EP0302084B1 - Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech - Google Patents

Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech Download PDF

Info

Publication number
EP0302084B1
EP0302084B1 EP88900817A EP88900817A EP0302084B1 EP 0302084 B1 EP0302084 B1 EP 0302084B1 EP 88900817 A EP88900817 A EP 88900817A EP 88900817 A EP88900817 A EP 88900817A EP 0302084 B1 EP0302084 B1 EP 0302084B1
Authority
EP
European Patent Office
Prior art keywords
retort
treatment
pitch
rotating stage
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88900817A
Other languages
English (en)
French (fr)
Other versions
EP0302084A1 (de
Inventor
Rudolf Geier
Rolf Joest
Wilhelm WÜLLSCHEIDT
Horst Mathejka
Heinrich Patalon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Voest Alpine Industrieanlagenbau GmbH
Original Assignee
Deutsche Voest Alpine Industrieanlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Voest Alpine Industrieanlagenbau GmbH filed Critical Deutsche Voest Alpine Industrieanlagenbau GmbH
Priority to AT88900817T priority Critical patent/ATE71132T1/de
Publication of EP0302084A1 publication Critical patent/EP0302084A1/de
Application granted granted Critical
Publication of EP0302084B1 publication Critical patent/EP0302084B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Definitions

  • a process for the production of carbon or graphite fibers or filaments from coal tar pitch is known, after which the coal tar pitch is spun from the melt and the pitch fibers obtained are subjected to oxidation, then carbonization and optionally graphitization.
  • the carbon fibers or threads spun from the pitch melt are dusted with fine ground activated carbon, which is impregnated with liquid oxidation aids, and heated in an oxidizing atmosphere to 400 ° C before carbonization.
  • the subsequent carbonization of the oxidized carbon threads takes place at a temperature of about 1000 ° C (see. DE-PS 24 19 659).
  • you want to produce carbon fibers or threads from coal tar pitch which can be oxidized and carbonized in a relatively short time.
  • the thermal aftertreatment - oxidation and carbonization of the spun pitch fibers - is time-consuming, if only because the individual process steps take place one after the other.
  • the invention has for its object to provide a device of the type described above, with which the thermal aftertreatment can be carried out extremely easily and quickly, so that the manufacture of the carbon fibers or threads is particularly efficient and economical.
  • the invention further provides that the treatment devices on the lower rotating platform are offset by 90 ° to one another and arranged on a rotating circle that projects in vertical projection Exceeds the outer circumference of the upper rotating platform for lateral passage of the treatment devices to be raised and for connecting the raised treatment devices to the respective retort cover below the retort cover receptacles, which are offset by 90 ° to one another, each treatment device being assigned its own lifting device.
  • the fiber tray is designed as a collapsible scissor gate for fiber loops hanging freely on horizontal bars and can be inserted into a treatment retort when pushed together.
  • a scissors creel enables the storage of a strand consisting of a large number of individual pitch fibers or pitch threads, in such a way that no fiber or thread sticking occurs during the thermal aftertreatment and free shrinkage is made possible.
  • coal tar pitch is freed of infusible or quinoline-insoluble components by filtration before spinning.
  • the pitch filtrate is then subjected to distillation to remove volatile or low molecular weight constituents.
  • the pitch fibers 2 spun from the pitch melt or hard pitch melt are oxidized using an oxidation aid such as activated carbon at a predetermined oxidation temperature to make them infusible.
  • the oxidized pitch fibers 2 are carbonized using an inert gas at a predetermined carbonization temperature to drive off volatile by-products.
  • Pitch filtrate is continuously introduced into a thin-film evaporator in the course of the distillation and is evenly distributed over the inner circumference by a rotating distributor ring.
  • the rotor wiper blades moving along the evaporator zone capture the pitch filtrate and spread a thin film over the heating wall.
  • the volatile product portion evaporates under the influence of an applied vacuum and is deposited on a condenser.
  • the non-evaporated part of the product, namely hard pitch leaves the thin film evaporator.
  • a vacuum pump requests the hard pitch to granulate. None of this is shown.
  • the pitch granules are melted in an extruder 3.
  • the pitch melt runs through a filter 4 and is fed to a centrifugal spinning head 6 by means of a metering pump 5.
  • the spinning centrifuge which is provided with nozzle holes on its lower part, pushes the pitch melt through the nozzle holes. Endless filaments are created, which are placed on a slowly rotating catch ring.
  • the catch ring is provided with a cutting device that cuts the continuous filaments to the desired fiber length. Since one would like to have a fuse for the subsequent thermal aftertreatment, a corresponding number of individual fibers, which result in the desired fuse cross section, are placed one above the other on the catch ring.
  • the sliver is deposited in a coiler 7.
  • the fiber sliver is deposited over deflection rollers 8 in free-hanging loops on an extended scissor gate 9.
