EP0327828B1 - Masses pour résistances adaptées pour cuisson sous azote - Google Patents

Masses pour résistances adaptées pour cuisson sous azote Download PDF

Info

Publication number
EP0327828B1
EP0327828B1 EP89100576A EP89100576A EP0327828B1 EP 0327828 B1 EP0327828 B1 EP 0327828B1 EP 89100576 A EP89100576 A EP 89100576A EP 89100576 A EP89100576 A EP 89100576A EP 0327828 B1 EP0327828 B1 EP 0327828B1
Authority
EP
European Patent Office
Prior art keywords
mol
resistance material
material according
srru
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89100576A
Other languages
German (de)
English (en)
Other versions
EP0327828A3 (fr
EP0327828A2 (fr
Inventor
Jerry Dr. Steinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0327828A2 publication Critical patent/EP0327828A2/fr
Publication of EP0327828A3 publication Critical patent/EP0327828A3/fr
Application granted granted Critical
Publication of EP0327828B1 publication Critical patent/EP0327828B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/0654Oxides of the platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06553Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of a combination of metals and oxides

Definitions

  • the invention relates to resistance materials which can be burned in under nitrogen.
  • Resistance paste usually consists of a conductor phase (perovskite), a glass phase (binder or glass frit), additives and an organic carrier.
  • resistors that can be burned in under nitrogen A problem with resistors that can be burned in under nitrogen is frequently that the resistor and the metal (for example copper, connecting terminals) react with one another at the contact points, which leads to an unfavorable geometric ratio.
  • the object of the invention is therefore to provide a thick film resistor which does not have a large contact resistance when connected to copper lines, which can lead to a poor geometry ratio and thus to poor laser trimming properties.
  • Another object of the invention is to provide a thick film resistor that can be burned in a reducing (non-oxidizing) atmosphere, for example nitrogen, while maintaining good properties, for example the temperature coefficient of the resistor.
  • a reducing (non-oxidizing) atmosphere for example nitrogen
  • Figure 1 shows a schematic representation of a resistor.
  • FIG. 2 shows a schematic illustration of an electrical resistance circuit corresponding to FIG. 1.
  • additives can be used to optimize various properties of the resistors, e.g. the temperature coefficient of the resistor, the sensitivity to electrostatic discharges, the voltage stability and the laser trimmability.
  • Surface modifiers for improving the external appearance and as glass reinforcing agents can be considered as further additives. These change the glass flow during firing and form places where the cracking is interrupted, which improves the laser trim stability.
  • these additives consist of ceramic oxides with a large surface area, such as Al2O3, TiO2 and SiO2.
  • All of the above-mentioned substances are dispersed in an organic medium, which mainly serves as a carrier for the application of the dissolved particles to a corresponding base.
  • the medium must also volatilize without residues during the burning process and may itself have only minimal effects, for example in the form of a reduction in the conductive phase.
  • a suitable organic carrier for the purposes of the present invention would be an organic material that volatilizes at a fairly low temperature (200 to 500 ° C).
  • a resin for example an acrylate resin, preferably polyisobutyl methacrylate, and a solvent, for example "TEXANOL®” from Eastman Kodak, Rochester, N.Y., USA, are used as the carrier.
