EP0299027B1 - Alliage de metaux refractaires resistant au fluage et son procede de production - Google Patents

Alliage de metaux refractaires resistant au fluage et son procede de production Download PDF

Info

Publication number
EP0299027B1
EP0299027B1 EP88901002A EP88901002A EP0299027B1 EP 0299027 B1 EP0299027 B1 EP 0299027B1 EP 88901002 A EP88901002 A EP 88901002A EP 88901002 A EP88901002 A EP 88901002A EP 0299027 B1 EP0299027 B1 EP 0299027B1
Authority
EP
European Patent Office
Prior art keywords
alloy
creep
metals
sintered
refractory metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88901002A
Other languages
German (de)
English (en)
Other versions
EP0299027A1 (fr
Inventor
Ralf Eck
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0299027A1 publication Critical patent/EP0299027A1/fr
Application granted granted Critical
Publication of EP0299027B1 publication Critical patent/EP0299027B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the invention relates to a sintered alloy of one or more of the high-melting metals Mo, W, Nb, Ta, V, Cr with a stacked structure, which has excellent heat resistance combined with excellent creep resistance at high temperatures, and a process for its production.
  • refractory metals are often used for molded parts that are designed to withstand high temperatures.
  • TZM molybdenum alloy which typically contains approximately 0.5% by weight of titanium, 0.08% by weight of zirconium and 0.05% by weight of carbon.
  • the US-PS 3982970 also describes a high-melting alloy of this type, where the base material is strengthened to dispersion by heat treatment in a special atmosphere.
  • a suitable atmosphere is one which contains particles of thorium oxide or aluminum oxide with a grain size of ⁇ 1 ⁇ m.
  • Known alloys of high-melting metals of this type are, for example, tungsten and molybdenum alloys, which are usually doped with small amounts of aluminum and / or silicon and potassium. It is essential with these alloys made of high-melting metals that at least potassium must always be present in the alloy so that a stacked wire structure is formed.
  • the additional doping elements such as aluminum and / or silicon ensure that the potassium does not completely diffuse out of the material during the sintering, while practically completely escaping even during the sintering.
  • the doping elements aluminum, silicon and potassium can in principle be introduced in liquid form, in the form of their solutions, and dry in the form of the solid powders.
  • both methods of introduction are not without problems in the production of these alloys from refractory metals on an industrial scale.
  • the introduction of the potassium can only be sensibly solved in the form of the potassium silicates.
  • the potassium silicates have the disadvantage that they are hygroscopic and are therefore very difficult to distribute uniformly in the powder mixture.
  • the wet introduction of the doping elements in the form of solutions is also not without disadvantages with regard to reproducible production, since the slight volatility of the solutions, again in particular in the case of potassium, sintering with high sintering densities, which would be very advantageous for the subsequent mechanical shaping , difficult.
  • the introduction of the doping elements with a very specific grain size was not considered to be of major importance.
  • the object of the present invention is to create an alloy with a stack structure of one or more high-melting metals, in which the use of potassium as a doping element is dispensed with, as a result of which good reproducible production of the alloy and in particular high densities during sintering are achieved.
  • the alloy is said to have improved room temperature, warm and creep strength properties compared to the known alloys of high-melting metals with a stacked structure.
  • the alloy 0.005-10% by weight of one or more compounds and / or one or more mixed phases of the compounds from the group of oxides, nitrides, carbides, borides, silicates or aluminates with a grain size elf 1.5 ⁇ m, the additions being limited to compounds and / or mixed phases whose melting point is above 1500 ° C.
  • the present invention is based on the completely surprising finding, based on the known prior art, that the element potassium can be dispensed with when using very specific compounds as doping materials for producing high-strength and creep-resistant, sintered alloys from high-melting metals with a stacked structure.
  • the alloy of high-melting metal according to the invention has high strength and creep resistance at high temperatures, which exceed those of the known alloys of high-melting metals with a stacked structure.
  • the strength values at room temperature also correspond, at least approximately, to those of the known alloys made of refractory metals, but may even exceed them in some cases.
  • a particularly advantageous alloy made of high-melting metal with a stacked structure according to the present invention contains 1-5% by weight of the oxides and / or mixed oxides with a respective grain size ⁇ 0.5 ⁇ m of one or more elements from the group La, Ce, Y, Th, Mg, Ca, Sr, Hf, Zr, Er, Ba, Pr, Cr.
  • Another particularly advantageous alloy made of refractory metal with a stacked structure according to the present invention contains 1-5% by weight of at least one of the borides and / or the nitride with a respective grain size ⁇ 0.5 ⁇ m, of Hf.
  • the oxides La2O3, CeO2, Y2O3, ThO2, MgO, CaO, the mixed oxides Sr (Hf, Zr) O3, ZrO2; Er2O3, SrZrO3, Sr4Zr3O10, BaZrO3 and La 0.84 Sr 0.16 CrO3 and the borides HfB, HfB2 and HfN have proven to be particularly suitable doping materials within an alloy content of 1-5% by weight. With additions of at least 1% by weight of the doping materials, considerable improvements in tensile strength and creep strength can still be achieved with certain compounds, in particular in the case of yttrium, compared to smaller amounts of alloys. On the other hand, alloy proportions that exceed 5% by weight do not bring any significant improvements in the properties mentioned in most cases, so that the preferred range can be limited to a maximum of 5% by weight due to the generally very expensive doping materials.