  • the scissors gate 9 is pushed together in order to ensure a high space utilization of the oxidation furnace 10 or carbonization furnace 11 and placed in a treatment retort 12.
  • the treatment retort 12 is heated to 350 ° C.
  • the carbonization furnace 11 is lowered and heated to 1000 ° C., while the vacuum retort 13 is lifted from the basement under the treatment retort 12.
  • a vacuum unit 17 is then put into operation. After a few minutes, the vacuum retort 13 or treatment retort 12 can be released to normal pressure with nitrogen. For safety reasons, it is flushed again with nitrogen.
  • the vacuum retort 13 is then lowered back into the basement and replaced with the carbonization furnace 11, which has meanwhile been heated to 1000.degree.
  • the carbonization takes ten minutes to dwell, wherein volatile compounds are transported through preheated nitrogen via the treatment retort 12 for condensation or combustion of exhaust air.
  • the carbonization furnace 11 is shut down, the heat exchanger 15 is decommissioned and the interior of the treatment retort 12 is cooled to temperatures below 600 ° C. using cold nitrogen.
  • the scissors gate 9 can be removed, pulled apart and transported to the cooling stand, where the cooling of the carbon fibers 1 is carried out to room temperature.
  • the device for the thermal aftertreatment of the pitch fibers 2 has a lower rotating stage 18 with the oxidation furnace 10, the vacuum retort 13, the carbonization furnace 11 and a cooling retort 19. All treatment devices 10, 11, 13, 19 are designed in an open container construction for receiving treatment retorts 12. Furthermore, an upper rotating stage 20, which can be rotated independently of the lower rotating platform 18, is provided with a traversing device for treatment retorts 12 for temporarily receiving the fiber trays 9 with the pitch fibers 2 to be treated.
  • the traversing device transfers the treatment retorts 12 for connection to the respective retort cover 24 from the upper turntable 20 below the respective one Retort lid 24 and vice versa.
  • the lower turntable 18 has at least one lifting device 25 for each of the oxidation furnace 10, the vacuum retort 13, the carbonization furnace 11 and the cooling retort 19.
  • treatment devices can be moved to accommodate the treatment retorts 12 under the retort lid receptacle 23 or the relevant retort lid 24 and can be raised or vice versa.
  • the treatment devices 10, 11, 13, 19 can be displaced by 90 ° to one another on the lower rotating platform 18 and are arranged on a rotating circle which, in vertical projection, the outer periphery of the upper rotating platform 20 for passing the upper rotating platform 20 to be raised for laterally passing the treatment devices to be raised 10, 11, 13, 19 and for connecting the raised treatment facilities to the respective retort cover 24 extends below the retort cover receptacles 23, which are offset by 90 ° to one another.
  • Each treatment device 10, 11, 13, 19 is assigned its own lifting device 25, so that one of the four processes of oxidation, evacuation, carbonization and cooling can take place simultaneously under each retort lid 24.
  • At least two treatment retorts 12 offset from one another by 180 ° C. can be placed simultaneously on the upper rotating stage 20.
  • the fiber tray is designed as a collapsible scissors gate 9 for fiber loops hanging freely on horizontal bars and can be used in a retracted condition in a treatment retort 12.
  • the device operates as follows if one of the four processes of oxidation, evacuation, carbonization and cooling takes place simultaneously under each retort lid 24:
  • the upper rotating stage 20 rotates by 180 ° C. While a scissor gate 9 with finished carbon fibers 1 is removed from the other treatment retort 12, the lower rotating stage 18 rotates by 90 °, so that the cooling retort 19 against the oxidation furnace 10 is exchanged.
  • the lifting device 25 moves the oxidation furnace 10 - a low-temperature furnace - from below over the treatment retort 12.
  • hot oxidation air is passed through the treatment retort 12 and the oxidation furnace 10 is heated up in accordance with the optimized temperature profile.
  • the hot process gases are fed to the exhaust air cleaning system.
  • the vacuum retort 13 is lifted from below over the treatment retort 12 via the lifting device 25.
  • the vacuum applied evacuates the oxidation furnace 10.
  • the treatment retort 12 is still flushed with nitrogen while relieving pressure.
  • the vacuum retort 13 is moved down to the lower rotating platform 18.
  • Fig. 12 The carbonization furnace 11 is moved from below via the treatment retort 12 by means of the lifting device 25. During the subsequent carbonization process, preheated nitrogen is passed through treatment retort 12 and transports the volatile compounds to the exhaust system.
  • the lower rotating stage 18 rotates by 90 °, so that the cooling retort 19 comes to rest under the treatment retort 12.
  • the pitch fibers 2 are cooled to temperatures below 600 ° C. by supplying cold nitrogen.
  • the further cooling can take place in the cooling station 19 with cold air.
  • the pitch fibers obtained were heated in an oxidation oven 10 in 16 minutes to an oxidation temperature of 340 ° C.
  • a critical oxidation range (softening point ⁇ 25 ° C) was run through with a maximum heating rate of 20 ° C / min.
  • the air flow rate was 2000 to 3000 1 / h.
  • the pitch fibers 2 did not fuse during the oxidation and also showed no external damage.
  • the infusibility achieved allowed subsequent rapid carbonization using the usual method.
