EP0330858B1 - Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750oC - Google Patents

Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750oC Download PDF

Info

Publication number
EP0330858B1
EP0330858B1 EP89101901A EP89101901A EP0330858B1 EP 0330858 B1 EP0330858 B1 EP 0330858B1 EP 89101901 A EP89101901 A EP 89101901A EP 89101901 A EP89101901 A EP 89101901A EP 0330858 B1 EP0330858 B1 EP 0330858B1
Authority
EP
European Patent Office
Prior art keywords
rate
heating
argon atmosphere
auf
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89101901A
Other languages
English (en)
French (fr)
Other versions
EP0330858A1 (de
Inventor
Peter James Dr. Lawrence
Mohamed Dr. Nazmy
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0330858A1 publication Critical patent/EP0330858A1/de
Application granted granted Critical
Publication of EP0330858B1 publication Critical patent/EP0330858B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • Superalloys based on nickel which thanks to their excellent mechanical properties at high temperatures are used in the construction of thermally and mechanically highly stressed thermal machines. Preferred use as blade materials for gas turbines.
  • the invention relates to the further development of nickel-based superalloys with a focus on cast alloys for directional solidification.
  • It also relates to a method for producing a component from the precipitation-hardenable nickel-based superalloy by melting, pouring and pouring the alloy their crystallites are forced to solidify and then subjected to heat treatment.
  • the alloy with the trade name IN 738 from INCO is frequently used. It has the following composition:
  • this alloy does not meet the long-term creep strength requirements placed on industrial gas turbines. In addition, it contains not insignificant amounts of the expensive strategic metal cobalt.
  • the alloy with the trade name IN 792 from INCO should be mentioned as a further commercial nickel-based casting superalloy used in gas turbine construction. It has the following composition:
  • This alloy is also unsatisfactory in terms of its creep behavior under long-term stress. In addition, their corrosion resistance in the temperature range of interest is rather at the lower limit.
  • the invention has for its object to provide a precipitation-hardenable nickel-based superalloy which has improved mechanical properties such as heat resistance, creep limit etc. in the temperature range from 600 ° C to 750 ° C while maintaining sufficient corrosion resistance.
  • the alloy is said to be particularly suitable for cast components with directional solidification for long-term use of over 10,000 hours. It is also an object of the invention to provide a heat treatment for cast components with directed Specify solidification, which guarantees optimal mechanical properties.
  • the nickel-base superalloy mentioned at the outset has the following composition:
  • 1 shows a temperature / time diagram of the heat treatment for a first alloy. 1 is the course of the temperature as a function of time for a gradual solution annealing.
  • the heating up to 1100 ° C is not critical and can be done arbitrarily.
  • a heating rate of 30 ° C / h is maintained from 1100 ° C to 1220 ° C.
  • the temperature of 1220 ° C is maintained for 2 h, then the temperature is raised to 1280 ° C at 30 ° C / h. This temperature is maintained for 10 hours (super solution annealing). Then it is rapidly cooled to room temperature.
  • Line 4 shows the course of the temperature as a function of time for one-stage aging at 850 ° C./24 h, as is usually done in practice instead of the two-stage for the sake of simplicity.
  • FIG. 2 shows a diagram of the heat treatment for a second alloy.
  • the process sequence is the same up to the super solution annealing temperature of 1270 ° C. as that according to FIG. 1.
  • 5 is the temperature as a function of the time for solution annealing, 6 and 7 that for two-stage aging, 8 that for one-stage aging.
  • Curves 6, 7, 8 correspond exactly to curves 2, 3, 4 in FIG. 1.
  • FIG. 3 shows a diagram of the creep behavior of a component made of a first alloy at a temperature of 700 ° C.
  • the results relate to a test rod (tensile test) made from a cast workpiece with directed solidification.
  • 9 is the tensile stress tolerated as a function of the load time until break at a temperature of 700 ° C.
  • the dashed curve refers to extrapolated values.
  • the alloy can withstand approx. 1000 MPa in a short-term test. Measured over 1000 h, the alloy can withstand a tensile load of approx. 700 MPa.
  • a nickel-based superalloy with the following composition was produced:
  • test bars for the creep tests have now been worked out from the heat-treated bars.
  • the test bars had a diameter of 6 mm and a length of 60 mm.
  • the creep tests were carried out under constant tensile stress until breaking at a constant temperature of 700 ° C.
  • the results are shown in curve 9 of FIG. 3. From this representation it can be seen that the values from a load time up to a break of 500 h upwards are approx. 130 MPa higher than that of the commercial alloy IN 738. At the same time until the fracture, the component made from the new alloy can withstand significantly higher loads. If one considers the times to break to be borne with unchanged loading of less than 650 MPa, these are around a power of ten higher for the new alloy than for IN 738. 5000 h instead of just 500 h; 10000 h instead of just 1000 h.
  • a nickel-based superalloy with the following composition was produced:
  • Test rods 6 mm in diameter and 60 mm in length were worked out from the heat-treated rods for the creep tests. The latter were carried out analogously to Example 1 at a temperature of 700 ° C. The results are shown in curve 10 of FIG. 4. The curves 10 (Fig. 4) and 9 (Fig. 3) practically coincide. The statements made in Example 1 apply here in full.
  • the invention is not limited to the exemplary embodiments.
  • the composition of the new precipitation-hardenable nickel-based superalloy is within the following limits:
  • the advantages of the new alloy are the better creep behavior in the temperature range of 600 to 750 ° C compared to commercially available nickel-based casting super alloys.
  • the new alloy permits an increase in the permanent load with the same service life or up to 10 times longer use with an otherwise identical load compared to commercial alloys, and this with sufficient corrosion resistance under the specified conditions of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Eyeglasses (AREA)

