004-01-15 Serhii Oleksandrovych Shumov Portable anti-aircraft rocket complex
WO2007089243A2 (en) * 2005-02-07 2007-08-09 Bae Systems Information And Electronic Systems Integration Inc. Optically guided munition control system and method
US7947937B1 (en) * 2007-10-19 2011-05-24 Langner F Richard Laser guided projectile device and method therefor
US8497457B2 (en) * 2010-12-07 2013-07-30 Raytheon Company Flight vehicles with improved pointing devices for optical systems
FR2974625B1 (fr) * 2011-04-28 2013-05-17 Mbda France Procede de gestion automatique d'un autodirecteur monte sur un engin volant, en particulier sur un missile
DE102013003660A1 (de) * 2013-03-02 2014-09-04 Mbda Deutschland Gmbh Optische Vorrichtung
US9568280B1 (en) * 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
US9222755B2 (en) * 2014-02-03 2015-12-29 The Aerospace Corporation Intercepting vehicle and method
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism
KR102619438B1 (ko) * 2016-12-15 2023-12-28 배 시스템즈 인포메이션 앤드 일렉트로닉 시스템즈 인티크레이션, 인크. 오프-축 타겟을 검출하기 위한 유도탄 시스템
GB2589006B (en) * 2019-10-09 2022-06-15 Mbda Uk Ltd Acousto-optic device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863262A (en) * 1973-03-21 1975-01-28 Datalight Inc Laser phototypesetter
US3935818A (en) * 1974-08-26 1976-02-03 The United States Of America As Represented By The Secretary Of The Army Combined fuze and guidance system for a missile
US3954228A (en) * 1965-11-16 1976-05-04 The United States Of America As Represented By The Secretary Of The Army Missile guidance system using an injection laser active missile seeker
US4024392A (en) * 1976-03-08 1977-05-17 The United States Of America As Represented By The Secretary Of The Navy Gimballed active optical system
US4180822A (en) * 1978-04-13 1979-12-25 Rca Corporation Optical scanner and recorder
US4347996A (en) * 1980-05-22 1982-09-07 Raytheon Company Spin-stabilized projectile and guidance system therefor
EP0120775A1 (de) * 1983-03-29 1984-10-03 Thomson-Csf Entfernungs- und Dopplermessung mittels einer Laseranordnung mit Pulszeitraffung
DE3519786A1 (de) * 1985-06-03 1986-12-04 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Optischer sucher mit rosettenabtastung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923547C2 (de) * 1979-06-09 1981-04-09 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Zielsuchvorrichtung für Flugkörper
US4516853A (en) * 1982-03-31 1985-05-14 United Technologies Corporation Laser radar adaptive tracking system
US4533094A (en) * 1982-10-18 1985-08-06 Raytheon Company Mortar system with improved round
US4504110A (en) * 1983-05-19 1985-03-12 Rockwell International Corporation Converging beam linear optical scanner
US4560120A (en) * 1983-08-19 1985-12-24 The United States Of America As Represented By The Secretary Of The Army Spin stabilized impulsively controlled missile (SSICM)
DE3675926D1 (de) * 1986-01-30 1991-01-10 Oerlikon Buehrle Ag Vorrichtung zum lenken eines flugkoerpers.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954228A (en) * 1965-11-16 1976-05-04 The United States Of America As Represented By The Secretary Of The Army Missile guidance system using an injection laser active missile seeker
US3863262A (en) * 1973-03-21 1975-01-28 Datalight Inc Laser phototypesetter
US3935818A (en) * 1974-08-26 1976-02-03 The United States Of America As Represented By The Secretary Of The Army Combined fuze and guidance system for a missile
US4024392A (en) * 1976-03-08 1977-05-17 The United States Of America As Represented By The Secretary Of The Navy Gimballed active optical system
US4180822A (en) * 1978-04-13 1979-12-25 Rca Corporation Optical scanner and recorder
US4347996A (en) * 1980-05-22 1982-09-07 Raytheon Company Spin-stabilized projectile and guidance system therefor
EP0120775A1 (de) * 1983-03-29 1984-10-03 Thomson-Csf Entfernungs- und Dopplermessung mittels einer Laseranordnung mit Pulszeitraffung
DE3519786A1 (de) * 1985-06-03 1986-12-04 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Optischer sucher mit rosettenabtastung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322709B1 (en) 1992-07-13 2001-11-27 Pall Corporation Automated method for processing biological fluid

Also Published As

Publication number Publication date
IL97230A0 (en) 1992-05-25
DE4007712A1 (de) 1991-09-12
US5088659A (en) 1992-02-18

Similar Documents

Publication Publication Date Title
EP0446413A1 (de) Geschoss mit einem bugseitig angeordneten IR-Suchsystem
DE2648873C2 (de)
DE8790064U1 (de) Feuerleiteinrichtung für Geschütze
EP0331804B1 (de) Endphasengelenktes Geschoss
DE2746518C3 (de) Verfahren zum Korrigieren der Ausrichtung einer optischen Strahlungsquelle auf einen mittels einer Visier- oder Zieleinrichtung beobachteten Zielgegenstand und Vorrichtung zum Durchführen des Verfahrens
EP0924490B1 (de) Suchkopf für zielverfolgende Flugkörper
DE3120447A1 (de) Lenksystem fuer spinstabilisierte geschosse
DE2544975A1 (de) Feuerleitsystem
DE2947492A1 (de) Lenkverfahren fuer flugkoerper
DE3442598C2 (de) Leitsystem für Flugkörper
DE3615266C2 (de)
DE4443134C2 (de) Sensoreinrichtung für einen Flugkörper
DE19611595A1 (de) Suchkopf für Flugkörper oder Geschosse
DE2853695C2 (de) Vorrichtung zum selbsttätigen Nachführen eines Laserstrahls
DE3435634C2 (de)
DE2332158A1 (de) Leitsystem fuer flugzeugabwehrraketen
DE2908231A1 (de) Co tief 2 -laser-zielortungs- und flugkoerperlenkverfahren
DE3500282C1 (de) Richtoptik für die Leitstrahllenkung eines Flugkörpers, insbesondere einer Lenkwaffe
DE19824899C1 (de) Zielsuchkopf und Verfahren zur Zielerkennung- und Verfolgung mittels des Zielsuchkopfes
DE4108057C2 (de)
EP0727638A1 (de) Verfahren und Vorrichtung zur Bekämpfung verdeckt operierender Hubschrauber
DE3720013C2 (de) Flugkörper-Lenksystem
DE2252301C2 (de) Vorrichtung für die Stabilisierung des Zielens und Richtens eines beweglichen Organs
DE60023007T2 (de) Geschosslenkung mittels einer ringanordnung und optisch ausgelösten ablenkvorrichtungen
DE4223531A1 (de) Einrichtung zur Stützung und Re-Initialisierung eines Trägheitsreferenzsystems in einem Flugkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19910822

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920309