  • activated carbon (without H2SO4) was used as an oxidation aid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech, mit zumindest einer Faserablage, einem Oxidationsofen und einem Carbonisationsofen.
    • Die Erfindung umfaßt in gleicher Weise die Nachbehandlung von Kohlenstoff-Fäden. Aus den Kohlenstoff-Fasern oder
    • Fäden lassen sich in bekannter Weise auch Graphitfasern oder -fäden herstellen.
  • Es ist ein Verfahren zur Herstellung von Kohlenstoff- oder Graphitfasern oder -fäden aus Kohlenteerpech bekannt, wonach man das Kohlenteerpech aus der Schmelze verspinnt und die erhaltenen Pechfasern einer Oxidation, dann einer Carbonisierung und ggf. Graphitierung unterwirft. Die aus der Pechschmelze versponnenen Kohlenstoff-Fasern bzw. -Fäden werden vor der Carbonisierung -mit fein gemahlener Aktivkohle, die mit flüssigen Oxidationshilfsmitteln imprägniert ist, bestäubt und in oxidierender Atmosphäre bis auf 400° C erhitzt Die nachfolgende Carbonisierung der oxidierten Kohlenstoff-Fäden erfolgt bei einer Temperatur von ca. 1000° C (vgl. DE-PS 24 19 659). Auf diese Weise will man Kohlenstoff-Fasern bzw. -Fäden aus Kohlenteerpech herstellen, die in verhältnismäßig kurzer Zeit oxidiert und carbonisiert werden können. Tatsächlich ist die thermische Nachbehandlung - Oxidation und Carbonisierung der ersponnenen Pechfasern - jedoch zeitaufwendig, schon weil die einzelnen Prozeßstufen nacheinander ablaufen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs beschriebenen Art zu schaffen, mit der sich die thermische Nachbehandlung extrem einfach und schnell durchführen läßt, so daß die Herstellung der Kohlenstoff-Fasern bzw. -Fäden im ganzen besonders rationell und wirtschaftlich wird.
  • Zur Lösung dieser Aufgabe ist die gattungsgemäße Vorrichtung gekennzeichnet durch
    • eine untere Drehbühne mit dem Oxidationsofen, einer Vakuumretorte, dem Carbonisationsofen und einer Kühlretorte, sämtliche Behandlungseinrichtungen in oben offener Behälterbauweise,
    • eine unabhängig von der unteren Drehbühne drehbare obere Drehbühne mit einer Changiereinrichtung für Behandlungsretorten zur vorübergehenden Aufnahme der Faserablage bzw. Faserablagen mit den zu behandelnden Pechfasern,
    • eine Beschickungsebene oberhalb der oberen Drehbühne mit zumindest einer Beschickungsöffnung und zumindest einer Retortendeckelaufnahme für Retortendeckel mit Anschluß für Luft- und Inertgaszufuhr, Vakuum und Abluft,
    wobei die Changiereinrichtung die Behandlungsretorten zum Abschluß an den jeweiligen Retortendeckel von der oberen Drehbühne unter dem betreffenden Retortendeckel überführt und umgekehrt, und wobei die untere Drehbühne zumindest eine Hubvorrichtung für jeweils den Oxidationsofen, die Vakuum, retorte, den Carbonisationsofen und die Kühlretorte aufweist und diese Behandlungseinrichtungen zur Aufnahme der Behandlungsretorten unter die Retortendeckelaufnahme bzw. den betreffenden Retortendeckel verfahrbar und hochfahrbar sind sowie umgekehrt. - Im Zuge der thermischen Nachbehandlung der Pechfasern zu Kohlenstoff-Fasern werden sehr kurze Verweilzeiten sowie ein äußerst geringer Inertgas- und Energieverbrauch erreicht. Tatsächlich läßt sich die thermische Nachbehandlungszeit und insbesondere Oxidationszeit sowie Carbonisationszeit erheblich verkürzen, schon weil die verschiedenen Prozeßstufen in der erfindungsgemäßen Vorrichtung gleichzeitig ablaufen können. Im Ergebnis entstehen in wirtschaftlicher Hinsicht rationell gefertigte Kohlenstoff-Fasern bzw. -Fäden von hoher Qualität und insbesondere Zugfestigeit.
  • Damit gleichzeitig unter jedem Retortendeckel jeweils einer der vier Prozesse Oxidation, Evakuierung, Carbonisation und Kühlung ablaufen kann, sieht die Erfindung weiter vor, daß die Behandlungseinrichtungen auf der unteren Drehbühne um 90° zueinander versetzt und auf einem Drehkreis angeordnet sind, der in vertikaler Projektion den Außenumfang der oberen Drehbühne zum seitlichen Passieren der hochzufahrenden Behandlungseinrichtungen übersteigt und zum Anschluß der hochgefahrenen Behandlungseinrichtungen an den jeweiligen Retortendeckel unterhalb der in gleicher Weise um 90° zueinander versetzten Retortendeckelaufnahmen verläuft, wobei jeder Behandlungseinrichtung eine eigene Hubvorrichtung zugeordnet ist. Auf die obere Drehbühne sind zumindest zwei um 180° zueinander versetzte Behandlungsretorten gleich- zeitig aufsetzbar, damit dem Behandlungssystem wechselweise eine Behandlungsretorte mit zu behandelnden Pechfasern zugeführt und einer Behandlungsretorte mit fertig behandelten Kohlenstoff-Fasern abgeführt werden kann. Nach einer bevor- zugten Ausführungsform der Erfindung ist vorgesehen, daß die Faserablage als zusammenschiebbares Scherengatter für an waagerechten Stäben freihängende Faserschlaufen ausgebildet und in zusammengeschobenem Zustand in eine Behandlungsretorte einsetzbar ist. Ein derartiges Scherengatter ermöglicht die Ablage eines aus einer Vielzahl einzelner Pechfasern oder Pechfäden bestehenden Stranges, und zwar derart, daß während der thermischen Nachbehandlung keine Faser- bzw. Fadenverklebungen auftreten und ein freier Schrumpf ermöglicht wird. Durch das Zusammenschieben des Scherengatters wird eine hohe Dichte ≧ 0,03 g/cm³ erreicht.
  • Im folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen
    • Fig. 1 ein schematisches Verfahrensfließbild zur Herstellung von Kohlenstoff-Fasern,
    • Fig. 2 die Vorrichtung zur thermischen Nachbehandlung in schematischer Aufsicht unterhalb der Beschickebene und
      Fig. 3 bis 17 einen Behandlungszyklus mit dem Gegenstand nach Fig. 2 in Seitenansicht.