Description

    Technisches Gebiet
  • Superlegierungen auf der Basis von Nickel, welche dank ihrer hervorragenden mechanischen Eigenschaften bei hohen Temperaturen beim Bau thermisch und mechanisch hochbeanspruchter thermischer Maschinen Verwendung finden. Bevorzugte Verwendung als Schaufelwerkstoffe für Gasturbinen.
  • Die Erfindung bezieht sich auf die Weiterentwicklung von Nickelbasis-Superlegierungen mit Schwergewicht auf Gusslegierungen für gerichtete Erstarrung.
  • Insbesondere betrifft sie eine ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750 °C.
  • Sie betrifft ferner ein Verfahren zur Herstellung eines Bauteils aus der ausscheidungshärtbaren Nickelbasis-Superlegierung, indem die Legierung geschmolzen, abgegossen und ihre Kristallite zu gerichteter Erstarrung gezwungen werden und daraufhin einer Wärmebehandlung unterworfen werden.
  • Stand der Technik
  • Zum Stand der Technik wird folgende Literatur zitiert:
    • Robert W. Fawley, Superalloy progress, The Superalloys p. 3-29, edited by Chester T. Sims and William C. Hagel, John Wiley and Sons, New York 1972
    • Michio Yamazaki, Development of Nickel-base Superalloys for National Project in Japan, High temperature alloys for gas turbines and other applications 1986, p. 945-953, Proceedings of a conference held in Liège, Belgium, 6-9 October 1986, D. Reidel publishing company, Dordrecht.
  • Unter den kommerziell erhältlichen Nickelbasis-GUSS-Superlegierungen wird die Legierung mit dem Handelsnamen IN 738 von INCO häufig verwendet. Sie hat die nachfolgende Zusammensetzung:
    Figure imgb0001
  • Diese Legierung genügt vielfach den an industrielle Gasturbinen gestellten Langzeitanforderungen bezüglich Kriechfestigkeit nicht. Ausserdem enthält sie nicht unbedeutende Mengen des teuren strategischen Metalls Kobalt.
  • Als weitere, im Gasturbinenbau verwendete kommerzielle Nickelbasis-Guss-Superlegierung ist die Legierung mit dem Handelsnamen IN 792 von INCO zu nennen. Sie hat folgende Zusammensetzung:
    Figure imgb0002
  • Auch diese Legierung befriedigt in Bezug auf ihr Kriechverhalten bei Langzeitbeanspruchung nicht. Ausserdem liegt ihre Korrosionsbeständigkeit im interessierenden Temperaturbereich eher an der unteren Grenze.
  • Es besteht daher ein Bedürfnis nach Verbesserung der bestehenden Legierungen insbesondere im Hinblick auf den Langzeiteinsatz.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, eine ausscheidungshärtbare Nickelbasis-Superlegierung anzugeben, welche im Temperaturbereich von 600 °C bis 750 °C unter Wahrung ausreichender Korrosionsbeständigkeit verbesserte mechanische Eigenschaften wie Warmfestigkeit, Kriechgrenze etc. aufweist. Die Legierung soll sich insbesondere für gegossene Bauteile mit gerichteter Erstarrung für einen Langzeiteinsatz von über 10'000 h eignen. Es ist ferner Aufgabe der Erfindung, eine Wärmebehandlung für gegossene Bauteile mit gerichteter Erstarrung anzugeben, welche optimale mechanische Eigenschaften gewährleistet.
  • Diese Aufgabe wird dadurch gelöst, dass die eingangs erwähnte Nickelbasis-Superlegierung die nachfolgende Zusammensetzung aufweist:
    Figure imgb0003
  • Die Aufgabe wird ferner dadurch gelöst, dass im eingangs erwähnten Verfahren die Wärmebehandlung aus den nachfolgenden Verfahrensschritten besteht:
    • a) Erwärmen auf 1100 °C unter Argonatmosphäre
    • b) Halten auf 1100 °C während 10 h
    • c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
    • d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
    • e) Erwärmen auf 1270 bis 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
    • f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
    • g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • h) Erwärmen auf 850 °C
    • i) Halten auf 850 °C während 4 h in Luft
    • k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • l) Erwärmen auf 760 °C
    • m) Halten auf 760 °C während 16 h in Luft
    • n) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von 10 °C/min.
    Weg zur Ausführung der Erfindung
  • Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
