EP0328126A2 - Méthode et dispositif pour trier des déchets de verre - Google Patents
Méthode et dispositif pour trier des déchets de verre Download PDFInfo
- Publication number
- EP0328126A2 EP0328126A2 EP89102317A EP89102317A EP0328126A2 EP 0328126 A2 EP0328126 A2 EP 0328126A2 EP 89102317 A EP89102317 A EP 89102317A EP 89102317 A EP89102317 A EP 89102317A EP 0328126 A2 EP0328126 A2 EP 0328126A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fragments
- glass
- light
- color
- slides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims description 26
- 239000012634 fragment Substances 0.000 claims abstract description 172
- 239000002699 waste material Substances 0.000 claims abstract description 29
- 238000010521 absorption reaction Methods 0.000 claims abstract description 20
- 238000003860 storage Methods 0.000 claims abstract description 19
- 238000001514 detection method Methods 0.000 claims description 25
- 238000011156 evaluation Methods 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 8
- 239000005315 stained glass Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 6
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/3416—Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
Definitions
- the invention relates to a method and a device for sorting waste glass.
- Waste glass is usually in a mixture of different colored glass. A separation into the different color components is necessary for an economical recycling of the old glass. This applies in particular to colorless waste glass, since even small amounts of colored glass, such as green or brown glass, preclude recycling for the production of objects made of colorless glass. It is also important that when sorting waste glass, the non-glass components such as porcelain, earthenware or ceramic parts are also safely sorted out.
- the invention has for its object to remedy this situation and to develop a method of the type mentioned in such a way that with high utilization of the waste glass obtained a significantly better, i.e. glass of different colors is separated more securely.
- the waste glass parts such as bottles, glasses and the like, as well as the fragments, are comminuted according to the invention, so that they have a maximum edge length which, in the known methods, is already in the region of the lower limit or below it. This crushing of the old glass parts or fragments creates fragments that are mostly flat and roughly flat and sorted according to their size.
- the absorption measurement provides a value which, based on an undisturbed normal level achieved in the absence of glass fragments, characterizes the amount of light which does not remain in the waste glass fragment due to absorption or other losses.
- the second alternative for a method according to the invention is characterized in that the fragments of each fraction for identifying the color and light transmission are exposed individually or several times to light transmitters and receivers which are effective in two different levels and in dependence on the respective mean value of the light flow are fed to the sorting containers via the separate conveyors.
- the fragments are fed to the respective color recognition units according to fractions of the different sized fragments on slides.
- their movement on the slides to identify their color is stopped in their movement and then either released on the same slide or transferred to another slide and forwarded to the respective sorting containers for the different types of glass.
- the fragments are not braked, but rather a continuous measurement.
- the fragments have relatively small dimensions, only slides with correspondingly small dimensions are required. A plurality of slides can thus be connected to the respective storage container without difficulty, so that a high throughput can be achieved by the parallel operation of the slides. Because the fragments due to their heaviness are moved forcefully along the inclined slides, the energy expenditure for conveying the fragments is kept small.
- the different fractions of the fragments can be sorted simultaneously and separated into common sorting containers according to the color of the fragments, so that there again fragments of different dimensions but the same glass color to be collected.
- Non-glass components can be safely separated from the glass fragments due to their opacity and can be collected in a separate container.
- a cleaning device can be provided between the classifier and the crusher, for example a washing device in which the broken material acts on water becomes.
- the bottom of the slides is preferably lined with glass, which enables the glass fragments to be moved particularly smoothly and without friction.
- a particularly preferred embodiment of the slides is achieved in that the slides each have a U-shaped cross section with a width which corresponds to 1.3 to 1.4 times the maximum edge length of the fragments of the respective fraction, and that light transmitters and receivers are arranged above or below the bottom of the slides.
- the mutually assigned slides are arranged one above the other and have closable and releasable bottom openings by the retainer, the bottom openings being arranged offset from the upper to the lower chute in the conveying direction and the bottom slide is designed as a continuous channel.
- the retainers are designed as electromagnetically or pneumatically operable, held in the bottom opening and movable through them and in a pivoting part closing the bottom opening in the plane of the bottom.
- the swivel parts are designed as flaps or swivel wedges with tapering in the conveying direction, and each swivel part is mounted at its end pointing in the conveying direction via a swivel axis on a two-armed lever held between springs acting in opposite directions, on each arm of which an electromagnet acts.