  • the resin can be any polymer that decomposes at temperatures up to 400 ° C in a nitrogen atmosphere containing less than 10 ppm oxygen.
  • Terpineol and tridecyl alcohol are suitable as further solvents.
  • TDA Terpineol and tridecyl alcohol
  • any solvent or plasticizer that dissolves the resin in question and a suitable one the following dispersion and Application processes have adapted vapor pressure.
  • the organic solvent consists of 30 to 50% by weight of polyisobutyl methacrylate and 50 to 70% by weight of "TEXANOL®”.
  • compositions for the perovskite are: SrRuO3, Sr 0.9 La 0.1 RuO3, SrRu 0.95 Ti 0.05 O3, Sr 0.9 La 0.1 Ru 0.95 Ti 0.05 O3, BaRuO3, Ba 0.9 La 0.1 RuO3, BaRu 0.95 Ti 0.05 O3 and Ba 0.9 La 0.1 Ru 0.95 Ti 0.05 O3.
  • the BET Monosorb method is a method for measuring the surface of a powder. It consists in measuring the volume of gas required to cover the powder with a monomolecular layer and then calculating the surface from the gas taken up and the molecule diameter.
  • compositions with a good geometry ratio The geometry ratio says something about the ratio of the resistance values to the size of the resistance. For example, if the length of a thick film resistor increases five times at a constant width, ideally the resistance should also increase five times. Any deviation from this rule in the case of a thick-film resistor indicates that a chemical reaction takes place at the interface between the resistor and the conductor termination, which causes contact resistance in series with the resistor body (see FIGS. 1 and 2).
  • the glass tends to dissolve the perovskite according to the following reaction: a) SrRuO3 + glass -> RuO2 + SrO (2) b) RuO2 -> Ru + O2 (in reducing atmospheres).
  • reaction (1) or (2) occurs and a large amount of RuO2 or ruthenium is generated, resistors with a poor geometry ratio are obtained. On the other hand, preventing these reactions also creates poor contact resistance.
  • the addition of copper-metal or nickel-metal or copper (II) oxide leads to a compromise between these two extremes and to a good geometry ratio.
  • the copper or nickel or copper (II) oxide powder should preferably have a particle size (sedigraph) in the range of 50% 2 to 7.0 ⁇ m and a surface area of 0.25 to 3.0 m2 / g.
  • the proportion of copper or nickel or copper (II) oxide relative to the total weight of the conductive phase is 5 to 30% by weight, preferably 8 to 20% by weight. If copper or nickel or copper (II) oxide powder is added below this ratio, the resistance properties change from circuit to circuit. Above this range, the temperature coefficient of resistance (TCR) changes with the temperature and reaches outside the range (400 ppm) which is useful for thick film applications.
  • the glass frit is generally important because it helps to sinter the conductive phase particles into a dense homogeneous film and because it chemically bonds to the substrate. In addition, the glass frit serves to dilute the conductive phase and therefore results in resistors with different resistivities.
  • the special glass composition is important for the special resistances dealt with in the application in that it contributes to the control of the reaction (2). It has been shown that, in order to avoid complete dissolution of the conductive phase, at least 40 mol% of the cation located in the A'-position should be contained in the glass. In the cases described here, this is SrO or BaO. A content between 47 and 58 mol% is preferred. At higher quantities, the glass tends to devitrify and poor adhesion to the substrate. In addition, the glass should preferably contain TiO2 as a modifier in amounts from 0.25 to 2.00 mol%, preferably from 0.7 to 1.5 mol%.
  • the glass-forming oxides can consist of B2O3 or SiO2.