  • Im Zuge der Herstellung von Kohlenstoff-Fasern 1 aus Kohlenteerpech und insbesondere Steinkohlenteerpech wird das Kohlenteerpech vor dem Verspinnen durch Filtration von unschmelzbaren bzw. chinolinunlöslichen Bestandteilen befreit. Anschließend wird das Pechfiltrat einer Destillation zum Entfernen flüchtiger bzw. niedermolekularer Bestandteile unterzogen. Dann werden die aus der gewonnenen Pechschmelze bzw. Hartpechschmelze versponnenen Pechfasern 2 unter Verwendung eines Oxidationshilfsmittels wie Aktivkohle bei vorgegebener Oxidationstemperatur zum Unschmelzbarmachen oxidiert. Schließlich werden die oxidierten Pechfasern 2 unter Verwendung eines Inertgases bei vorgegebener Carbonisationstemperatur zum Austreiben flüchtiger Nebenprodukte carbonisiert. Pechfiltrat wird im Zuge der Destillation kontinuierlich in einen Dünnschichtverdampfer eingetragen und durch einen rotierenden Verteilerring gleichmäßig auf dem inneren Umfang verteilt. Die sich entlang der Verdampferzone bewegenden Rotor-Wischblätter erfassen das Pechfiltrat Lind breiten einen dünnen Film über der Heizwand aus. Dabei verdampft unter dem Einfluß eines angelegten Vakuums der flüchtige Produktanteil und wird auf einem Kondensator niedergeschlagen. Der nichtverdampfte Produktanteil, nämlich Hartpech, verläßt den Dünnschichtverdampfer. Eine Vakuumpumpe fordert das Hartpech zum Granulieren ab. Das alles ist nicht gezeigt.
  • Das Pechgranulat wird in einem Extruder 3 aufgeschmolzen. Die Pechschmelze läuft über ein Filter 4 und wird mittels einer Dosierpumpe 5 einem Zentrifugalspinnkopf 6 zugeführt. Die Spinnzentrifuge, die an ihrem unteren Teil mit Düsenbohrungen versehen ist, drückt die Pechschmelze durch die Düsenbohrungen. Es entstehen zunächst endlose Filamente, die auf einem langsam rotierenden Fangring abgelegt werden. Der Fangring ist mit einer Schneidvorrichtung versehen, welche die Endlosfilamente auf die gewünschte Faserlänge schneidet. Da man für die nachfolgende thermische Nachbehandlung eine Lunte haben möchte, wird eine entsprechende Anzahl von Einzelfasern, die den gewünschten Luntenquerschnitt ergeben, am Fangring übereinander abgelegt. Die Luntenablage erfolgt in einem Coiler 7. Die Faserlunte wird über Umlenkrollen 8 in freihängenden Schlaufen auf einem auseinandergezogenen Scherengatter 9 abgelegt. Nach beendeter Ablage wird das Scherengatter 9, um eine hohe Raumausnutzung des Oxidationsofens 10 bzw. Carbonisationsofens 11 zu gewährleisten, zusammengeschoben und in eine Behandlüngsretorte 12 gegeben. Während des sich anschließenden Oxidationsprozesses befindet sich eine Vakuumretorte 13 im Untergeschoß und der Oxidationsofen 10 wird von unten über die Behandlungsretorte 12 gefahren. Nach einem abgestuften Temperaturprogramm wird die Behandlungsretorte 12 auf 350° C aufgeheizt. Während dieses Oxidationsprozesses zur Unschmelzbarmachung der Pechfasern 2 wird über ein Filter durch eine Pumpe 14 Luft über einen elektrischen Wärmetauscher 15 geleitet und durchströmt als heiße Oxidationsluft die Behandlungsretorte 12 von unten nach oben. Da während des Oxidationsprozesses flüchtige Pechbestandteile entweichen, wird die Abluft zunächst einem Wärmetauscher 16 zugeführt. Nichtkondensierbare Schadstoffe werden anschließend in einer fremdflammengeschützten Abluftverbrennungsanlage verbrannt. - Der nachfolgende Carbonisationsprozeß muß, um ein Verbrennen der Pechfasern 2 zu vermeiden, unter Inertgas ausgeführt werden. Um den Sauerstoff möglichst quantitativ aus der Faserlunte zu entfernen wird die Behandlungsretorte 12 zunächst evakuiert. Da die Behandlungsretorte 12 zwecks gutem Wärmedurchgangsmassearm aus nichtvakuumfestem Dünnblech hergestellt ist, wird der Carbonisationsofen 11 hinabgefahren und auf 1000° C aufgeheizt, während die Vakuumretorte 13 aus dem Untergeschoß unter die Behandlungsretorte 12 gehoben wird. Anschließend wird ein Vakuumaggregat 17 in Betrieb gesetzt. Nach einigen Minuten kann die Vakuumretorte 13 bzw. Behandlungsretorte 12 mit Stickstoff auf Normaldruck entspannt werden. Zur Sicherheit wird noch einmal mit Stickstoff gespült. Anschließend wird die Vakuumretorte 13 wieder in das Untergeschoß herabgelassen und gegen den mittlerweile auf 1000° C aufgeheizten Carbonisationsofen 11 ausgetauscht. Die Carbonisation erfordert zehn Minuten Verweilzeit, wobei flüchtige Verbindungen durch vorgeheizten Stickstoff über die Behandlungsretorte 12 zur Kondensation bzw. Abluftverbrennung transportiert werden. Nach beendeter Carbonisation wird der Carbonisationsofen 11 hinabgefahren, der Wärmetauscher 15 außer Betrieb genommen und der Innenraum der Behandlungsretorte 12 mit kaltem Stickstoff auf Temperaturen unter 600° C gekühlt. Nun kann das Scherengatter 9 entnommen, auseinandergezogen und zum Kühlstand transportiert werden, wo die Abkühlung der Kohlenstoff-Fasern 1 bis auf Raumtemperatur vollzogen wird.