- the possibility of a particularly favorable arrangement of the light transmitter and receiver results from the fact that in a device with retainers in front of each bottom opening of each slide a light transmitter and receivers are arranged normal to the bottom of the slide and a light transmitter and receiver are arranged perpendicularly to it and light passage openings are provided in the region of the central longitudinal line of the bottom and in the side walls of the slide just above the bottom.
- an arrangement of the light transmitters and receivers is preferred in which one of these two elements is arranged above and below the floor.
- the transfer device also has flaps or swivel wedges. However, these do not have the function of the above-mentioned pickup. These are flaps arranged in the bottom of the slide after the evaluation electronics. These only have to be switched back and forth between two positions or functions, namely a continuous position and an open position. In the continuous position, the bottom of the slide is closed by the flap, so that the fragments or fragments are unimpeded can pass through the slide to be fed to a sorting bin. In the open position, the fragments or fragments pass through the bottom of the trough-shaped slide onto another slide underneath. This in turn is equipped with a flap, the position of which can be specified simultaneously by the evaluation electronics. Possibly. the fragments reach a third slide underneath.
- the number of slides can be selected depending on how many colors the glass fragments are to be split into. Usually a slide is provided for colorless, green and brown glass and one for ceramics and other non-glass components.
- the flaps can be designed as a simplified embodiment of the swivel parts provided in the first alternative.
- the drawing shows two exemplary embodiments of the invention in schematic representations.
- the waste glass obtained is fed in the direction of arrow 1 via a funnel 2 to a crusher 3, in which the waste glass is comminuted in such a way that mostly fragments with an edge length of 5 to 50 mm are produced.
- the waste glass leaving the crusher 3 reaches a conveyor 4, to which a washing device 5 is assigned, by means of which the broken waste glass located on the conveyor 4 is acted upon by water jets 5a.
- a washing device 5 is assigned, by means of which the broken waste glass located on the conveyor 4 is acted upon by water jets 5a.
- the water provided with the aforementioned impurities and glass fragments is passed over a separating or separating device not shown in the drawing, so that the water freed from the impurities and splinters can be fed to the washing device 5 again.
- washing device 5 instead of such a washing device 5, other cleaning devices that work, for example, with air or sandblasting would also be conceivable.
- the fragments remaining and washed on the conveyor reach a classifier 6, which is designed as a screen classifier and through which the supplied glass fragments are sorted into several fractions of different sizes.
- the fragments with an edge length get out of the classifier half of 5 mm in the collecting container 7, from which they can be removed as a mixing glass for further processing.
- Sorted fragments with edge lengths of 5 to 50 mm are collected separately in the remaining collecting containers 8a to 8c, so that three fractions of different sized fragments are obtained, with differently colored glass fragments as well as porcelain, clay and ceramic fragments being mixed .
- each collecting container 8a to 8c is assigned such a conveying device 9, via which the glass fragments reaching this conveying device are transferred into a storage container 10.
- Each storage container 10 is equipped with a device for separating the glass fragments fed to it.
- 1 shows such a separating device 11 in the form of a slide connected to the storage container 10.
- the separation of the fragments can take place, for example, in that the storage container 10 is designed as a vibrating vibration container with correspondingly installed baffles, which ensure that the glass fragments reach the slide 11 designed as a separation device and are then separated on the slide.
- the glass fragments From the separating device 11 in the form of the slide, the glass fragments reach a first inclined, channel-shaped slide 12, which in the example shown has two Holders 13 and 13a which can be transferred into the movement path of the fragments are equipped.
- Detection units 14 and 14a are arranged directly upstream of the hold-ups 13 and 13a in two levels, each detection unit consisting of light transmitters and receivers which are each active in two different levels.
- the detection units 14 and 14a are connected to evaluation electronics (not shown in FIG. 1) and central control devices for the individual detectors 13 and 13a.
- Each of the glass fragments fed to the trough-shaped chute 12 first reaches the pick-up 13 on its conveying path and is exposed there to the light beams of the two light transmitters which are effective in two planes in the rest position.
- the value of the light flow is measured in the evaluation electronics and, depending on this, the holder 13 is either actuated so that the fragment is released for further movement on the conveyor trough 12 or is transferred from the conveyor trough 12 to a further conveyor trough 15 arranged downstream.
- the process already described in connection with the retainer 13 is repeated in front of the retainer 13a.