  • Molybdenum, tungsten, chromium and their alloys are particularly suitable as high-melting metals for the production of the alloy according to the invention.
  • the alloy of high-melting metal according to the invention can only be produced by powder metallurgy.
  • the alloy according to the invention is produced from high-melting metal in a particularly advantageous manner by adding 0.005-10% by weight of one or more compounds and / or one or more mixed phases of the compounds from the group of hydroxides, oxides, to the powdery high-melting metal or metals.
  • Nitrides, carbides, borides, silicates or aluminates with a grain size ⁇ 1.5 ⁇ m and a melting point above 1500 ° C are mixed in powder form and that the powder mixture is pressed and sintered in a known manner and the sintered body obtained with a degree of deformation of at least 85 % is mechanically formed while observing the necessary heat treatments and is then subjected to a recrystallization annealing.
  • the doping materials according to the invention can be introduced dry in the form of solid powders in the high-melting metal powder. It is only important that the doping materials are introduced in a correspondingly fine manner with the specified grain size as a discrete, that is to say non-agglomerated and non-aggregated powder. Such a powder can be obtained, for example, by spray drying finely precipitated compounds. The most uniform possible distribution is achieved by forced mixing.
  • Another method to achieve the required fine grain of the doping materials in the finished alloy is the introduction of the doping materials in the form of compounds that can be decomposed at low temperatures, for example in the case of lanthanum as lanthanum hydroxide La (OH) 3, lanthanum carbonate La2 ( CO3) 3 ⁇ 8H2O, lanthanum heptahydrate LaCl3 ⁇ 7H2O or lanthanum molybdate La2 (MoO4) 3.
  • lanthanum as lanthanum hydroxide La (OH) 3, lanthanum carbonate La2 ( CO3) 3 ⁇ 8H2O, lanthanum heptahydrate LaCl3 ⁇ 7H2O or lanthanum molybdate La2 (MoO4) 3.
  • the insertion can be achieved with the necessary fine grain.
  • the doping materials have melting points that are well above 1500 ° C., the amount of doping materials introduced into the powder mixture remains almost completely in the finished sintered alloy.
  • the doping materials have melting points that are close to the specified lower limit of 1500 ° C., some of the doping materials introduced into the powder mixture escape due to the high vapor pressure during sintering in gas form and entrains inevitable impurities in the alloy, so that a positive cleaning effect occurs.
  • the powder batches can be pressed on die presses or isostatic presses.
  • the compacts are usually sintered under normal pressure and under an H2 atmosphere.
  • the sintering temperature is selected depending on the alloy composition, but must as a rule be at least 200 ° below the melting point of the lowest melting component.
  • the achievable sintered densities of the alloy according to the invention are then over 95% of the theoretical density.
  • the alloy is mechanically deformed by at least 85%, e.g. by rolling or drawing.
  • the mechanical reshaping takes place in individual stages, each reshaping stage advantageously resulting in a reshaping by approximately 10%.
  • Heat treatments are inserted between the individual forming operations. It is essential that both the forming temperature and the temperature of the heat treatment are below the respective recrystallization temperature.
  • the material is subjected to a recrystallization annealing, whereby the stack structure is formed.
  • Table 1 shows the comparison of the creep strengths of known alloys made of high-melting metals according to the prior art and alloys according to the invention made of high-melting metals.
  • Table 2 shows the improved strengths and hardness values of alloys according to the invention made from refractory metals compared to alloys made from refractory metals according to the prior art and to unalloyed refractory metals.
  • Alloy 4 was produced in the same way as in Example 1. Instead of La (OH) 3 1 wt.% MgO was mixed with a grain size of 0.45 microns and wire of 0.5 mm in diameter was produced.
  • Alloy 5 was produced by the same procedure as in Example 1. Instead of La (OH) 3 1 wt.% Al2O3 with a grain size of 1.2 microns was mixed and wire of 0.5 mm in diameter was produced.
  • Molybdenum metal powder with a grain size of 5 microns was mixed with 2 wt.% La (OH) 3 powder with a grain size of 0.4 microns and pressed on dies with 3 MN to plates with the dimensions 17 cm ⁇ 40 cm ⁇ 5 cm.
  • the plates were then rolled to form sheet metal with a final sheet thickness of 1 mm, starting with grading temperatures of approximately 1400 ° C., in steps of approximately 10% each. After a final recrystallization annealing at approx. 1900 ° C, the sheets had a stacked structure.
  • a tungsten alloy according to the invention was produced as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Un alliage fritté, résistant au fluage, ayant une disposition structurelle empilée d'un ou plusieurs métaux réfractaires Mo, W, Nb, Ta, V, Cr contenant certains agents de dopage, ainsi qu'un procédé permettant sa production. Les agents spéciaux de dopage sont des compositions et/ou des phases mélangées de ces compositions prises dans le groupe des oxides, des nitrures, des carbures, des borures, des silicates ou des aluminates ayant un point de fusion supérieur à 1500°C. La taille de leurs grains est 1,5 mum, leur proportion dans l'alliage est comprise entre 0,005 et 10 % du poids. A la différence des règles de l'art connues en ce qui concerne cet alliage, l'utilisation de potassium en tant qu'agent de dopage est evitée. Une bonne consolidation reproductible, et en particulier des densités élevées pendant le frittage, peuvent ainsi être obtenues. En outre, cet alliage a de meilleures propriétés de résistance à la température ambiante, à la chaleur et au fluage que les alliages de métaux réfractaires connus ayant une dispositions structurelle empilée.