    Dabei zeigt:
    • Fig. 1 ein Diagramm der Wärmebehandlung für eine erste Legierung,
    • Fig. 2 ein Diagramm der Wärmebehandlung für eine zweite Legierung,
    • Fig. 3 ein Diagramm des Kriechverhaltens eines Bauteils aus einer ersten Legierung bei einer Temperatur von 700 °C,
    • Fig. 4 ein Diagramm des Kriechverhaltens eines Bauteils aus einer zweiten Legierung bei einer Temperatur von 700 °C.
  • In Fig. 1 ist ein Temperatur/Zeit-Diagramm der Wärmebehandlung für eine erste Legierung dargestellt. 1 ist der Verlauf der Temperatur in Funktion der Zeit für ein stufenweises Lösungsglühen. Die Erwärmung bis 1100 °C ist nicht kritisch und kann beliebig erfolgen. Von 1100 °C bis 1220 °C wird eine Erwärmungsgeschwindigkeit von 30 °C/h eingehalten. Die Temperatur von 1220 °C wird während 2 h gehalten, dann wird mit 30 °C/h auf 1280 °C erwärmt. Diese Temperatur wird während 10 h gehalten (Superlösungsglühung). Dann wird rasch auf Raumtemperatur abgekühlt. 2 zeigt den Verlauf der Temperatur in Funktion der Zeit für das Altern (Ausscheidungshärten), 1. Stufe bei 850 °C/4 h, 3 denjenigen für das Altern, 2. Stufe bei 760 °C/16 h. Linie 4 stellt den Verlauf der Temperatur in Funktion der Zeit für ein einstufiges Altern bei 850 °C/24 h dar, wie es meistens der Einfachheit halber in der Praxis an Stelle des zweistufigen durchgeführt wird.
  • Fig. 2 stellt ein Diagramm der Wärmebehandlung für eine zweite Legierung dar. Der Verfahrensablauf ist bis auf die Super-Lösungsglühtemperatur von 1270 °C der gleiche wie derjenige gemäss Fig. 1. 5 ist die Temperatur in Funktion der Zeit für das Lösungsglühen, 6 und 7 diejenige für das zweistufige, 8 diejenige für das einstufige Altern. Die Kurven 6, 7, 8 entsprechend genau den Kurven 2, 3, 4 in Fig. 1.
  • In Fig. 3 ist ein Diagramm des Kriechverhaltens eines Bauteils aus einer ersten Legierung bei einer Temperatur von 700 °C dargestellt. Die Ergebnisse beziehen sich auf einen aus einem gegossenen Werkstück mit gerichteter Erstarrung herausgearbeiteten Probestab (Zugprobe). 9 ist die ertragene Zugspannung in Funktion der Belastungszeit bis zum Bruch bei einer Temperatur von 700 °C. Die gestrichelte Kurve bezieht sich auf extrapolierte Werte. Im Kurzzeitversuch hält die Legierung ca. 1000 MPa aus. Ueber 1000 h gemessen hält die Legierung noch eine Zugbelastung von ca. 700 MPa aus.
  • Fig. 4 stellt ein Diagramm des Kriechverhaltens eines Bauteils aus einer zweiten Legierung bei einer Temperatur von 700 °C dar. Es handelt sich wieder um einen Probestab mit gerichteter Erstarrung. Die ertragenen Zugspannungen sind im wesentlichen die gleichen wie diejenigen der ersten Legierung gemäss Fig. 3. Kurve 10 entspricht Kurve 9 in Fig. 3.
  • Ausführungsbeispiel 1:
  • Siehe Fig. 1 und 3!
  • Es wurde eine Nickelbasis-Superlegierung der nachfolgenden Zusammensetzung hergestellt:
    Figure imgb0004
    Figure imgb0005
  • Als Ausgangsmaterialien wurden geeignete Vorlegierungen verwendet. Diese wurden im üblichen Verhältnis in einen Vakuumofen eingesetzt und geschmolzen. Dabei erreichte die Schmelze eine Temperatur von ca. 1500 °C. Die Schmelze wurde unter Vakuum abgegossen und der Barren nochmals unter Vakuum umgeschmolzen. Dann wurde die Schmelze unter Vakuum in eine längliche Form aus keramischem Material für gerichtete Erstarrung vergossen. Die so erhaltenen Stäbe hatten einen Durchmesser von 12 mm und eine Länge von 140 mm. Die ganzen Stäbe wurden nun einer Wärmebehandlung unter Argonatmosphäre nach folgendem Schema unterworfen (siehe Fig. 1):
    • a) Erwärmen auf 1100 °C unter Argonatmosphäre
    • b) Halten auf 1100 °C während 10 h
    • c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
    • d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
    • e) Erwärmen auf 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
    • f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
    • g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • h) Erwärmen auf 850 °C
    • i) Halten auf 850 °C während 4 h in Luft
    • k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • l) Erwärmen auf 760 °C