- the glass fragment is then either released by the retainer 13a either for further conveyance on the conveying trough 12 or transferred to the next conveying trough 15. Approved.
- the arrangement of the two retainers 13 and 13a in the course of the conveyor trough 12 is provided only for safety reasons in order to check the light transmittance measured by the detection unit 14 again by the detection unit 14a.
- Fragments of glass made of colored glass and fragments made of other non-translucent material are transferred to the next slide 15 via the retainers 13 and 13a. You get on the slide 15 again in front of the support 13, 13a of this slide, only glass fragments of brown glass being conveyed on this slide, for example, in order to get into the sorting container 19.
- the glass fragments not made of brown glass are transferred to the slide 16 via the retainers 13 and 13a of the slide 15, on which fragments of green glass are released for further conveyance into the sorting container 20 by means of the retainers 13, 13a assigned to this slide.
- the fragments which are not made of green glass pass in the manner already described through the supports 13 and 13a assigned to the chute 16 onto the chute 17 and via this chute into the sorting container 21. Accordingly, non-transparent fragments, such as fragments of porcelain, Clay or other ceramics are transferred as well as those pieces of glass that cannot be clearly identified as colorless or brown or green fragments, for example, by paper or dirt parts still adhering.
- the slides 12 and 15 to 17 described and the sorting containers 18 to 21 assigned to them can be arranged in a plurality, for example in the form of a ring or in series, around the storage container 10, with several of the slides 12 assigned to one another and 15 to 17 can transfer the fragments into the same collection containers 18 to 21.
- the number of arrangements consisting of the chutes 12 and 15 to 17 per storage container thus determines the sorting capacity.
- the double arrangement of the retainers 13 and 13a for each slide with the respectively assigned recognition unit 14 to 14a described in the illustrated example can be reduced to one retainer with an associated recognition unit.
- the chutes 12 and 15 to 17 can be kept relatively narrow. They expediently have a U-shaped cross section with a width which corresponds to 1.3 to 1.4 times the maximum edge length of the fragments of the respective fraction. This prevents jamming of the fragments on the one hand, but on the other hand ensures that the fragments come to rest in front of the hold-ups 13 and 13a in the light beams of the light transmitters of the detection units 14 and 14a, which are effective in two planes, and there in their rest position by determining the light flow can be identified.
- the slide 12 Since the length of the trough-shaped slides 12 or 15 to 17 can be measured relatively short - in practice the slide 12 is about 1 m long, while the slides 15 to 17 can be kept much shorter - despite the multiple arrangement of the slides, there is none large amount of material is required.
- Sorting device again, wherein in this illustration two of the slides 12 and 15 to 17, which are assigned to one another on the circumference in each case, are shown on the storage container 10.
- FIG. 2 two devices designed as vibrating troughs 11a for separating the fragments emerging from the storage container, for example a gap located in the bottom area, are shown below the storage container 10.
- the storage container 10 can in turn be designed as a vibration container, so that in the area of its bottom the glass shards emerge through an exit gap located there and are separated on the vibration conveyors 11a and fed to the respective slides 12 via controlled flaps or retainers, as already mentioned in connection with Fig. 1 has been described.
- FIG. 2 shows the evaluation electronics and central control device 22, which is connected both to the detection units 14 and 14a and to the pick-ups 13 and 13a.
- the retainers 13 and 13a are designed as magnetically actuatable swivel parts and that in the bottom of the channel 12 and also the other channels 15 to 17 bottom openings 23 corresponding to the retainers 13 and 13a are provided.
- the trained as swivel parts holder 13 can assume three different positions, of which the stop position is shown in solid lines in FIG. 3.
- the retainer 13 closes the bottom opening 23 of the channel 12 in the plane of the floor, while in the position 25 moved through the bottom opening 23, the retainer 13 releases the bottom opening 23, so that one before in the hold position of the retainer 13 this lying fragment falls through the bottom opening 23 of the chute 12 onto the next channel and arrives in front of the next pick-up 13 assigned to this channel.
- the retainers 13 and 13a are connected in a rotationally secure manner at their end pointing in the conveying direction of the glass fragments to a two-armed lever 26, which in turn is mounted in a stationary manner in the pivot axis 27.
- the two-armed lever 26 is held in the example between oppositely acting springs 28 and 29 and is connected at the end of its two arms to an electromagnet 30 and 31, which has one end as well as the ends of the springs 28 and 29 are held in a stationary U-shaped component 32.
- the retainer 13 By actuating the electromagnets 30 and 31, the retainer 13 is transferred to the different positions and, after being released by the respective magnet, is returned via the springs 28 and 29 to the hold-open position drawn out in FIG. 3.
- a light transmitter 33 and 34 is arranged perpendicular to the bottom of the chute 12 and the other light transmitter 35 and the associated light receiver are perpendicular thereto.
- the light transmitter 35 and the light receiver assigned to it are provided just above the bottom of the chute 12, so that the light rays of the light transmitter 35 pass across the fragment lying at rest in front of the holder 13, while the rays emitted by the light transmitter 33 pass onto the Hit the flat side of the respective fragment.
- passage openings 36 and 37 are provided in the wall or the bottom, which are translucent closed.
- the electrical lines of the magnets 30 and 31 as well as the light transmitters and receivers 33 to 35 are connected to the electronics and central control unit 22 shown in FIG. 3 via the lines indicated in FIG. 3.
- FIG. 3 The embodiment shown in FIG. 3 and described above applies to all detectors 13 and 13a and detection units 14 and 14a of the slides 12 and 15 and 16, respectively.
- Light source must be connected. All light guides can be exposed to colored light. However, it is also possible to partially convert the light emerging from the light guides into colored light only there. Experience has shown that increased security of separation of the glass fragments according to their colors can be achieved for all detection units by using red light.
- the described retainers 13 and 13a can instead of pivoting parts held in the bottom openings of the respective slides also be provided as side wall sections of the slides which can be pivoted in the manner of a switch, in which case the next following slide must then be arranged laterally next to the previous slide.
- the waste glass Before the waste glass is fed to the crusher 3, it is expediently passed over a classifier similar to the classifier 6 shown and described in FIG. 1, in order to prevent small fragments with an edge length of less than 5 mm and fragments with an edge length of 5 to 50 mm Separate the feeder to the crusher from the remaining fragments and thereby sort the fragments with edge lengths of 5 to 50 mm in the same way as was described in connection with the classifier 6. In this way, only those fragments are fed to the crusher 3 that have an edge length greater than 50 mm exhibit. The fragments of the desired edge length for sorting contained in the waste glass are thus obtained directly from the waste glass without being passed through the crusher. In this way, the proportion of small fragments that cannot be sorted is avoided and the crusher is considerably relieved.
- FIG. 4 relates to a second alternative for a device according to the invention.
- the glass fragments of a certain fraction of approximately the same size are fed via the chute 12 shown at the top left in FIG. 4.
- the bottom of the slide 12 is lined with glass, which reduces the friction of the glass fragments.
- the chute 12 can be vibrated.
- baffles (not shown) are provided, which possibly also transfer individual, still standing glass fragments into a flat position.
- the glass fragments can be further separated by thresholds.
- a light transmitter 33 and a light receiver 34 are provided in the region of the lower end of the slide 12.
- the light transmitter 33 is located above the slide 12, the light receiver 34 below the bottom of the slide 12.
- a reverse arrangement of the elements 33, 34 is also possible. The two elements are adjusted to one another so that the radiation emitted by the light transmitter 33 in the case of an undisturbed radiation pattern
- a piece of glass sliding on the chute 12 passes the light beam emitted by the light transmitter 33 due to the predetermined dimensions, a certain proportion of the light being absorbed in the piece of glass.
- the light receiver outputs a signal corresponding to the quantity of light received to an electronic evaluation unit 22. This thus receives a continuous chronological sequence via the absorption taking place in the chute 12. As long as no glass fragment slides between light transmitter 33 and light receiver 34, a constant, undisturbed normal level is received. This value is not disturbed by the glass bottom of the chute 12 since it has a constant absorption value over the entire time.
- the course of the slide 15 is equipped with a transfer device, which is formed here by a swivel part 40.
- the pivoting part 40 is controlled by the evaluation electronics 20 in its movement sequence.
- the swivel part 40 can assume two positions.
- the fragments falling on the slide 15 can allow unhindered passage into the sorting container 18.
- the swivel part 40 assumes the position shown in solid line in FIG. 4. This position can be seen more precisely in FIG. 5.
- the second possible position is shown in dashed lines in FIG. 4 and causes fragments sliding along the slide 15 to fall through the opening formed onto the next slide 16.
- This slide has a comparable structure and in turn has a swivel part 41 which can be controlled by the evaluation electronics 2 2 in two positions. In the position shown in dashed lines, the glass fragment continues to fall onto the third slide 17, which is just if so constructed and ultimately has a pivoting part 42 with which the fragments can reach the chute 17b and thus the sorting container 21.
- the evaluation electronics 22 can work, for example, in such a way that colorless glass passes undisturbed via the chute 15 into the container 18, while brown glass via the chute 16 into the container 19, green glass via the chute 17 into the container 20 and foreign parts, such as ceramic, get into the container 21 via the chute 17b.
- the evaluation electronics 22 If the evaluation electronics 22 detects with such a setting that a colorless glass fragment has passed the light transmitter 33 or the light receiver 34, it controls the pivoting part 40 in such a way that the bottom opening 23 of the slide 15 is closed and the glass fragment reaches the container 18 unhindered can.
- the control can be carried out in such a way that a switch only takes place when the swivel parts 40, 41, 42 need to be changed. This extends the service life of the drives connected to the swivel parts 40, 41, 42 compared to a respective return to a normal position.
- the control of the swivel parts 40, 41, 42 can also be set such that, in the event of defects in the drives, a predetermined position of the swivel parts is carried out in such a way that an enrichment of the container for colorless glass with stained glass or foreign parts is avoided in any case.
- a predetermined position of the swivel parts is carried out in such a way that an enrichment of the container for colorless glass with stained glass or foreign parts is avoided in any case.
- the quality of the colorless glass is kept constant even in the event of defects.
- feeding colorless glass into a stained glass container leads to a lower yield of colorless glass, but is less important for the quality of the stained glass.
- the swivel part 40 is connected at its end lying in the conveying direction of the glass fragments in a rotationally secure manner to a two-armed lever 43, which in turn is mounted in a stationary manner in the swivel axis 44.
- the two-armed lever 43 is connected to an electromagnet 44 as a drive.
- Fig. 6 it can be seen that the slide 15 is covered with glass on its bottom and on the side walls.
- the glass layers 48 consist of flat glass.
- the slides 12, 16, 17 and 17b have a similar structure.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Sorting Of Articles (AREA)
- Processing Of Solid Wastes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3804391A DE3804391A1 (de) | 1988-02-12 | 1988-02-12 | Verfahren und vorrichtung zum sortieren von altglasbruchstuecken |
| DE3804391 | 1988-02-12 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0328126A2 true EP0328126A2 (fr) | 1989-08-16 |
| EP0328126A3 EP0328126A3 (en) | 1990-05-16 |
| EP0328126B1 EP0328126B1 (fr) | 1996-04-17 |
Family
ID=6347287
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP89102317A Expired - Lifetime EP0328126B1 (fr) | 1988-02-12 | 1989-02-10 | Méthode et dispositif pour trier des déchets de verre |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0328126B1 (fr) |
| AT (1) | ATE136817T1 (fr) |
| DE (2) | DE3804391A1 (fr) |
| ES (1) | ES2086305T3 (fr) |
| GR (1) | GR3019744T3 (fr) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0459341A3 (en) * | 1990-05-28 | 1992-04-15 | Seichter Gmbh | Sorting device for waste glass |
| EP0521394A3 (en) * | 1991-07-04 | 1993-03-10 | Alcatel Italia S.P.A. | Sorting device in particular for systems using sorting pockets |
| US5333739A (en) * | 1992-03-27 | 1994-08-02 | Bodenseewerk Geratechnik GmbH | Method and apparatus for sorting bulk material |
| BE1006764A5 (fr) * | 1990-05-31 | 1994-12-06 | Zahoransky Anton Fa | Dispositif auxiliaire, en particulier pour une machine de fabrication de brosses. |
| GB2283812A (en) * | 1993-11-10 | 1995-05-17 | Kanetsu Engineering Co Ltd | Automatic colour sorting apparatus and method for sorting and recovering cullets |
| EP0461616B1 (fr) * | 1990-06-15 | 1995-09-06 | Hubertus Exner | Procédé et dispositif de tri de déchets de verre |
| FR2731368A1 (fr) * | 1995-03-09 | 1996-09-13 | Ind Propres D Aquitaine Sa Ipa | Procede et installation de traitement du verre. |
| CN113426687A (zh) * | 2021-06-23 | 2021-09-24 | 安徽唯嵩光电科技有限公司 | 一种玻璃分选机物料输送装置 |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4017126A1 (de) * | 1990-05-28 | 1991-12-05 | Seichter Gmbh | Einrichtung zum sortieren von glasbruchstuecken |
| DE4017130A1 (de) * | 1990-05-28 | 1991-12-05 | Seichter Gmbh | Einrichtung zum sortieren von glasbruchstuecken |
| DE4017128A1 (de) * | 1990-05-28 | 1991-12-05 | Seichter Gmbh | Einrichtung zum sortieren von glasbruchstuecken |
| DE4017127A1 (de) * | 1990-05-28 | 1991-12-05 | Seichter Gmbh | Einrichtung zum sortieren von glasbruchstuecken |
| DE9106292U1 (de) * | 1991-05-22 | 1991-07-18 | Glasrecycling Leeseringen GmbH & Co. KG, 3071 Estorf | Vorrichtung zum Sortieren von Altmaterial, insbesondere Altglas nach seiner Farbe |
| DE19511901A1 (de) * | 1995-03-31 | 1996-10-02 | Commodas Gmbh | Vorrichtung und Verfahren zum Sortieren von Schüttgut |
| DE10143394A1 (de) * | 2001-09-04 | 2003-03-20 | Heckert Umwelttechnik Gmbh | Verfahren und Messanordnung zur Farberkennung und Anlage zum Sortieren farbiger Gegenstände |
| CN112974295A (zh) * | 2020-12-23 | 2021-06-18 | 汪成林 | 一种镜头镜片外观缺陷自动检测设备 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3802558A (en) * | 1973-04-02 | 1974-04-09 | Sortex North America | Refuse sorting and transparency sorting |
| JPS59147684A (ja) * | 1983-02-09 | 1984-08-24 | 株式会社 サタケ | 色彩選別機の流下樋装置 |
| FR2576008B1 (fr) * | 1985-01-16 | 1992-01-31 | Bsn | Dispositif de tri optique du groisil, pour obtenir du calcin, et installation comprenant de tels dispositifs |
| DE3528069A1 (de) * | 1985-08-05 | 1987-02-05 | Mabeg Muell & Abfall | Vorrichtung zum sortieren von altglas |
| DE3618173A1 (de) * | 1986-05-30 | 1987-12-03 | Mab Marlis Kellermann | Glas-sortieranlage |
-
1988
- 1988-02-12 DE DE3804391A patent/DE3804391A1/de not_active Withdrawn
-
1989
- 1989-02-10 AT AT89102317T patent/ATE136817T1/de not_active IP Right Cessation
- 1989-02-10 EP EP89102317A patent/EP0328126B1/fr not_active Expired - Lifetime
- 1989-02-10 ES ES89102317T patent/ES2086305T3/es not_active Expired - Lifetime
- 1989-02-10 DE DE58909653T patent/DE58909653D1/de not_active Expired - Fee Related
-
1996
- 1996-04-24 GR GR960401141T patent/GR3019744T3/el unknown
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0459341A3 (en) * | 1990-05-28 | 1992-04-15 | Seichter Gmbh | Sorting device for waste glass |
| BE1006764A5 (fr) * | 1990-05-31 | 1994-12-06 | Zahoransky Anton Fa | Dispositif auxiliaire, en particulier pour une machine de fabrication de brosses. |
| EP0461616B1 (fr) * | 1990-06-15 | 1995-09-06 | Hubertus Exner | Procédé et dispositif de tri de déchets de verre |
| EP0521394A3 (en) * | 1991-07-04 | 1993-03-10 | Alcatel Italia S.P.A. | Sorting device in particular for systems using sorting pockets |
| US5333739A (en) * | 1992-03-27 | 1994-08-02 | Bodenseewerk Geratechnik GmbH | Method and apparatus for sorting bulk material |
| GB2283812A (en) * | 1993-11-10 | 1995-05-17 | Kanetsu Engineering Co Ltd | Automatic colour sorting apparatus and method for sorting and recovering cullets |
| FR2731368A1 (fr) * | 1995-03-09 | 1996-09-13 | Ind Propres D Aquitaine Sa Ipa | Procede et installation de traitement du verre. |
| CN113426687A (zh) * | 2021-06-23 | 2021-09-24 | 安徽唯嵩光电科技有限公司 | 一种玻璃分选机物料输送装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2086305T3 (es) | 1996-07-01 |
| DE3804391A1 (de) | 1989-08-24 |
| EP0328126B1 (fr) | 1996-04-17 |
| GR3019744T3 (en) | 1996-07-31 |
| DE58909653D1 (de) | 1996-05-23 |
| ATE136817T1 (de) | 1996-05-15 |
| EP0328126A3 (en) | 1990-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0328126B1 (fr) | Méthode et dispositif pour trier des déchets de verre | |
| AT398174B (de) | Verfahren und vorrichtung zum trennen von entrindeten holzknüppeln | |
| DD148729A5 (de) | Verfahren und vorrichtung zum aussortieren von fremdkoerpern aus einem bewegenden foerderband o.ae.befindlichen gut | |
| CH629018A5 (de) | Muenzsortiervorrichtung. | |
| DE3709179C1 (de) | Verfahren und Vorrichtung zur Wiedergewinnung von Glas aus Altglas | |
| DE69700944T2 (de) | Rutsche für Sortiereinrichtung | |
| DE2800494C3 (de) | Münzsortiervorrichtung mit Auswerferstößeln | |
| EP0461616B1 (fr) | Procédé et dispositif de tri de déchets de verre | |
| DE2530886B2 (de) | Vorrichtung zum Ordnen vereinzelter, in entgegengesetzten Richtungen ungeordnet orientierter Gegenstände | |
| DE3828067C2 (fr) | ||
| DE2831843A1 (de) | Foerdereinrichtung | |
| EP0248281B1 (fr) | Installation de tri de verre | |
| DE102017119137A1 (de) | Verfahren zur Detektion und Aussonderung von Sonderglas aus Recyclingglas | |
| EP0211139B1 (fr) | Dispositif pour la séparation de déchets en verre, en particulier de bouteilles en verre transparent et en verre coloré | |
| DE3514313C2 (de) | Verfahren und Vorrichtung zur Inspektion und zum Sortieren von Glasbehältern | |
| EP0629979A2 (fr) | Dispositif de contrôle pour des pièces de monnaie | |
| EP0426893B1 (fr) | Procédé et dispositif de tri | |
| DE3817026A1 (de) | Verfahren und einrichtung zum sortieren von altglas | |
| DE10123304A1 (de) | Vorrichtung und Verfahren zur Sortierung eines Abfallgemisches | |
| DE102014011401B3 (de) | "Ausblasvorrichtung zum selektiven Ausblasen von Fördergutteilen aus einem Fördergutstrom" | |
| DE3445428C2 (fr) | ||
| DE9106292U1 (de) | Vorrichtung zum Sortieren von Altmaterial, insbesondere Altglas nach seiner Farbe | |
| DE3007540C2 (de) | Vorrichtung zum Prüfen und Aussortieren von Flaschen in einer Flaschenbehandlungsanlage | |
| DE3731402A1 (de) | Anlage zur trennung von abfallhohlglaesern, insbesondere von flaschen mindestens nach weiss- und buntglas | |
| DE19510931C2 (de) | Verfahren und Vorrichtung zum Überprüfen der Länge eines Teigstranges |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| 17P | Request for examination filed |
Effective date: 19890814 |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19920423 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
| REF | Corresponds to: |
Ref document number: 136817 Country of ref document: AT Date of ref document: 19960515 Kind code of ref document: T |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KELLER & PARTNER PATENTANWAELTE AG |
|
| ITF | It: translation for a ep patent filed | ||
| REF | Corresponds to: |
Ref document number: 58909653 Country of ref document: DE Date of ref document: 19960523 |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960520 |
|
| REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3019744 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2086305 Country of ref document: ES Kind code of ref document: T3 |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20010214 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20010216 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010226 Year of fee payment: 13 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020211 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020909 |
|
| EUG | Se: european patent has lapsed |
Ref document number: 89102317.8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040210 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040212 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040216 Year of fee payment: 16 Ref country code: BE Payment date: 20040216 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040217 Year of fee payment: 16 Ref country code: CH Payment date: 20040217 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040223 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040227 Year of fee payment: 16 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050210 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050210 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050211 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
| BERE | Be: lapsed |
Owner name: *SEIFERT LOTHAR Effective date: 20050228 Owner name: *EXNER HUBERTUS Effective date: 20050228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050901 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050901 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050206 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050901 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20051031 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050211 |
|
| BERE | Be: lapsed |
Owner name: *SEIFERT LOTHAR Effective date: 20050228 Owner name: *EXNER HUBERTUS Effective date: 20050228 |