Claims (7)

1. Alliage fritté, résistant au fluage, à structure de texture en grappes, composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr, caractérisé en ce que il comporte 0,005 à 10% en poids d'une ou plusieurs combinaisons et/ou d'une ou plusieurs phases mixtes des combinaisons du groupe des oxydes, nitrures, carbures, borures, silicates ou aluminates d'une grosseur de grain ≦ 1,5 µm, les additifs étant limités à des combinaisons et/ou des phases mixtes dont le point de fusion est supérieur à 1500°C.
2. Alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb Ta, V, Cr selon la revendication 1, caractérisé en ce qu'il contient 1 à 5% en poids des oxydes et/ou des oxydes mixtes d'une grosseur de grain respective ≦ 0,5 µm d'un ou plusieurs des éléments du groupe La, Ce, Y, Th, Mg, Ca, Sr, Hf, Zr, Er, Ba, Pr, Cr.
3. Alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr selon la revendication1, caractérisé en ce qu'il contient 1 à 5% en poids des borures et/ou du nitrure d'hafnium respectivement d'une grosseur de grain ≦ 0,05 µm.
4. Alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr selon l'une des revendications 1 à 3, caractérisé en ce que le ou les métaux à haut point de fusion sont du molybdène ou un alliage de molybdène.
5. Alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr selon l'une des revendications 1 à 3, caractérisé en ce que le ou les métaux à haut point de fusion sont du tungstène ou un alliage de tungstène.
6. Alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr selon l'une des revendications 1 à 3, caractérisé en ce que le ou les métaux à haut point de fusion sont du chrome ou un alliage de chrome.
7. Procédé de fabrication d'un alliage fritté, résistant au fluage, à structure à texture en grappes composé d'un ou plusieurs des métaux à haut point de fusion Mo, W, Nb, Ta, V, Cr selon l'une des revendications 1, 4, 5 ou 6, caractérisé en ce qu'il est ajouté par mélange, métal à haut point de fusion ou aux métaux à haut point de fusion sous forme de poudre, 0,05 à 10% en poids d'une ou plusieurs des combinaisons et/ou d'une ou plusieurs phases mixtes des combinaisons du groupe des hydroxides, oxydes, nitrures, carbures, borures, silicates ou aluminates d'une grosseur de grain inférieure ou égale à 1,5 µm et à point de fusion supérieur à 1500°C sous forme de poudre et en ce que le mélange des poudres est comprimé et fritté de façon connue et que le corps fritté obtenu est transformé mécaniquement selon un taux de déformation d'au moins 85% en effectuant les traitements thermiques nécessaires et est finalement soumis à un circuit de recristallisation.
EP88901002A 1987-01-28 1988-01-26 Alliage de metaux refractaires resistant au fluage et son procede de production Expired - Lifetime EP0299027B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT158/87 1987-01-28
AT0015887A AT386612B (de) 1987-01-28 1987-01-28 Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung

Publications (2)

Publication Number Publication Date
EP0299027A1 EP0299027A1 (fr) 1989-01-18
EP0299027B1 true EP0299027B1 (fr) 1991-10-02

Family

ID=3483080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88901002A Expired - Lifetime EP0299027B1 (fr) 1987-01-28 1988-01-26 Alliage de metaux refractaires resistant au fluage et son procede de production

Country Status (6)

Country Link
US (1) US4950327A (fr)
EP (1) EP0299027B1 (fr)
JP (1) JP2609212B2 (fr)
AT (1) AT386612B (fr)
DE (1) DE3865259D1 (fr)
WO (1) WO1988005830A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570072A2 (fr) * 1992-05-14 1993-11-18 PLANSEE Aktiengesellschaft Procédé d'obtention d'un alliage à base de chrome

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT389326B (de) * 1987-11-09 1989-11-27 Plansee Metallwerk Verfahren zur herstellung von halbzeug aus gesinterten refraktaermetall-legierungen
DE3835328C1 (fr) * 1988-10-17 1989-12-14 Gesellschaft Fuer Wolfram-Industrie Mbh, 8220 Traunstein, De
ES2020131A6 (es) * 1989-06-26 1991-07-16 Cabot Corp Procedimiento para la produccion de polvos de tantalo, niobio y sus aleaciones.
JPH0747793B2 (ja) * 1991-04-26 1995-05-24 株式会社クボタ 酸化物分散強化耐熱焼結合金
AT395493B (de) * 1991-05-06 1993-01-25 Plansee Metallwerk Stromzufuehrung
AT401124B (de) * 1994-07-05 1996-06-25 Plansee Ag Elektrischer leiter in lampen
US5590386A (en) * 1995-07-26 1996-12-31 Osram Sylvania Inc. Method of making an alloy of tungsten and lanthana
US5604321A (en) * 1995-07-26 1997-02-18 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
US5868876A (en) * 1996-05-17 1999-02-09 The United States Of America As Represented By The United States Department Of Energy High-strength, creep-resistant molybdenum alloy and process for producing the same
DE19643156C1 (de) * 1996-10-18 1998-02-19 Siemens Ag Verfahren zur Herstellung eines Chrom-Werkstoffs
AT2017U1 (de) * 1997-05-09 1998-03-25 Plansee Ag Verwendung einer molybdän-/wolfram-legierung in bauteilen für glasschmelzen
FR2771755B1 (fr) * 1997-11-28 1999-12-31 Saint Gobain Rech Alliage resistant a la corrosion, procede d'elaboration et article realise a partir de l'alliage
US6102979A (en) * 1998-08-28 2000-08-15 The United States Of America As Represented By The United States Department Of Energy Oxide strengthened molybdenum-rhenium alloy
AT4408U1 (de) 2000-05-18 2001-06-25 Plansee Ag Verfahren zur herstellung einer elektrischen lampe
KR100375944B1 (ko) * 2000-07-08 2003-03-10 한국과학기술원 기계적 합금화에 의한 산화물 분산강화 텅스텐 중합금의 제조방법
US20050118052A1 (en) * 2002-01-23 2005-06-02 Aimone Paul R. Stabilized grain size refractory metal powder metallurgy mill products
JP2003293070A (ja) * 2002-03-29 2003-10-15 Japan Science & Technology Corp 高強度・高靭性Mo合金加工材とその製造方法
US6830637B2 (en) * 2002-05-31 2004-12-14 Osram Sylvania Inc. Large diameter tungsten-lanthana rod
DE60312012T2 (de) * 2002-09-04 2007-08-09 Osram Sylvania Inc., Danvers Verfahren zur herstellung von sag-beständigen molybdän-lanthanoxid-legierungen
WO2004069453A2 (fr) * 2003-01-31 2004-08-19 H.C. Starck, Inc. Bandes de recuit en métal réfractaire
US20060151072A1 (en) * 2003-04-23 2006-07-13 James Daily Molybdenum alloy x-ray targets having uniform grain structure
US7544228B2 (en) * 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7175686B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Erosion-corrosion resistant nitride cermets
US7153338B2 (en) * 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7074253B2 (en) * 2003-05-20 2006-07-11 Exxonmobil Research And Engineering Company Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance
JP4603841B2 (ja) * 2004-09-29 2010-12-22 株式会社アライドマテリアル 耐酸化性を有するタングステン合金とその製造方法
JP5081148B2 (ja) * 2005-05-19 2012-11-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ランプ、ランプ部材の製造方法、およびランプの製造方法
US7731776B2 (en) * 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
US8059785B2 (en) * 2007-09-06 2011-11-15 Varian Medical Systems, Inc. X-ray target assembly and methods for manufacturing same
US20090068055A1 (en) * 2007-09-07 2009-03-12 Bloom Energy Corporation Processing of powders of a refractory metal based alloy for high densification
CA2705769A1 (fr) * 2007-11-20 2009-05-28 Exxonmobil Research And Engineering Company Cermets de borure denses a distribution bimodale ou multimodale avec liant a faible point de fusion
EP2194564B1 (fr) 2008-12-04 2013-05-22 Varian Medical Systems, Inc. Ensemble cible de rayons X et son procédé de fabrication
WO2010141463A1 (fr) * 2009-06-04 2010-12-09 First Solar, Inc. Matériau de contact contenant un dopant
US20140147327A1 (en) * 2011-07-29 2014-05-29 Tohoku University Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method
AT14143U1 (de) 2013-09-02 2015-05-15 Plansee Se Pulvermetallurgisches Bauteil
DE102015111993A1 (de) * 2015-07-23 2017-01-26 Schott Ag Formdorn mit Diffusionsschicht zur Glasformung
AT15596U1 (de) * 2017-02-28 2018-03-15 Plansee Composite Mat Gmbh Sputtertarget und Verfahren zur Herstellung eines Sputtertargets
CN112969807B (zh) 2019-03-27 2023-01-17 日立金属株式会社 合金组合物及合金组合物的制造方法、以及模具
WO2023095805A1 (fr) 2021-11-26 2023-06-01 日立金属株式会社 Matériau composite, procédé de fabrication de matériau composite et moule

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628926A (en) * 1949-06-21 1953-02-17 Westinghouse Electric Corp Manufacture of machinable molybdenum
US3285736A (en) 1964-08-27 1966-11-15 Gen Electric Powder metallurgical alloy
US3457051A (en) 1965-01-04 1969-07-22 Du Pont Metallic refractory compositions
GB1298944A (en) 1969-08-26 1972-12-06 Int Nickel Ltd Powder-metallurgical products and the production thereof
US3982970A (en) * 1972-01-24 1976-09-28 United Kingdom Atomic Energy Authority Ductility of molybdenum and its alloys
US3954421A (en) * 1972-04-10 1976-05-04 Westinghouse Electric Corporation Alloys for high creep applications
JPS5741336A (en) * 1980-08-27 1982-03-08 Hitachi Ltd Manufacture of thorium-tungsten
DE3262679D1 (en) * 1981-09-03 1985-04-25 Bbc Brown Boveri & Cie Process for manufacturing an article from a heat-resisting alloy
JPH0617556B2 (ja) * 1983-02-10 1994-03-09 株式会社東芝 モリブデン材の製造方法
DE3467774D1 (en) * 1983-02-10 1988-01-07 Toshiba Kk Molybdenum board and process of manufacturing the same
JPS59177345A (ja) * 1983-03-29 1984-10-08 Toshiba Corp 構造材用モリブデン
US4599214A (en) * 1983-08-17 1986-07-08 Exxon Research And Engineering Co. Dispersion strengthened extruded metal products substantially free of texture
JPS60197839A (ja) * 1984-03-22 1985-10-07 Toshiba Corp セラミツクス焼結用治具及びその製造方法
DE3441851A1 (de) * 1984-11-15 1986-06-05 Murex Ltd., Rainham, Essex Molybdaenlegierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Auszug eines auf dem 8 Plansee seminar, Reutte 1974, gehaltenen Vortrages von R. Eck, "Das Sintern von K-Si-dotiertem Mo und Eigenschaften des Fertigproduktes" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570072A2 (fr) * 1992-05-14 1993-11-18 PLANSEE Aktiengesellschaft Procédé d'obtention d'un alliage à base de chrome
EP0570072B1 (fr) * 1992-05-14 1996-07-31 PLANSEE Aktiengesellschaft Procédé d'obtention d'un alliage à base de chrome