  • Im einzelnen weist die Vorrichtung zur thermischen Nachbehandlung der Pechfasern 2 eine untere Drehbühne 18 mit dem Oxidationsofen 10, der Vakuumretorte 13, dem Carbonisationsofen 11 und einer Kühlretorte 19 auf. Sämtliche Behandlungseinrichtungen 10, 11, 13, 19 sind in oben offener Behälterbauweise zur Aufnahme von Behandlungsretorten 12 ausgeführt. Ferner ist eine unabhängig von der unteren Drehbühne 18 drehbare obere Drehbühne 20 mit einer Changiereinrichtung für Behandlungsretorten 12 zur vorübergehenden Aufnahme der Faserablagen 9 mit den zu behandelnden Pechfasern 2 vorgesehen. Oberhalb der oberen Drehbühne 20 befindet sich eine Beschickebene 21 mit zumindest einer Beschicköffnung 22 und zumindest einer Retortendeckelaufnahme 23 für Retortendeckel 24 mit Anschluß für Luft- und Inertaszufuhr, Vakuum und Abluft. Die Changiereinrichtung überführt die Behandlungsretorten 12 zum Anschluß an den jeweiligen Retortendeckel 24 von der oberen Drehscheibe 20 unter den betreffenden Retortendeckel 24 und umgekehrt. Die untere Drehscheibe 18 weist zumindest eine Hubvorrichtung 25 für jeweils den Oxidationsofen 10, die Vakuumretorte 13, den Carbonisationsofen 11 und die Kühlretorte 19 auf. Diese Behandlungseinrichtungen sind zur Aufnahme der Behandlungsretorten 12 unter die Retortendeckelaufnahme 23 bzw. den betreffenden Retortendeckel 24 verfahrbar und hochfahrbar bzw. umgekehrt. Die Behandlungseinrichtungen 10, 11, 13, 19 sind auf der unteren Drehbühne 18 um 90° zueinander versetzbar und auf einem Drehkreis angeordnet, der in vertikaler Projektion den Außenumfang der oberen Drehbühne 20 zum seitlichen Passieren der hochzufahrenden oberen Drehbühne 20 zum seitlichen Passieren der hochzufahrenden Behandlungseinrichtungen 10, 11, 13, 19 übersteigt und zum Anschluß der hochgefahrenen Behandlungseinrichtungen an den jeweiligen Retortendeckel 24 unterhalb der in gleicher Weise um 90° zueinander versetzten Retortendeckelaufnahmen 23 verläuft. Jeder Behandlungseinrichtung 10, 11, 13, 19 ist eine eigene Hubvorrichtung 25 zugeordnet, so daß jeweils gleichzeitig unter jedem Retortendeckel 24 einer der vier Prozesse Oxidation, Evakuierung, Carbonisation und Kühlung ablaufen kann. Auf die oberer Drehbühne 20 sind zumindest zwei um 180° C zueinander versetzte Behandlungsretorten 12 gleichzeitig aufsetzbar. Die Faserablage ist als zusammeschiebbarens Scherengatter 9 für an waagerechten Stäben freihängende Faserschlaufen ausgebildet und in zusammengeschobenem Zustand in jeweils eine Behandlungsretorte 12 einsetzbar.
  • In einzelnen arbeitet die Vorrichtung wie folgt, wenn gleichzeitig unter jedem Retortendeckel 24 jeweils einer der vier Prozesse Oxidation, Evakuierung, Carbonisation und Kühlung abläuft:
  • Fig. 3) Auf der oberen Drehbühne 20 wird eine leere Behandlungsietorte 12 von oben mit einem zusammengezogenen Scherengatter 9 gefüllt.
  • Fig. 4) Die obere Drehbühne 20 dreht sich um 180° C. Während aus der anderen Behandlungsretorte 12 ein Scherengatter 9 mit fertigen KohlenstoffFasern 1 entnommen wird, dreht sich die untere Drehbühne 18 um 90°, so daß die Kühlretorte 19 gegen den Oxidationsofen 10 ausgetauscht wird.
  • Fig. 5) Die Behandlungsretorte 12 mit den unbehandelten Pechfasern 2 wird durch die Changiereinrichtung unter den zugeordneten Retortendeckel 24 transportiert.
  • Fig. 6) Durch die Hubvorrichtung 25 wird der Oxidationsofen 10 - ein Niedertemperaturofen - von unten über die Behandlungsretorte 12 gefahren. Während des nun folgenden Oxidationsprozesses-wird heiße Oxidationsluft durch die Behandlungsretorte 12 geleitet und der Oxidationsofen 10 entsprechend dem optimierten Temperaturprofil aufgeheizt. Die heißen Prozeßgase werden der Abluftreinigung zugeführt.
  • Fig. 7) Nach beendeter Oxidation wird der Oxidationsofen 10 auf die untere Drehbühne 18 herabgefahren.
  • Fig. 8) Die untere Drehbühne 18 dreht um 90°, so daß die Vakuumretorte 13 unter der Behandlungsretorte 12 zu stehen kommt.
  • Fig. 9) Die Vakuumretorte 13 wird über die Hubvorrichtung 25 von unten über die Behandlungsretorte 12 gehoben. Das angelegte Vakuum evakuiert den Oxidationsofen 10.
  • Fig. 10) Zur Sicherheit wird die Behandlungsretorte 12 noch mit Stickstoff unter gleichzeitiger Druckentspannung gespült. Die Vakuumretorte 13 wird auf die untere Drehbühne 18 hinabgefahren.
  • Fig. 11) Die untere Drehbühne 18 dreht um 90°, so daß der inzwischen 1000° heiße Carbonisationsofen 11 - ein Hochtemperaturofen - unter der Behandlungsretorte 12 steht.
  • Fig. 12) Der Carbonisationsofen 11 wird mittels der Hubvorrichtung 25 von unten über die Behandlungsretorte 12 gefahren. Während des nun folgenden Carbonisationsprozesses wird vorgeheizter Stickstoff durch die Behandlungsretorte 12 geleitet und transportiert die flüchtigen Verbindungen zum Abluftsystem.
  • Fig. 13) Der Carbonisationsofen 11 wird auf die untere Drehbühne 18 hinabgefahren.
  • Fig. 14) Die untere Drehbühne 18 dreht um 90°, so daß die Kühlretorte 19 unter der Behandlungsretorte 12 zu stehen kommt. Die Pechfasern 2 werden durch Zufuhr von kaltem Stickstoff auf Temperaturen unter 600° C gekühlt.
  • Fig. 15) Die weitere Abkühlung kann in der Kühlstation 19 mit kalter Luft erfolgen.
  • Fig. 16) Die Kühlstation 19 wird auf die untere Drehbühne 18 hinabgefahren.
  • Fig. 17) Durch die Changiervorrichtung wird die Behandlungsretorte 12 auf die obere Drehbühne 20 transportiert. Ein neuer Zyklus beginnt.
  • Beispiel für den Oxidationsprozeß
  • Die charakteristischen Daten eines in einem Dünnschichtverdampfer destillierten Steinkohlenteerpechs sind im folgenden aufgeführt:
    Figure imgb0001
  • Dieses durch Dünnschichtverdampfung gewonnene hochschmelzende Steinkohlenteerpech (EP (KS): 228° C) wurde zu Pechfasern 2 versponnen. Die erhaltenen Pechfasern wurden hängend in einem Oxidationsofen 10 in 16 Minuten auf eine Oxidationstemperatur von 340° C aufgeheizt. Ein kritischer Oxidationsbereich (Erweichungspunkt ± 25° C) wurde dabei mit einer maximalen Aufheizrate von 20° C/min durchfahren. Der Luftdurchsatz betrug dabei 2000 bis 3000 1/h. Die Pechfasern 2 verschmolzen während des Oxidierens nicht, wiesen auch keine äußerlichen Beschädigungen auf. Die erreichte Unschmelzbarkeit erlaubte ein anschließendes rasches Carbonisieren nach der üblichen Methode. Im übrigen wurde Aktivkohle (ohne H₂SO₄) als Oxidationshilfsmittel verwendet.