    • m) Halten auf 760 °C während 16 h in Luft
    • n) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min.
  • Aus den wärmebehandelten Stäben wurden nun zahlreiche Probestäbe für die Kriechversuche herausgearbeitet. Die Probestäbe hatten einen Durchmesser von 6 mm und eine Länge von 60 mm. Die Kriechversuche wurden unter konstanter Zugspannung bis zum Bruch bei einer konstanten Temperatur von 700 °C durchgeführt. Die Resultate sind in Kurve 9 der Fig. 3 dargestellt. Aus dieser Darstellung geht hervor, dass die Werte ab einer Belastungszeit bis zum Bruch von 500 h an aufwärts um ca. 130 MPa über denjenigen der kommerziellen Legierung IN 738 liegen. Bei gleicher Zeit bis zum Bruch kann daher das Bauteil aus der neuen Legierung wesentlich höhere Belastungen ertragen. Betrachtet man die bei unveränderter Belastung von weniger als 650 MPa zu ertragenden Zeiten bis zum Bruch, so liegen diese für die neue Legierung um rund eine Zehnerpotenz höher als bei IN 738. Z.B. 5000 h statt nur 500 h; 10000 h statt nur 1000 h.
  • Ausführungsbeispiel 2:
  • Siehe Fig. 2 und 4!
  • Es wurde eine Nickelbasis-Superlegierung der nachfolgenden Zusammensetzung hergestellt:
    Figure imgb0006
  • Bei der Erschmelzung der Legierung wurde genau gleich wie unter Beispiel 1 vorgegangen. Die Schmelze wurde zur gerichteten Erstarrung in eine entsprechende Keramikform abgegossen. Die auf diese Weise hergestellten Stäbe von 12 mm Durchmesser und 140 mm Länge wurden unter Argonatmosphäre einer Wärmebehandlung gemäss Fig. 2 wie folgt unterworfen:
    • a) Erwärmen auf 1100 °C unter Argonatmosphäre
    • b) Halten auf 1100 °C während 10 h
    • c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
    • d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
    • e) Erwärmen auf 1270 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
    • f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
    • g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • h) Erwärmen auf 850 °C
    • i) Halten auf 850 °C während 24 h in Luft
    • k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von 10 °C/min.
  • Aus den wärmebehandelten Stäben wurden Probestäbe von 6 mm Durchmesser und 60 mm Länge für die Kriechversuche herausgearbeitet. Letztere wurden analog Beispiel 1 bei einer Temperatur von 700 °C durchgeführt. Die Resultate sind in Kurve 10 der Fig. 4 dargestellt. Die Kurven 10 (Fig. 4) und 9 (Fig. 3) decken sich praktisch. Es gilt hier das unter Beispiel 1 Gesagte vollumfänglich.
  • Die Erfindung erschöpft sich nicht in den Ausführungsbeispielen. Die Zusammensetzung der neuen ausscheidungshärtbaren Nickelbasis-Superlegierung bewegt sich in den folgenden Grenzen:
    Figure imgb0007
    Figure imgb0008
  • Das Herstellungsverfahren für ein Bauteil aus der ausscheidungshärtbaren Nickelbasis-Superlegierung besteht darin, dass die Legierung geschmolzen, abgegossen und ihre Kristallite zu gerichteter Erstarrung gezwungen werden und daraufhin einer Wärmebehandlung unterworfen werden, welche aus den nachfolgenden Verfahrensschritten besteht:
    • a) Erwärmen auf 1100 °C unter Argonatmosphäre
    • b) Halten auf 1100 °C während 10 h
    • c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
    • d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
    • e) Erwärmen auf 1270 bis 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
    • f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
    • g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • h) Erwärmen auf 850 °C
    • i) Halten auf 850 °C während 4 h in Luft
    • k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • l) Erwärmen auf 760 °C
    • m) Halten auf 760 °C während 16 h in Luft
    • n) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min.
  • Als Variante wird die Wärmebehandlung wie folgt durchgeführt
    • a) Erwärmen auf 1100 °C
    • b) Halten auf 1100 °C während 10 h
    • c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
    • d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
      Figure imgb0009