Also Published As

Publication number Publication date
DE3865259D1 (de) 1991-11-07
WO1988005830A1 (fr) 1988-08-11
EP0299027A1 (fr) 1989-01-18
ATA15887A (de) 1988-02-15
US4950327A (en) 1990-08-21
AT386612B (de) 1988-09-26
JP2609212B2 (ja) 1997-05-14
JPH01502680A (ja) 1989-09-14

Similar Documents

Publication Publication Date Title
EP0299027B1 (fr) Alliage de metaux refractaires resistant au fluage et son procede de production
EP0362351B1 (fr) Procédé pour préparer un alliage fritté ODS et alliage obtenu par ce procédé
DE69734515T2 (de) Gesinterte hartlegierung
EP0369114B1 (fr) Procédé pour la fabrication de barres en alliage de tungstène
DE2232884A1 (de) Verfahren zum herstellen von pulver aus verbundteilchen
DE3238555C2 (fr)
DE1283547B (de) Verfahren zum Erhoehen der Zugfestigkeit, Dehngrenze und Zeitstandfestigkeit und zurStabilisierung der Kornorientierung von dispersionsgehaerteten Legierungen
WO1981002587A1 (fr) Alliages a memoire a base de cuivre, zinc et aluminium et procede pour leur preparation
DE3700659A1 (de) Feinkoerniger versproedungsfester tantaldraht
EP0396185B1 (fr) Procédé pour la préparation d'outils semi-finis résistant au fluage en métal réfractaire
DE1558805C3 (de) Verfahren zur Herstellung von verformten Werkstücken aus dispersionsverstärkten Metallen oder Legierungen
DE3840573C2 (de) Whisker-verstärkte Keramik
DE1471080A1 (de) Feuerfester Koerper und Verfahren zu seiner Herstellung
EP0016961B1 (fr) Procédé de fabrication d'un matériau composite à base de fibres supraconductrices par métallurgie des poudres
DE2302438C2 (de) Dichte Siliciumnitrid-Körper
EP0035070A1 (fr) Alliage-mémoire à base d'une solution solide riche en cuivre ou en nickel
EP0045984B1 (fr) Procédé pour la fabrication de pièces en un alliage résistant aux températures élevées
DE2705384B2 (de) Material fur permanente Magneten und Verfahren zu dessen Herstellung
DE3939989C2 (de) Verfahren zur Herstellung eines Sinterkörpers auf Siliziumnitridbasis und Sinterkörper auf Siliziumnitridbasis
WO1995033079A1 (fr) Production d'alliages-mere de type intermetallique
DE2411324A1 (de) Verfahren zum herstellen von dispersionsverfestigtem knetnickel
DE19722321A1 (de) Verfahren zur Herstellung von Formkörpern aus einem keramischen Verbundgefüge
DE1925742C (de) Verfahren zur Herstellung von Metal len und Metallegierungen mit eingelagerten Oxydteilchen
DE2807602C2 (de) Pulvermischung für weichmagnetische Sinterkörper
EP0608692A1 (fr) Procédé pour la production d'un matériau à partir d'un composé intermétallique dopé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3865259

Country of ref document: DE

Date of ref document: 19911107

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88901002.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070109

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070111

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070613

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070111

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080125