Claims (4)

1. Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech mit zumindest einer Faserablage, einem Oxidationsofen und einem Carbonisationsofen, gekennzeichnet durch,
- eine untere Drehbühne (18) mit dem Oxidationsofen (10), einer Vakuumretorte (11), dem Carbonisationsofen (11) und einer Kühlretorte (19), sämtliche Behandlungseinrichtungen in oben offener Behälterbauweise,
- eine unabhängig von der unteren Drehbühne (18) drehbare obere Drehbühne (20) mit einer Changiereinrichtung für Behandlungsretorten (12) zur vorübergehenden Aufnahme der Faserablage (9) mit den zu behandelnden Pechfasern (2),
- eine Beschickebene (21) oberhalb der oberen Drehbühne (20) mit zumindest einer Beschicköffnung (22) und zumindest einer Retortendeckelaufnahme (23) für Retortendeckel (24) mit Anschluß für Luft- und Inertgaszufuhr, Vakuum und Abluft,
wobei die Changiereinrichtung die Behandlungsretorten (12) zum Anschluß an den jeweiligen Retortendeckel (24) von der oberen Drehbühne (20) unter den betreffenden Retortendeckel (24) überführt und umgekehrt, und wobei die untere Drehbühne (18) zumindest eine Hubvorrichtung (25) für jeweils den Oxidationsofen (10), die Vakuumretorte (11), den Carbonisationsofen (11) und die Kühlretorte (19) aufweist und diese Behandlungseinrichtungen (10, 11, 13, 19) zur Aufnahme der Behandlungsretorten (12) unter die Retortendeckelaufnahme (23) bzw. den betreffenden Retortendeckel (24) verfahrbar und hochfahrbar sind sowie umgekehrt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Behandlungseinrichtungen (10, 11, 13, 19) auf der unteren Drehbühne (18) um 90° zueinander versetzt und auf einem Drehkreis angeordnet sind, der in vertikaler Projektion den Außenumfang der oberen Drehscheibe (20) zum seitlichen Passieren der hochzufahrenden Behandlungseinrichtungen (10, 11, 13, 19) übersteigt und zum Anschluß der hochgefahrenen Behandlungseinrichtungen an den jeweiligen Retortendeckel (24) unterhalb der in gleicher Weise um 90° zueinander versetzten Retortendeckelaufnahmen (23) verläuft, wobei jeder Behandlungseinrichtung (10, 11, 13, 19) eine eigene Hubvorrichtung (25) zugeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf die obere Drehscheibe (20) zumindest zwei um 180° zueinander versetzte Behandlungsretorten (12) gleichzeitig aufsetzbar sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Faserablage als zusammenschiebbares Scherengatter (9) für an waagerechten Stäben freihängende Faserschlaufen ausgebildet und in zusammengeschobenem Zustand in eine Behandlungsretorte (12) einsetzbar ist.
EP88900817A 1987-02-07 1988-01-05 Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech Expired - Lifetime EP0302084B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88900817T ATE71132T1 (de) 1987-02-07 1988-01-05 Vorrichtung zum thermischen nachbehandeln von kohlenstoff-fasern aus kohlenteerpech, insbesondere steinkohlenteerpech.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873703825 DE3703825A1 (de) 1987-02-07 1987-02-07 Verfahren und vorrichtung zum herstellen von kohlenstoff-fasern
DE3703825 1987-02-07