      Als typische Vertreter dieser Legierungsklasse eignen sich die nachfolgenden beiden Legierungen:
      Figure imgb0010
      oder:
      Figure imgb0011
    • e) Erwärmen auf 1270 bis 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
    • f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
    • g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
    • h) Erwärmen auf 850 °C
    • i) Halten auf 850 °C während 24 h in Luft
    • k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von 10 °C/min.
  • Die Vorteile der neuen Legierung bestehen im besseren Kriechverhalten im Temperaturbereich von 600 bis 750 °C gegenüber kommerziell erhältlichen Nickelbasis-Guss-Superlegierungen. Die neue Legierung gestattet eine Erhöhung der Dauerbelastung bei gleicher Lebensdauer oder einen bis 10-fach zeitlich längeren Einsatz bei sonst gleicher Belastung gegenüber kommerziellen Legierungen, und dies bei hinreichender Korrosionsbeständigkeit unter den genannten Einsatzbedingungen.

Claims (7)

1. Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750 °C, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:
Figure imgb0012
2. Ausscheidungshärtbare Nickelbasis-Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:
Figure imgb0013
3. Ausscheidungshärtbare Nickelbasis-Superlegierung nach Anspruch 2, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:
Figure imgb0014
4. Ausscheidungshärtbare Nickelbasis-Superlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:
Figure imgb0015
5. Ausscheidungshärtbare Nickelbasis-Superlegierung nach Anspruch 4, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:
Figure imgb0016
6. Verfahren zur Herstellung eines Bauteils aus der ausscheidungshärtbaren Nickelbasis-Superlegierung gemäss einem der vorangegangenen Ansprüche, indem die Legierung geschmolzen, abgegossen und ihre Kristallite zu gerichteter Erstarrung gezwungen werden und daraufhin einer Wärmebehandlung unterworfen werden, dadurch gekennzeichnet, dass die Wärmebehandlung aus den nachfolgenden Verfahrensschritten besteht:
a) Erwärmen auf 1100 °C unter Argonatmosphäre
b) Halten auf 1100 °C während 10 h
c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
e) Erwärmen auf 1270 bis 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
h) Erwärmen auf 850 °C
i) Halten auf 850 °C während 4 h in Luft
k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
l) Erwärmen auf 760 °C
m) Halten auf 760 °C während 16 h in Luft
n) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min.
7. Verfahren zur Herstellung eines Bauteils aus der ausscheidungshärtbaren Nickelbasis-Superlegierung gemäss einem der Ansprüche 1 bis 5, indem die Legierung geschmolzen, abgegossen und ihre Kristallite zu gerichteter Erstarrung gezwungen werden und daraufhin einer Wärmebehandlung unterworfen werden, dadurch gekennzeichnet, dass die Wärmebehandlung aus den nachfolgenden Verfahrensschritten besteht:
a) Erwärmen auf 1100 °C unter Argonatmosphäre
b) Halten auf 1100 °C während 10 h
c) Erwärmen auf 1220 °C mit einer Geschwindigkeit von 30 °C/h
d) Halten auf 1220 °C während 2 h unter Argonatmosphäre
e) Erwärmen auf 1270 bis 1280 °C mit einer Geschwindigkeit von 30 °C/h unter Argonatmosphäre
f) Halten auf 1280 °C während 10 h unter Argonatmosphäre
g) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min
h) Erwärmen auf 850 °C
i) Halten auf 850 °C während 4 h in Luft
k) Abkühlen auf Raumtemperatur mit einer Geschwindigkeit von mindestens 10 °C/min.
EP89101901A 1988-03-02 1989-02-03 Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750oC Expired - Lifetime EP0330858B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH755/88 1988-03-02
CH755/88A CH675256A5 (de) 1988-03-02 1988-03-02