  • the glass should come from one or two families of glass, namely SrO-B2O3-SiO2 or BaO-B2O3-SiO2, modified with ZnO and TiO2 (glass family I), and SrO-B2O3-Al2O3 or BaO-B2O3-Al2O3, modified with TiO2 (Glass family II).
  • composition ranges are preferred for these glass families: Glass family I Preferred mol% proportions SrO or BaO 42 to 52 B2O3 28 to 40 ZnO 2 to 5 TiO2 0.7 to 1.5 SiO2 7 to 12 Glass family II Preferred mol% proportions SrO or BaO 45 to 58 B2O3 28 to 40 Al2O3 8 to 18 TiO2 0.7 to 1.5
  • the SrO component can consist of SrO, BaO or SrO + BaO.
  • the specific surface areas are between 0.5 and 3.0 m2 / g.
  • the perovskite powder was prepared by mixing the appropriate oxides in deionized water in a ball mill over a four hour period. The dried powders were then baked in an alumina crucible at 1200 ° C for two hours. The material was then sieved through a 200 mesh sieve and baked a second time at 1200 ° C. for two hours. This process was followed by a further processing in the ball mill in deionized water to reduce the size accordingly.
  • the corresponding oxides were weighed into a kyanite crucible.
  • the powders were preheated at 600 ° C for one hour and then melted at 1200 ° C for 30 minutes.
  • the molten material was then quenched in water at room temperature. This process favored the glass formation and subsequent size reduction.
  • the powder of the appropriate size was typically obtained by ball milling in isopropyl alcohol.
  • the powders were first mixed with the organic carrier either by hand or using an electrical Hobart mixer kneaded and then dispersed in a paint grinder or a three-roll mill.
  • the paste thus produced was applied to a substrate, typically made of 96% Al2O3, using a 325 mesh screen, which was already provided with appropriate contacts, typically made of copper.
  • the resistors were then dried at 150 ° C for 10 minutes to remove volatile solvents.
  • the dried resistors were then fired in a thick film continuous furnace with a reducing atmosphere, typically nitrogen with less than 10 ppm oxygen, at a peak temperature of 900 ° C ⁇ 10 ° C.
  • the burned circuits were then checked for compliance with the desired properties.
  • the resistance was determined by the two-point probe method using a suitable ohmmeter.
  • the temperature coefficient of the resistance was determined by first measuring the resistance at 25 ° C, then placing the circuit in a corresponding test chamber at 125 ° C, then measuring the resistance again and then performing the calculation according to equation (3). To determine the geometric ratio, the resistance value of a resistor of size (R1) of 50 mm x 50 mm and then a resistance of size (R5) of 50 mm x 250 mm was measured.
  • Resistors that are suitable for thick film circuits must also have other properties. These properties depend in part on that special application, so that they are not dealt with in detail here. These include power consumption, dielectric strength, sensitivity to electrostatic discharge, resistance to environmental influences and miscibility.
  • Table 2 shows that the addition of copper powder to the perovskite / glass combination gives compositions with a good geometry ratio. When replacing the copper with nickel powder (Example X), acceptable results were obtained.
  • Table 3 shows the limit values for the addition of copper powder to given glass compositions. In the range of about 21%, the HTCR value rises above 400 ppm; this is the maximum usable value for most applications.
  • the glass compositions should preferably contain titanium oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Adjustable Resistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Powder Metallurgy (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Conductive Materials (AREA)

Claims (13)

  1. Masse à cuire sous azote, pour réaliser des résistances, constituée par
    a) une phase conductrice avec (1) une Perovskite de la forme
    A'l-xA"xB'l-yB"YO₃, avec A' égale Sr ou Ba, et, lorsque A' égale Sr, A" est alors un ou plusieurs des éléments Ba, La, Y, Ca et Na, et, lorsque A' égale Ba, A" est un ou plusieurs des éléments Sr, La, Y, Ca et Na, B' égale Ru et B" un ou plusieurs des éléments Ti, Cd, Zr, V et Co, et l'on a 0 ≦ x ≦ 0,2 et 0 ≦ y ≦ 0,2,
    et (2) de 5 à 30 % en poids de poudre de cuivre, poudre de nickel ou oxyde de cuivre(II), rapporté au poids total de la phase conductrice,
    et
    b) une phase vitreuse choisie dans le groupe suivant :
    (a) 40 à 60 Mol-% SrO ou BaO, 25 à 45 Mol-% B₂O₃, 0 à 6 Mol-% ZnO, 0,25 à 2,0 Mol-% TiO₂, 2 à 14 Mol-% SiO₂ et
    (b) 40 à 60 Mol-% SrO ou BaO, 25 à 45 Mol-% B₂O₃, 5 à 20 Mol-% Al₂O₃, 0,25 à 2,0 Mol-% TiO₂.
  2. Masse pour résistances selon revendication 1, caractérisée par le fait que A' égale Sr.
  3. Masse pour résistances selon revendication 1, caractérisée par le fait que A' égale Ba.
  4. Masse pour résistances selon revendication 1, caractérisée par le fait que la perovskite est choisie dans le groupe suivant : SrRuO₃,
    SrRu0,8Ti0,2O₃, SrRu0,9Ti₀, ₁O₃, Sr0,9La0,1RuO₃,
    SrRu0,95Ti0,05O₃, Sr0,9La0,1Ru0,95Ti0,05O₃,
    SrRu0,95Cd0,05O₃, Sr0,9La0,1RuO₃, Sr0,9Y0,1RuO₃,
    Sr0,8Na0,1La0,1RuO₃, SrRu0,8Zr0,2O₃, SrRu0,9Zr0,1O₃,
    SrRu0,75V0,25O₃, SrRu0,8Co0,2O₃, SrRu0,8Ti0,1Zr0,1O₃,
    BaRuO₃, Ba0,9La0,1RuO₃, BaRu0,95Ti0,05O₃ et
    Ba0,9La0,1Ru0,95Ti0,05O₃.
  5. Masse pour résistances selon revendication 1, caractérisée par le fait que la perovskite est choisie dans le groupe suivant : SrRuO₃,
    Sr0,9La0,1RuO₃, SrRu0,95Ti0,05O₃,
    Sr0,9La0,1Ru0,95Ti0,05O₃, BaRuO₃, Ba0,9La0,1RuO₃,
    BaRu0,95Ti0,05O₃ et Ba0,9La0,1Ru0,95Ti0,05O₃.
  6. Masse pour résistances selon revendication 1, caractérisée par le fait qu'elle contient en outre un support organique.
  7. Masse pour résistances selon revendication 6, caractérisée par le fait que le support organique est un mélange d'une résine acrylique et d'un solvant.
  8. Masse pour résistances selon revendication 7, caractérisée par le fait que la résine est un methacrylate de polyisobutyl.
  9. Masse pour résistances selon revendication 1, caractérisée par le fait que la poudre de métal ou l'oxyde de cuivre(II).présente, pour 50%, une grosseur de particules dans la plage de 2 à 7,0 µm et une surface externe de 0,25 à 3,0 m²/g.
  10. Masse pour résistances, caractérisée par le fait que la quantité de poudre de métal ou d'oxyde cuivre(II) par rapport à la phase conductrice totale vaut de 8 à 20 % en poids.
  11. Masse pour résistances selon revendication 1, caractérisée par le fait que la phase vitreuse présente la composition suivante en Mol-% :
       42 à 52 SrO ou BaO
       28 à 40 B₂O₃
       2 à 5 ZnO
       0,7 à 1,5 TiO₂,
       7 à 12 SiO₂.
  12. Masse pour résistances selon revendication 1, caractérisée par le fait que la phase vitreuse présente la composition suivante en Mol-% :
       45 à 58 SrO ou BaO
       28 à 40 B₂O₃
       8 à 18 Al₂O₃
       0,7 à1,5 TiO₂.
  13. Masse pour résistances selon revendication 1, caractérisée par le fait qu'elle contient une ou plusieurs matières d'addition prises dans le groupe MnO₂, TiO₂, ZrO₂, CuO et SrTiO₃.
EP89100576A 1988-02-12 1989-01-13 Masses pour résistances adaptées pour cuisson sous azote Expired - Lifetime EP0327828B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US155342 1988-02-12
US07/155,342 US4814107A (en) 1988-02-12 1988-02-12 Nitrogen fireable resistor compositions

Publications (3)

Publication Number Publication Date
EP0327828A2 EP0327828A2 (fr) 1989-08-16
EP0327828A3 EP0327828A3 (fr) 1991-03-27
EP0327828B1 true EP0327828B1 (fr) 1993-09-22

Family

ID=22555057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100576A Expired - Lifetime EP0327828B1 (fr) 1988-02-12 1989-01-13 Masses pour résistances adaptées pour cuisson sous azote

Country Status (5)

Country Link
US (1) US4814107A (fr)
EP (1) EP0327828B1 (fr)
JP (1) JPH01208802A (fr)
KR (1) KR0142577B1 (fr)
DE (1) DE58905651D1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941283C1 (fr) * 1989-12-14 1991-01-31 W.C. Heraeus Gmbh, 6450 Hanau, De
JP2970713B2 (ja) * 1991-12-25 1999-11-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 厚膜抵抗体組成物
EP0660968A1 (fr) * 1992-09-14 1995-07-05 Conductus, Inc. Couches d'arret perfectionnees pour dispositifs et circuits supraconducteurs a oxyde
JPH08186004A (ja) * 1994-12-30 1996-07-16 Murata Mfg Co Ltd 抵抗材料、それを用いた抵抗ペースト及び抵抗体
JP3246245B2 (ja) * 1994-12-30 2002-01-15 株式会社村田製作所 抵抗体
JP2937072B2 (ja) * 1995-04-18 1999-08-23 株式会社村田製作所 抵抗材料組成物、抵抗ペースト及び抵抗体
JP2937073B2 (ja) * 1995-04-18 1999-08-23 株式会社村田製作所 抵抗材料組成物、抵抗ペースト及び抵抗体
JP3475749B2 (ja) * 1997-10-17 2003-12-08 昭栄化学工業株式会社 ニッケル粉末及びその製造方法
US7211199B2 (en) * 2002-03-15 2007-05-01 The Trustees Of The University Of Pennsylvania Magnetically-and electrically-induced variable resistance materials and method for preparing same
US7507690B2 (en) * 2002-04-30 2009-03-24 Uchicago Argonne, Llc. Autothermal reforming catalyst having perovskite structure
JP3992647B2 (ja) * 2003-05-28 2007-10-17 Tdk株式会社 抵抗体ペースト、抵抗体および電子部品
US20050154105A1 (en) * 2004-01-09 2005-07-14 Summers John D. Compositions with polymers for advanced materials
US20070019789A1 (en) * 2004-03-29 2007-01-25 Jmar Research, Inc. Systems and methods for achieving a required spot says for nanoscale surface analysis using soft x-rays
EP1783107A1 (fr) * 2005-11-08 2007-05-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé d'élaboration d'un scellement haute température céramique/métal, composition en céramique et verre et ensemble de jonction céramique-métal
US20070236859A1 (en) * 2006-04-10 2007-10-11 Borland William J Organic encapsulant compositions for protection of electronic components
US20070244267A1 (en) * 2006-04-10 2007-10-18 Dueber Thomas E Hydrophobic crosslinkable compositions for electronic applications
US20070291440A1 (en) * 2006-06-15 2007-12-20 Dueber Thomas E Organic encapsulant compositions based on heterocyclic polymers for protection of electronic components
CN102324265B (zh) * 2011-07-20 2013-01-02 彩虹集团公司 一种环形压敏电阻器用单层银浆及其制备方法
CN104464991B (zh) * 2013-09-12 2017-06-06 中国振华集团云科电子有限公司 一种线性正温度系数热敏电阻浆料的制备方法
US20150228374A1 (en) 2014-02-07 2015-08-13 E I Du Pont De Nemours And Company Thermally conductive electronic substrates and methods relating thereto
RU2761338C1 (ru) * 2021-02-12 2021-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Полупроводниковый наноструктурированный керамический материал

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553109A (en) * 1969-10-24 1971-01-05 Du Pont Resistor compositions containing pyrochlore-related oxides and noble metal
DE2115814C3 (de) * 1971-04-01 1975-10-30 W.C. Heraeus Gmbh, 6450 Hanau Widerstandspaste und Verfahren zur Herstellung eines elektrischen Dickschichtwiderstandes
US4302362A (en) * 1979-01-23 1981-11-24 E. I. Du Pont De Nemours And Company Stable pyrochlore resistor compositions
DE3121290A1 (de) * 1981-05-29 1983-01-05 Philips Patentverwaltung Gmbh, 2000 Hamburg "nichtlinearer widerstand und verfahren zu seiner herstellung"
US4536328A (en) * 1984-05-30 1985-08-20 Heraeus Cermalloy, Inc. Electrical resistance compositions and methods of making the same
US4600604A (en) * 1984-09-17 1986-07-15 E. I. Du Pont De Nemours And Company Metal oxide-coated copper powder
US4687597A (en) * 1986-01-29 1987-08-18 E. I. Du Pont De Nemours And Company Copper conductor compositions

Also Published As

Publication number Publication date
KR890013158A (ko) 1989-09-21
EP0327828A3 (fr) 1991-03-27
DE58905651D1 (de) 1993-10-28
KR0142577B1 (ko) 1998-08-17
US4814107A (en) 1989-03-21
EP0327828A2 (fr) 1989-08-16
JPH01208802A (ja) 1989-08-22

Similar Documents

Publication Publication Date Title
EP0327828B1 (fr) Masses pour résistances adaptées pour cuisson sous azote
DE69514633T2 (de) Kadmiumfreie und bleifreie Dickschichtzusammensetzung
EP0071190B1 (fr) Compositions pour résistances à couche épaisse
DE69017804T2 (de) Thermistorzusammensetzung.
DE3785506T2 (de) Halbleitende keramische zusammensetzung, sowie kondensator aus halbleitender keramik.
EP0000864B1 (fr) Procédé de fabrication de varistances à film épais
DE4010827A1 (de) Monolithischer keramischer kondensator
DE2714196C3 (de) Beschichtetes Aluminiumoxidsubstrat und Pulvergemisch zur Beschichtung solcher Substrate
DE2946753C2 (fr)
DE602005001305T2 (de) Dickschichtwiderstandspaste und ein Dickschichtwiderstand
DE19622690B4 (de) Verfahren zur Herstellung eines Monolithischen Keramikkondensators
DE1596851A1 (de) Widerstandsmaterial und aus diesem Widerstandsmaterial hergestellter Widerstand
DE3924563C2 (de) Nicht-reduzierende dielektrische keramische Zusammensetzung
DE1903925A1 (de) Elektrischer Cermet-Widerstand und Verfahren zu seiner Herstellung
EP0327816B1 (fr) Conducteur en film épais à base de cuivre non oxydable
DE2809818B2 (de) Leitfähige Zusammensetzung und deren Verwendung
DE4005505A1 (de) Monolithischer keramischer kondensator
DE2403667C3 (de) Elektrische Widerstandsmasse aus elektrisch-leitfähigen, wismuthaltigen, polynären Oxiden pyrochlorverwandter Kristallstruktur und einem dielektrischen Feststoff und deren Verwendung zur Herstellung elektrischer Widerstände
DE602005001242T2 (de) Eine Dickschicht-Widerstandspaste, ein Dickschicht-Widerstand hergestellt unter Verwendung der Dickschicht-Widerstandspaste und eine elektronische Vorrichtung umfassend den Dickschicht-Widerstand
EP0040881A2 (fr) Résistance dépendant de la tension et procédé pour la fabrication
EP0124943B1 (fr) Verre diélectrique pour circuits multicouches et circuits à couches épaisses qui en sont pourvus
DE2640316A1 (de) Material fuer einen elektrischen widerstand und verfahren zur herstellung eines widerstandes
EP0529195B1 (fr) Pâte résistante pour la fabrication des résistances à couche épaisse
DE3011977C2 (fr)
EP0395799B1 (fr) Oxyde apparenté au pyrochlore et pâte résistante en comportant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19930208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58905651

Country of ref document: DE

Date of ref document: 19931028

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931014

ITF It: translation for a ep patent filed
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990129

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050113