Publications (2)

Publication Number Publication Date
EP0302084A1 EP0302084A1 (de) 1989-02-08
EP0302084B1 true EP0302084B1 (de) 1992-01-02

Family

ID=6320505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88900817A Expired - Lifetime EP0302084B1 (de) 1987-02-07 1988-01-05 Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech

Country Status (10)

Country Link
EP (1) EP0302084B1 (de)
CN (1) CN88100656A (de)
AT (1) ATE71132T1 (de)
AU (1) AU1103888A (de)
DD (1) DD279907A5 (de)
DE (2) DE3703825A1 (de)
ES (1) ES2006553A6 (de)
GR (1) GR1000124B (de)
IN (1) IN168504B (de)
WO (1) WO1988005805A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1000326B (el) * 1988-02-05 1992-06-25 Didier Eng Μηχανικη διαταξη για την παραγωγη ινων ανθρακα.
DE3829986A1 (de) * 1988-09-03 1990-03-15 Enka Ag Verfahren zur erhoehung des mesophasenanteils in pech
US5427908A (en) * 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
CA2085490C (en) * 1990-11-01 2002-01-01 Donald C. Berkebile (Deceased) Processes for the manufacture of enriched pitches and carbon fibers
CN100402419C (zh) * 2006-08-02 2008-07-16 太原理工大学 一种以煤焦油沥青为原料制备纳米碳纤维的方法
CN103361096B (zh) * 2012-04-10 2014-12-03 上海宝钢化工有限公司 一种生产通用级碳纤维的高软化点沥青的制备方法
CN105463630B (zh) * 2012-11-13 2018-07-10 宁波高新区零零七工业设计有限公司 碳纤维生产设备
DE102013208426A1 (de) 2013-05-07 2014-11-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Verarbeitung von Carbonfasersträngen
CN105839213B (zh) * 2016-06-13 2019-05-17 天津工业大学 一种沥青炭纤维原丝熔融纺丝机
CN111849530B (zh) * 2020-07-30 2021-12-03 贵州省煤炭产品质量监督检验院 煤焦油深度处理加工系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB850880A (en) * 1957-10-16 1960-10-12 Gelsenkirchener Bergwerks Ag Process and apparatus for the continuous production of pitch
US3718493A (en) * 1968-06-04 1973-02-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
BE759139A (fr) * 1970-02-20 1971-04-30 Mitsubishi Oil Co Procede de fabrication d'une fibre au carbone
US3895447A (en) * 1973-05-10 1975-07-22 Vaportech Corp Apparatus for treating cellulosic-containing articles to render them crease resistant
JPS6057478B2 (ja) * 1978-06-28 1985-12-14 呉羽化学工業株式会社 炭素繊維用ピツチの製造法
IT1137958B (it) * 1981-06-26 1986-09-10 Manifattura Tintoria & Trasfor Procedimento per la tintura di fascio di fibre strappato,apparecchiatura per la sua realizzazione e prodotto cosi'ottenuto
US4497789A (en) * 1981-12-14 1985-02-05 Ashland Oil, Inc. Process for the manufacture of carbon fibers
JPS58220805A (ja) * 1982-06-15 1983-12-22 Nippon Oil Co Ltd 炭素繊維用前駆体ピツチの製造方法
DE3509861C2 (de) * 1984-03-26 1986-03-06 Idemitsu Kosan Co. Ltd., Tokio/Tokyo Pechmaterial für einen kohlenstoffhaltigen Formkörper und Verfahren zu seiner Herstellung
US4550579A (en) * 1984-04-13 1985-11-05 Frank Clifford G Apparatus for the dyeing of shaped articles