Publications (2)

Publication Number Publication Date
EP0330858A1 EP0330858A1 (de) 1989-09-06
EP0330858B1 true EP0330858B1 (de) 1992-05-20

Family

ID=4194437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89101901A Expired - Lifetime EP0330858B1 (de) 1988-03-02 1989-02-03 Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750oC

Country Status (8)

Country Link
US (1) US4957703A (de)
EP (1) EP0330858B1 (de)
JP (1) JP2825836B2 (de)
AU (1) AU610996B2 (de)
CA (1) CA1334632C (de)
CH (1) CH675256A5 (de)
DE (1) DE58901443D1 (de)
NO (1) NO172812C (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489346A (en) * 1994-05-03 1996-02-06 Sps Technologies, Inc. Hot corrosion resistant single crystal nickel-based superalloys
JP2905473B1 (ja) 1998-03-02 1999-06-14 科学技術庁金属材料技術研究所長 Ni基一方向凝固合金の製造方法
ES2269013B2 (es) * 2006-12-01 2007-11-01 Industria De Turbo Propulsores, S.A. Superaleaciones monocristalinas y solidificadas direccionalmente de baja densidad.
JP5038990B2 (ja) * 2008-08-07 2012-10-03 株式会社東芝 ガスタービン部品の熱処理方法及び補修方法並びにガスタービン部品
JP5063550B2 (ja) * 2008-09-30 2012-10-31 株式会社日立製作所 ニッケル基合金及びそれを用いたガスタービン翼
JP5396445B2 (ja) * 2011-08-29 2014-01-22 株式会社日立製作所 ガスタービン

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1275562A (fr) * 1960-11-02 1961-11-10 Mond Nickel Co Ltd Alliages résistant au fluage
US3146136A (en) * 1961-01-24 1964-08-25 Rolls Royce Method of heat treating nickel base alloys
US3310440A (en) * 1964-10-21 1967-03-21 United Aircraft Corp Heat treatment of nickel base alloys
DE2741271A1 (de) * 1976-12-16 1978-06-22 Gen Electric Superlegierung auf nickelbasis sowie gusskoerper daraus
CA1117320A (en) * 1977-05-25 1982-02-02 David N. Duhl Heat treated superalloy single crystal article and process
GB2071695A (en) * 1980-03-13 1981-09-23 Rolls Royce An alloy suitable for making single-crystal castings and a casting made thereof
CH654593A5 (de) * 1983-09-28 1986-02-28 Bbc Brown Boveri & Cie Verfahren zur herstellung eines feinkoernigen werkstuecks aus einer nickelbasis-superlegierung.
DE3683091D1 (de) * 1985-05-09 1992-02-06 United Technologies Corp Schutzschichten fuer superlegierungen, gut angepasst an die substrate.
JPS6152339A (ja) * 1985-07-16 1986-03-15 Natl Res Inst For Metals Ni基耐熱合金
US4814023A (en) * 1987-05-21 1989-03-21 General Electric Company High strength superalloy for high temperature applications
US4830934A (en) * 1987-06-01 1989-05-16 General Electric Company Alloy powder mixture for treating alloys

Also Published As

Publication number Publication date
US4957703A (en) 1990-09-18
EP0330858A1 (de) 1989-09-06
NO172812B (no) 1993-06-01
NO890874D0 (no) 1989-03-01
AU610996B2 (en) 1991-05-30
NO890874L (no) 1989-09-04
DE58901443D1 (de) 1992-06-25
NO172812C (no) 1993-09-08
CA1334632C (en) 1995-03-07
AU3084989A (en) 1989-09-07
CH675256A5 (de) 1990-09-14
JP2825836B2 (ja) 1998-11-18
JPH02149627A (ja) 1990-06-08

Similar Documents

Publication Publication Date Title
DE3445767C2 (de)
EP2075349B1 (de) Titanaluminidlegierungen
DE3445768C2 (de)
EP0513407A1 (de) Verfahren zur Herstellung einer Turbinenschaufel
DE69903224T2 (de) Monokristalline Superlegierung auf Nickelbasis mit hoher Gamma-prime-phase
DE1935329B2 (de) Verfahren zur Herstellung von Werkstücken aus dispersionsverstärkten Metallen oder Legierungen
EP0025481A1 (de) Verfahren zur Herstellung von Gussstücken durch Präzisionsgiessen
DE2230317A1 (de) Verfahren zum giessen von metallgegenstaenden
DE4219469A1 (de) Hohen Temperaturen aussetzbares Bauteil, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils
EP0574708B1 (de) Bauteil für hohe Temperaturen, insbesondere Turbinenschaufeln, und Verfahren zur Herstellung dieses Bauteils
DE19756354B4 (de) Schaufel und Verfahren zur Herstellung der Schaufel
DE69800263T2 (de) Nickelbasis Legierung aus stengelförmigen Kristallen mit guter Hochtemperaturbeständigkeit gegen interkristalline Korrosion, Verfahren zur Herstellung der Legierung, grosses Werkstück, sowie Verfahren zur Herstellung eines grossen Werkstückes aus dieser Legierung
EP0330858B1 (de) Ausscheidungshärtbare Nickelbasis-Superlegierung mit verbesserten mechanischen Eigenschaften im Temperaturbereich von 600 bis 750oC
EP0274631B1 (de) Verfahren zur Erhöhung der Duktilität eines in groben Längsgerichteten stengelförmigen Kristalliten vorliegenden Werkstücks aus einer oxyddispersiongsgehärteten Nickelbasis-Superlegierung bei Raumtemperatur
DE3542882C2 (de)
EP0774526A1 (de) Eisen-Nickel-Superlegierung vom Typ IN 706
DE2649529A1 (de) Umformbare legierung auf kobalt- nickel-chrom-basis und verfahren zu seiner herstellung
DE3731598C1 (de) Verfahren zur Waermebehandlung von Nickel-Gusslegierungen
EP0346645B1 (de) Verwendung einer aushärtbaren Kupferlegierung
EP0172852B1 (de) Hitzebeständige molybdän-legierung
EP0398121B1 (de) Verfahren zur Erzeugung grober längsgerichteter Stengelkristalle in einer oxyddispersionsgehärteten Nickelbasis-Superlegierung
EP0249740B1 (de) Verwendung einer Kupferlegierung
EP0250001B1 (de) Kupferlegierung
DE69916763T2 (de) Verfahren zur Herstellung von wärmebehandelten, sprühgegossesen Superlegierungsgegenstände
DE2034609A1 (de) In der Warme bearbeitbire Legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900222

17Q First examination report despatched

Effective date: 19911024

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 58901443

Country of ref document: DE

Date of ref document: 19920625

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89101901.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010115

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010205

Year of fee payment: 13

Ref country code: FR

Payment date: 20010205

Year of fee payment: 13

Ref country code: DE

Payment date: 20010205

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010213

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020115

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

BERE Be: lapsed

Owner name: ALSTOM

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

EUG Se: european patent has lapsed

Ref document number: 89101901.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BECA Be: change of holder's address

Free format text: 20020130 *ALSTOM:AVENUE KLEBER 25, 75116 PARIS

BECH Be: change of holder

Free format text: 20020130 *ALSTOM

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030203

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050203