Also Published As

Publication number Publication date
AU1103888A (en) 1988-08-24
DE3703825C2 (de) 1991-11-21
CN88100656A (zh) 1988-08-17
EP0302084A1 (de) 1989-02-08
GR880100060A (en) 1988-12-16
DD279907A5 (de) 1990-06-20
ES2006553A6 (es) 1989-05-01
ATE71132T1 (de) 1992-01-15
DE3703825A1 (de) 1988-08-18
IN168504B (de) 1991-04-13
DE3867365D1 (de) 1992-02-13
WO1988005805A1 (en) 1988-08-11
GR1000124B (el) 1991-07-31

Similar Documents

Publication Publication Date Title
DE1925609C3 (de) Verfahren zur Herstellung von Kohlenstoff-Faeden
EP0302084B1 (de) Vorrichtung zum thermischen Nachbehandeln von Kohlenstoff-Fasern aus Kohlenteerpech, insbesondere Steinkohlenteerpech
DE3330575C2 (de)
DE3724102C1 (de) Verfahren und Vorrichtung zum Herstellen von anisotropen Kohlenstoffasern
EP0011841A1 (de) Verfahren und Vorrichtung zur Herstellung von Siliciumcarbid-Formkörpern
AT1123U1 (de) Reinigen von filtern
DE2807402C2 (de) Vorrichtung zur Entfernung von Rückständen auf Geräten durch Pyrolyse
DE4026174A1 (de) Vorrichtungen zum vacuumaufdampfen
DE3509861C2 (de) Pechmaterial für einen kohlenstoffhaltigen Formkörper und Verfahren zu seiner Herstellung
DE19647366A1 (de) Verfahren und Ofen zum Aktivieren einer gewebten oder ungewebten Textilmatte auf Grundlage von kontinuierlichen Fäden oder Garnen aus Kohlenstoffasern
WO1988005806A1 (en) Pitch material made of coal tar pitch, process for producing and using the same
DE2623968C2 (de) Verfahren und Vorrichtung zum Herstellen von Graphit- oder Kohlekörpern
DE3435120A1 (de) Verfahren zur veredelung kohlenstoffhaltiger zwischenfasern
DE3622092A1 (de) Verfahren und vorrichtung zur herstellung von kohlefasermatten
DD258794A1 (de) Verfahren und vorrichtung zur herstellung von glasfasererzeugnissen, z. b. vliesen, matten, garnen und vorgarnen
DE2925950A1 (de) Verfahren und vorrichtung zur unschmelzbarmachung von pechfasern
DE102005022242B4 (de) Anlage zur Entbinderung/Restentbinderung und Sinterung
WO1994003406A1 (de) Verfahren und vorrichtung zur thermischen behandlung von abfall- und/oder reststoffen
DE3538151A1 (de) Verfahren und vorrichtung zur herstellung von kunstkohlekoerpern
DE1469250C (de) Verfahren zum Verkohlen von verkohl barem Material
DE4217081C2 (de) Vorrichtung zum Entfernen von plattiertem Metall von Stahlblechschrott
AT411364B (de) Vorrichtung zur herstellung von viskosestapelfasern
DE512484C (de) Herstellung von Knochenkohle
WO2002068563A2 (de) Verfahren und vorrichtung für die behandlung von kohlenstoffhaltigem gut
CH680926A5 (en) Installation for hardening small metal components - includes furnace and salt bath container connected by means of shaft for transfer of components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19890831

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE ENGINEERING DER VOEST-ALPINE INDUSTRIEANL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920102

Ref country code: BE

Effective date: 19920102

Ref country code: GB

Effective date: 19920102

Ref country code: SE

Effective date: 19920102

Ref country code: NL

Effective date: 19920102

REF Corresponds to:

Ref document number: 71132

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

Ref country code: LI

Effective date: 19920131

REF Corresponds to:

Ref document number: 3867365

Country of ref document: DE

Date of ref document: 19920213

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920522

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST