EP0292469B1 - Verfahren und Vorrichtung zur Durchführung heisschemischer Prozesse - Google Patents

Verfahren und Vorrichtung zur Durchführung heisschemischer Prozesse Download PDF

Info

Publication number
EP0292469B1
EP0292469B1 EP88890123A EP88890123A EP0292469B1 EP 0292469 B1 EP0292469 B1 EP 0292469B1 EP 88890123 A EP88890123 A EP 88890123A EP 88890123 A EP88890123 A EP 88890123A EP 0292469 B1 EP0292469 B1 EP 0292469B1
Authority
EP
European Patent Office
Prior art keywords
cavern
melting
bars
gas
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88890123A
Other languages
English (en)
French (fr)
Other versions
EP0292469A1 (de
Inventor
Wilhelm Stadlbauer
Erwin Dr. Koch
Franz Dipl.-Ing. Zauner
Rudolf Dipl.-Ing. Rinesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kht Know-How-Trading Patentverwertung GmbH
Original Assignee
Kht Know-How-Trading Patentverwertung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kht Know-How-Trading Patentverwertung GmbH filed Critical Kht Know-How-Trading Patentverwertung GmbH
Publication of EP0292469A1 publication Critical patent/EP0292469A1/de
Application granted granted Critical
Publication of EP0292469B1 publication Critical patent/EP0292469B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/226Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma

Definitions

  • the present invention relates to a method and to an apparatus for carrying out hot-chemical processes, in particular a melt and / or melt reduction of batches from metallurgical dusts, ores and other materials which can be melted and / or melted, such as e.g. SiO2, MgO, TiO2, Ta2O5 or the corresponding metals, at working temperatures above the melting temperature of the refractory lining.
  • hot-chemical processes in particular a melt and / or melt reduction of batches from metallurgical dusts, ores and other materials which can be melted and / or melted, such as e.g. SiO2, MgO, TiO2, Ta2O5 or the corresponding metals, at working temperatures above the melting temperature of the refractory lining.
  • the present invention has now set itself the task of a method and an apparatus for carrying out hot chemical processes, in particular a melt and / or melt reduction of mixtures of metallurgical dusts, ores and other, meltable and / or melt-reducible materials, such as e.g. To provide SiO2, MgO, TiO2, Ta2O5 or the corresponding metals, with or with which hot-chemical processes can be carried out in temperature ranges that are far above the melting temperature of known refractory bricks. At the same time, hot-chemical-physical reactions should be mastered safely without having to accept a process-technical restriction of the reaction temperatures. Furthermore, as a significant advantage over previously known methods, considerable energy savings and the greatest possible prevention of dust discharge with the exhaust gases are to be achieved.
  • the mixture to be melted and / or reduced is pressed into blocks with a defined composition, and these are formed around a radiation source having a longitudinal extension, with the formation of a defined cavity geometry high energy density are arranged and the defined cavern geometry is maintained by radially advancing the batch blocks against the centrally arranged radiation source in accordance with the course of the melting and / or melting reduction process.
  • the batch pressed into blocks thus simultaneously represents the reaction medium and the “lining” of the metallurgical reaction vessel.
  • the blocks are pressed in such a way that the cavity geometry around the radiation source, for example a plasma torch, remains constant.
  • the batch blocks are advanced radially against the centrally arranged radiation source to the extent that the melting and / or melting reduction process takes place.
  • the plasma torch is held within the cavern by suitable measures, as will be explained in more detail below.
  • Guide elements are preferably used for the exact supply of the batch blocks to the energy source.
  • the feed material which has been brought into a block form is expediently dried, a certain dimensional stability and cold pressure resistance of the blocks having to be maintained on account of the requirements of the feed system.
  • the procedure can advantageously be as follows, for example from the starting materials shown in the table below:
  • the feedstocks listed in Table 1 are expediently mixed well with about 9% by weight of water, pressed into blocks of a suitable size and then dried.
  • the dried blocks are arranged radially around a central radiation source with the help of guiding elements which ensure an exact supply of the batch blocks, a cavern with a defined geometry being formed around this radiation source, for example a plasma torch.
  • the plasma torch can be designed in the manner described in AT-PS 376 702. After igniting the plasma torch emanating from a graphite electrode using argon gas, the argon is used to introduce hydrocarbons and / or finely dispersed graphitin into the plasma torch.
  • the carbon (graphite) is converted into the gas phase by the high plasma temperature and the reduction process is accelerated by ionization of the carbon gas. Furthermore, the burn-up of the graphite electrodes is largely held back by the highly ionized carbon gas atmosphere.
  • the batch blocks surrounding the plasma torch in a cavernous manner begin to melt. As the blocks melt, they are pushed in from the outside so that the geometry of the caverns remains the same. During the melting process, the hot chemical reaction of a direct reduction takes place at the same time.
  • the heavy metal components contained in the feed material evaporate in the process taking place and can for the most part be condensed in a gas exhaust hood or in condenser elements installed in the gas exhaust pipe.
  • the liquid iron produced in this process can be tapped continuously, and the slag produced is also continuously drained off.
  • the method according to the invention is also suitable for smelting of sludge resulting from iron ore extraction, for example from the sludge resulting from Erzberg in Styria, Austria.
  • Table 2 below shows the average values of the sludge analysis of iron ore:
  • this feed material can be pressed into appropriate blocks and fed to the smelting reduction according to the invention in the process described above.
  • the relevant design and maintenance of the cavern geometry during the entire process is of essential importance for the execution of the method according to the invention.
  • a particularly interesting application is the method according to the invention for the direct reduction of bauxite to metallic aluminum.
  • finely ground bauxite is mixed well with carbon in accordance with the stoichiometric requirements and is pressed and dried in the blocks described above and dried in this way and brought to the radiation source that a defined cavern geometry arises and is maintained in the course of the further reactions.
  • the plasma torch is ignited, the bauxite mixture is melted on the surface, the iron xoid being reduced first and collecting in the collecting vessel to form an iron sump which is saturated with aluminum and enriched with carbon.
  • Al4C3 decomposes into metallic aluminum and carbon in the form of graphite, corresponding to Al4C3 ⁇ 4 Al + 3C.
  • the procedure is advantageously as follows:
  • the initially obtained as a melt flow (melt mullite) Al2O3 is driven under the action of the hot gas (CO / H2 gas) towards a refining vessel, with the formation of aluminum carbide and its subsequent disproportionation.
  • Remaining, unreacted Al2O3 melt is in turn returned to the reaction zone in order to achieve complete conversion.
  • metallic aluminum with a maximum carbon content of 0.05%, a silicon content of about 1%, a titanium content of about 1% and a further contamination with iron of a maximum of 1.8% is tapped. From the below iron, which is saturated with aluminum and enriched with carbon, is continuously drawn off from the reaction basin located in the reaction zone.
  • the plasma torch is held within the cavern in the method according to the invention.
  • This task can only be solved unsatisfactorily with conventional plasma torch technology.
  • This conventional technology provides that a plasma torch is built up between two electrodes, a top and a bottom electrode, and / or between a top and two or three side electrodes.
  • the plasma torch can burn out a cavern on one side within the furnace, since it cannot be guided in a controlled manner.
  • a further advantageous embodiment of the method according to the invention now makes it possible to achieve the above-mentioned task of precisely maintaining the energy input and controlled guidance of the plasma torch within the defined cavern by the fact that between the main electrode, the head electrode, which extends into the cavern, and a number of Radial electrodes (a to h), which are arranged directly under the cavern, the plasma torch is ignited.
  • the radial electrodes are charged with a base load for ionizing the gas atmosphere by means of thyristor control, while the main load is distributed over the thyristors via thermocouples, which are attached to the front edge of the control system, in such a way that the uniform melting rate within the cavern surface is ensured.
  • a further, advantageous embodiment provides that the melted material which is collected in the collecting vessel, via a bottom electrode arranged in the collecting vessel, which is controlled via a bath temperature measurement, can also get an energy input from the radial electrodes so that the bath temperature can be kept constant.
  • the present invention relates to a device for carrying out the method described at the outset with a centrally arranged cavity of defined geometry formed by blocks of meltable and / or melt-reducing batch, radially arranged guide elements for feeding the batch blocks to the center, one below arranged in the cavern, with vents for the molten metal and the liquid slag, a central electrode arrangement, a cover arranged above the cavern, a gas exhaust hood and a gas exhaust pipe.
  • FIG. 1 shows a cross section through an embodiment of the device according to the invention
  • FIG. 2 shows a top view of this device
  • 3 and 4 represent a cross section or a top view of a further device according to the invention which is particularly suitable for the direct reduction of bauxite.
  • FIG. 5 a further embodiment of the device according to the invention is shown in a schematic diagram, with which embodiment the Energy input exactly adhered to and the plasma torch can be guided within the defined cavern in a controlled manner.
  • the cavern 1 is formed by the mixture to be melted and / or melt-reducing, which is supplied in the form of pressed blocks 11 from the outside radially inwards.
  • the radially arranged guide elements 2 ensure an exact feed of the batch blocks to the center.
  • the receptacle 3 under the cavern 1 there are the fume cupboards for the molten metal and for the liquid slag at suitable points.
  • 4 denotes the upper electrode
  • the lower electrode 10 is arranged on the bottom of the collecting vessel 3.
  • 5 represents the top cover of the reaction vessel
  • 6 and 7 are the exhaust hood and the exhaust pipe, respectively. 8 and 9 each designate a connecting channel which leads from the collecting vessel 3 to another collecting vessel (3 '), FIG.
  • FIG. 1 serving as a refining vessel, or to two such collecting vessels (3', 3 "), FIG. 4, which are also connected to one another by a channel (9).
  • FIG upper or head electrode 4 on the required power and gas supply and can be moved with a carriage or the like in the vertical direction.
  • a number of radial electrodes (a to h) are arranged in a horizontal plane, which can be moved forwards and backwards in the radial direction and are preferably rotatable about the respective radius.
  • a bottom electrode 10 can be provided in the collecting vessel below the cavern 1.
  • the Fe2O3 can be reduced to Fe not only via the detour via Fe3O4 and FeO, but directly via the melt flow Fe2O3 to Fe, whereby the presence of a favorable mixture gap can be exploited where iron in pure form without contamination by carbon, silicon, manganese, Phosphorus etc. is obtained and is in equilibrium with liquid Fe2O3, see ULLMANN'S ENCYCLOPEDIA OF TECHNICAL CHEMISTRY, 4th edition, volume 10, page 334.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Lubricants (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren sowie auf eine Vorrichtung zur Durchführung heißchemischer Prozesse, insbesondere einer Schmelze und/oder Schmelzreduktion von Gemengen aus Hüttenstäuben, Erzen und anderen, schmelz- und/oder schmelzreduzierbaren Materialien, wie z.B. SiO₂, MgO, TiO₂, Ta₂O₅ oder den entsprechenden Metallen, bei oberhalb der Schmelztemperatur hochfeuerfester Ausmauerungen liegenden Arbeitstemperaturen.
  • Eine Durchführung heißchemischer Prozesse in Temperaturbereichen, die oberhalb der Schmelztemperatur der bekannten hochfeuerfesten Ausmauerungen liegen, ist mit den derzeit verfügbaren Verfahren nicht möglich. Darüberhinaus weisen die derzeit üblichen Schmelz-und Schmelzreduktionsverfahren einen hohen Energiebedarf auf und führen durch den in den Abgasen enthaltenen Stabaustrag zu einer schwerwiegenden Beeinträchtigung der Umwelt, soferne nicht teure zusätzliche Einrichtungen vorgesehen werden. Auch stößt eine Verhüttung von in großen Mengen anfallenden Hüttenstäuben auf erhebliche Schwierigkeiten.
  • In der DD-A5-215 803 (EP-A-118 655) ist zwar bereits ein Versuch beschrieben worden, ein rasches Einschmelzen und eine schnelle Reaktion zwischen Chargiergutbestandteilen in einem Schachtofen unter Zuführung von elektrischer Energie dadurch zu erreichen, daß zwischen einem die obere Abdeckung des Schachtofens durchsetzenden, zentrisch angeordneten Plasmabrenner und einer den Boden des Schachtofens durchsetzenden Gegenelektrode eine Plasmafackel gebildet wird, und daß konzentrisch um die Plasmafackel das Chargiergut eingebracht wird, wobei ein Schutzwall aus festen Chargiergutbestandteilen an der Innenwand des Ofens aufgeschichtet wird und das Chargiergut von der Innenseite des Schutzwalls in den Bereich der Plasmafackel gelangt.
  • Diese Verfahrensweise läßt jedoch keine gezielte Führung der Plasmafackel zur Erschmelzung und/oder chemischen Reaktion des gebildeten Walls zu. Ein kontinuierlicher Betrieb eines derartigen Schachtofens ist nicht durchführbar. Die bei der Reaktion gebildeten Abgase müssen durch den Möller abgeführt werden, woraus weitere Nachteile dieser Verfahrensweise, etwa bezüglich der Kondensation von Abgasbestandteilen, resultieren.
  • Die vorliegende Erfindung hat sich nunmehr zur Aufgabe gestellt, ein Verfahren und eine Vorrichtung zur Durchführung heißchemischer Prozesse, insbesondere einer Schmelze und/oder Schmelzreduktion von Gemengen aus Hüttenstäuben, Erzen und anderen, schmelz- und/oder schmelzreduzierbaren Materialien, wie z.B. SiO₂, MgO, TiO₂, Ta₂O₅ oder den entsprechenden Metallen, zur Verfügung zu stellen, mit dem bzw. mit der heißchemische Prozesse in Temperaturbereichen ausgeführt werden können, die weit über der Schmelztemperatur bekannter hochfeuerfester Ausmauerungen liegen. Gleichzeitig sollen heißchemischphysikalische Reaktionen sicher beherrscht werden, ohne eine verfahrenstechnische Einschränkung der Reaktionstemperaturen in Kauf nehmen zu müssen. Weiterhin soll als wesentlicher Vorteil gegenüber bisher bekannten Verfahren eine erhebliche Energieeinsparung und eine weitestgehende Verhinderung des Staubaustrages mit den Abgasen erreicht werden.
  • Diese Ziele werden unter dem verfahrensmäßigen Aspekt der vorliegenden Erfindung dadurch erreicht, daß in einem Verfahren der eingangs genannten Art das zu schmelzende und/oder zu reduzierende Gemenge mit definierter Zusammensetzung zu Blöcken gepreßt wird und diese unter Ausbildung einer definierten Kavernengeometrie um eine eine Längserstreckung aufweisende Strahlungsquelle hoher Energiedichte angeordnet werden und die definierte Kavernengeometrie durch radiales Vorschieben der Gemengeblöcke gegen die zentral angeordnete Strahlungsquelle entsprechend dem Ablauf des Schmelz- und/oder Schmelzreduktionsprozesses aufrecht erhalten wird.
  • Im erfindungsgemäßen Verfahren stellt somit das zu Blöcken gepreßte Gemenge gleichzeitig das Reaktionsmedium und die "Ausmauerung" des metallurgischen Reaktionsgefäßes dar. Je nach Abschmelzrate werden die Blöcke so nachgedrückt, daß die Kavernengeometrie um die Strahlungsquelle, beispielsweise eine Plasmafackel, ständig gleich bleibt. Hiezu werden die Gemengeblöcke radial in dem Maße gegen die zentral angeordnete Strahlungsquelle vorgeschoben, wie der Schemlz- und/oder Schmelzreduktionsprozeß abläuft. Durch geeignete Maßnahmen wird die Plasmafackel innerhalb der Kaverne gehalten, wie in der Folge noch näher ausgeführt wird.
  • Zur exakten Zuführung der Gemengeblöcke zur Energiequelle werden vorzugsweise Leitelemente verwendet. Das in eine Blockform gebrachte Einsatzmaterial wird zweckmäßig getrocknet, wobei eine gewisse Maßhaltigkeit und Kaltdruckfestigkeit der Blöcke auf Grund der Erfordernisse des Vorschubsystems eingehalten werden müssen.
  • Bei Anwendung des erfindungsgemäßen Verfahrens auf die Verhüttung von Hüttenstäuben kann vorteilhaft in folgender Weise vorgegangen werden, wobei beispielsweise von den aus der nachfolgenden Tabelle ersichtlichen Einsatzstoffen ausgegangen werden kann:
    Figure imgb0001
  • Die in der Tabelle 1 angeführten Einsatzstoffe werden zweckmäßig mit etwa 9 Gew.-% Wasser gut vermengt, zu Blöcken geeigneter Größe gepreßt und anschließend getrocknet. Die getrockneten Blöcke werden radial unter Mitwirkung von Leitlementen, die eine exakte Zuführung der Gemengeblöcke gewährleisten, um eine zentrale Strahlungsquelle angeordnet, wobei um diese Strahlungsquelle, beispielsweise eine Plasmafackel, eine Kaverne mit definierter Geometrie ausgebildet wird. Gemäß einer vorteilhaften Ausführungsform der Erfindung kann die Plasmafackel in der in der AT-PS 376 702 beschriebenen Weise ausgebildet sein. Nach dem Zünden der von einer Graphitelektrode ausgehenden Plasmafackel mittels Argongas werden mit dem Argon Kohlenwassers toffe und/oder feindisperser Graphitin die Plasmafackel eingebracht. Durch die hohe Plasmatemperatur wird der Kohlenstoff (Graphit) in die Gasphase übergeführt und durch Ionisation des Kohlenstoffgases wird der Reduktionsvorgang beschleunigt. Weiterhin wird durch die hochionisierte Kohlenstoffgasatmosphäre der Abbrand der Graphitelektroden weitgehend hintangehalten. Nach dem Zünden der Plasmafackel zwischen den Elektroden beginnen die Gemengeblöcke, die die Plasmafackel kavernenartig umgeben, zu schmelzen. Im gleichen Maße, in dem die Blöcke abschmelzen, werden sie von außen nachgeschoben, sodaß die Kavernengeometrie ständig die gleiche bleibt. Während des Abschmelzens findet gleichzeitig die heißchemische Reaktion einer Direktreduktion statt.
  • Da im vorliegenden Fall diese Reaktion unter Luftabschluß stattfindet, können neben dem Argon als Plasmagas bei den herrschenden hohen Temperaturen nur Kohlenmonoxid und Wasserstoff als Abgase entstehen. Dieses Gas kann einem Energierecycling mit bekannter Technologie zugeführt werden.
  • Die im Einsatzmaterial enthaltenen Schwermetallanteile verdampfen im stattfindenden Prozeß und können zum größten Teil in einer Gasabzugshaube bzw. in im Gasabzugsrohr eingebauten Kondenserelementen kondensiert werden.
  • Das bei diesem Prozeß entstehende flüssige Eisen kann kontinuierlich abgestochen werden, ebenfalls wird die anfallende Schlacke kontinuierlich abgeleitet.
  • Das erfindungsgemäße Verfahren eignet sich weiterhin zur Verhüttung von bei der Eisenerzgewinnung anfallenden Schlämmen, beispielsweise von dem am Erzberg in der Steiermark, Österreich, anfallenden Schlamm. Die nachfolgende Tabelle 2 zeigt die Durchschnittswerte der Schlammanalyse von Eisenerz:
    Figure imgb0002
  • Wie die vorstehende Tabelle zeigt, stellt die Zusammensetzung dieses Schlammes bereits einen selbstgängigen Möller dar. Nach der Beimengung von Kohlenstoff entsprechend den stöchiometrischen Erfordernissen kann dieses Einsatzmaterial zu entsprechenden Blöcken verpreßt und in dem zuvor beschriebenen Verfahren der erfindungsgemäßen Schmelzreduktion zugeführt werden. Von wesentlicher Bedeutung für den Ablauf des erfindungsgemäßen Verfahrens ist auch hier die entsprechende Ausbildung und Beibehaltung der Kavernengeometrie während des gesamten Prozeßablaufes.
  • Nach dem vorstehenden Prinzip können sämtliche Arten metallischer Erze auf heißchemischem Wege reduziert werden. In gleicher Weise können alle Schmelzprozesse, die bei sehr hohen Temperaturen ablaufen, mit der erfindungsgemäßen Methode durchgeführt werden. Von besonderem Interesse ist die Aufarbeitung von Filterstäuben und von Schlackenrückständen aus Verbrennungsanlagen, wie z.B. Müllverbrennungsanlagen, die soweit niedergeschmolzen werden können, daß abdampfende Schwermetalle durch partielle Kondensation rückgewonnen werden können und eventuell verbleibende Spurenelemente in das glaskeramische Endprodukt eingebunden werden, aus dem sie nicht mehr auslaugbar sind.
  • Eine besonders interessante Anwendung stellt das erfindungsgemäße Verfahren für die Direktreduktion von Bauxit zu metallischem Aluminium dar. Hiezu wird feinvermahlter Bauxit entsprechend den stöchiometrischen Erfordernissen gut mit Kohlenstoff vermengt und in der zuvor beschriebenen Weise in entsprechende Blöcke gepreßt und getrocknet und in der Weise an die Strahlungsquelle herangeführt, daß eine definierte Kavernengeometrie entsteht und im Zuge der weiteren Reaktionen aufrecht erhalten wird. Nach dem Zünden der Plasmafackel wird das Bauxitgemenge an der Oberfläche abgeschmolzen, wobei zuerst das Eisenxoid reduziert wird und sich im Auffanggefäß zu einem Eisensumpf sammelt, der mit Aluminium gesättigt und mit Kohlenstoff angereichert ist. Das Aluminiumoxid fällt zunächst als Schmelzfluß (Schmelzmullit) an und wird durch weitere Energiezufuhr bei Temperaturen> 2.000°C gemäß 2 Al₂O₃+ 9C→Al₄C₃+6 CO,aus Al³⁺ - und C⁴⁻-Ionen vorwiegend in Aluminiumcarbid (Al₄C₃) übergeführt (Bildungswärme Δ H= -49,9 kcal/Mol). Bei langsamer Abkühlung von 1.500°C abwärts bis auf etwa 660°C zerfällt Al₄C₃ zu metallischem Aluminium und zu Kohlenstoff in Form von Graphit, entsprechend Al₄C₃→4 Al + 3C. Es kann auch eine Umsetzung des Carbids mit Al₂O₃ etwa nach der Reaktion Al₄C₃ + Al₂O₃→6Al + 3CO stattfinden.
  • Um eine vollständige Umsetzung des vorhandenen Al₂O₃ bzw. Schmelzmullits zu erreichen, wird vorteilhaft wie folgt vorgegangen:
    Das zunächst als Schmelzfluß (Schmelzmullit) anfallende Al₂O₃ wird unter der Einwirkung des gebildeten Heißgases (CO/H₂-Gas) in Richtung auf ein Läutergefäß getrieben, unter Ausbildung von Aluminiumcarbid und dessen anschließender Disproportionierung. Verbleibende, nicht umgesetzte Al₂O₃-Schmelze wird wiederum in die Reaktionszone zurückgeführt, um eine vollständige Umsetzung zu erreichen. Im Bereich der Läuterzone wird metallisches Aluminium mit einem maximalen Kohlenstoffgehalt von 0,05%, einem Siliziumgehalt von etwa 1%, einem Titangehalt von etwa 1% und einer weiteren Verunreinigung mit Eisen im Ausmaß von maximal 1,8% abgestochen. Aus dem unter der Reaktionszone befindlichen Auffangbecken wird Eisen, das mit Aluminium gesättigt und mit Kohlenstoff angereichert ist, kontinuierlich abgezogen.
  • Wie eingangs bereits erwähnt, wird im erfindungsgemäßen Verfahren die Plasmafackel innerhalb der Kaverne gehalten. Um nämlich die hohe Energiedichte einer Plasmafackel voll ausnützen zu können, wäre es notwendig, die Plasmafackel exakt innerhalb der definierten Kaverne zu führen. Weiterhin wäre es zur Optimierung des Schmelz- und und Reduktionsprozesses unerläßlich, die erforderliche Energie, das sind Schmelzenthalpie und Reduktionsenthalpie, zur Durchführung der heißchemischen Prozesse möglichst exakt einzuhalten sowie die Vergasungsenthalpie des Graphits in der Plasmafackel der Gesamtenergie, die der Plasmafackel zugeführt wird, optimal anzupassen. Mit der herkömmlichen Plasmafackel-Technologie kann diese Aufgabe nur unbefriedigend gelöst werden. Diese herkömmliche Technologie sieht vor, daß zwischen zwei Elektroden, einer Kopf- und einer Bodenelektrode, und/oder zwischen einer Kopf- und zwei oder drei Seitenelektroden eine Plasmafackel aufgebaut wird. Die Plasmafackel kann hiebei aber einseitig innerhalb des Ofens eine Kaverne ausbrennen, da sie nicht kontrolliert geführt werden kann.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ermöglicht nunmehr die Lösung der vorstehend angesprochenen Aufgabe einer exakten Einhaltung des Energieeintrages und einer kontrollierten Führung der Plasmafackel innerhalb der definierten Kaverne dadurch, daß zwischen der Hauptelektrode, der Kopfelektrode, die in die Kaverne hineinreicht, und einer Anzahl von Radialelektroden (a bis h), die unmittelbar unter der Kaverne angeordnet sind, die Plasmafackel gezunden wird. Die Radialelektroden werden mittels Thyristorsteuerung mit einer Grundlast zur Ionisierung der Gasatmosphäre beaufschlagt, während die Hauptlast über Thermoelemente, die an der Vorderkante des Leitsystems angebracht sind, über die Thyristoren so verteilt wird, daß die gleichmäßige Abschmelzrate innerhalb der Kavernenoberfläche gewährleistet wird.
  • Eine weitere, vorteilhafte Ausführungsform sieht vor, daß das Schmelzgut, das im Auffanggefäß aufgefangen wird, über eine im Auffanggefäß angeordnete Bodenelektrode, die über eine Badtemperaturmessung angesteuert wird, zusätzlich einen Energieeintrag von den Radialelektroden her bekommen kann, damit die Badtemperatur konstant gehalten werden kann.
  • Gemäß einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf eine Vorrichtung zur Durchführung des eingangs beschriebenen Verfahrens mit einer zentral angeordneten, durch Blöcke aus zu schmelzendem und/oder schmelzreduzierendem Gemenge gebildeten Kaverne definierter Geometrie, radial angeordneten Leitelementen zur Zuführung der Gemengeblöcke zum Zentrum, einem unter der Kaverne angeordneten, mit Abzügen für die Metallschmelze und die flüssige Schlacke versehenen Auffanggefäß, einer zentralen Elektrodenanordnung, einer über der Kaverne angeordneten Abdeckung, einer Gasabzugshaube und einem Gasabzugsrohr.
  • In den beigeschlossenen Zeichnungen sind beispielhafte Ausführungen der erfindungsgemäßen Vorrichtung dargestellt. Darin zeigt Fig.1 einen Querschnitt durch eine Ausführungsform der erfindungsgemäßen Vorrichtung, während Fig. 2 eine Draufsicht dieser Vorrichtung zeigt. Die Fig.3 und 4 stellen einen Querschnitt bzw. eine Draufsicht zu einer weiteren, insbesondere für die Direktreduktion von Bauxit geeigneten Vorrichtung gemäß der Erfindung dar. In Fig.5 ist eine weitere Ausführungsform der erfindungsgemäßen Vorrichtung in einer Prinzipskizze dargestellt, mit welcher Ausführungsform der Energieeintrag exakt eingehalten und die Plasmafackel kontrolliert innerhalb der definierten Kaverne geführt werden kann.
  • In diesen Zeichnungen ist die Kaverne 1 durch das zu schmelzende und/oder schmelzreduzierende Gemenge gebildet, das in Form gepreßter Blöcke 11 von außen radial nach innen zugeführt wird. Die radial angeordneten Leitelemente 2 gewährleisten eine exakte Zuführung der Gemengeblöcke zum Zentrum. Im Auffanggefäß 3 unter der Kaverne 1 befinden sich an geeigneten Stellen die Abzüge für die Metallschmelze und für die flüssige Schlacke. Mit 4 ist die obere Elektrode bezeichnet, die untere Elektrode 10 ist am Boden des Auffanggefäßes 3 angeordnet. 5 stellt die obere Abdeckung des Reaktionsgefäßes dar, 6 und 7 sind die Abgashaube bzw. das Abgasrohr. Mit 8 und 9 ist je ein Verbindungskanal bezeichnet, der vom Auffanggefäß 3 zu einem weiteren, als Läutergefäß dienenden Auffanggefäß (3'), Fig.1, 2, oder zu zwei solchen Auffanggefäßen (3', 3"), Fig.3, 4, führt, die untereinander ebenso mit einem Kanal (9) verbunden sind. In Fig.5 weist die in die Kaverne 1 hineinreichende obere oder Kopfelektrode 4 die erforderliche Strom- und Gasversorgung auf und kann mit einem Schlitten oder dergleichen in Vertikalrichtung verfahren werden. Unmittelbar unter der Kaverne 1 sind in einer Horizontalebene eine Anzahl von Radialelektroden (a bis h) angeordnet, die in Radialrichtung jeweils für sich vor- und zurückgefahren werden können und vorzugsweise um den jeweiligen Radius drehbar sind. Im Auffanggefäß unterhalb der Kaverne 1 kann eine Bodenelektrode 10 vorgesehen sein.
  • Durch Ausführung des erfindungsgemäßen Verfahrens wird es ermöglicht, die oxidischen Bestandteile des Gemenges direkt in einen Schmelzfluß überzuführen und aus der Liquidusphase heraus die Reduktion zu Metallen durchzuführen. Der Vorteil dieser Technologie gegenüber dem herkömmlichen Verfahren besteht darin, daß z.B. das Fe₂O₃ nicht erst über den Umweg über Fe₃O₄ und FeO zu Fe, sondern direkt über den Schmelzfluß Fe₂O₃ zu Fe reduziert werden kann, wobei das Vorliegen einer günstigen Mischungslücke ausgenützt werden kann, wo Eisen in reiner Form ohne Verunreinigungen durch Kohlenstoff, Silizium, Mangan, Phosphor usw. anfällt und sich mit flüssigem Fe₂O₃ im Gleichgewicht befindet, vergleiche hiezu ULLMANNS ENCYKLOPÄDIE DER TECHNISCHEN CHEMIE, 4. Auflage, Band 10, Seite 334.

Claims (9)

  1. Verfahren zur Durchführung heißchemischer Prozesse an Gemengen aus Hüttenstaüben, Erzen und anderen, schmelz- und/oder schmelzreduzierbaren Materialien bei oberhalb der Schmelztemperatur hochfeuerfester Ausmauerungen liegenden Arbeitstemperaturen, dadurch gekennzeichnet, daß das zu schmelzende und/oder zu reduzierende Gemenge definierter Zusammensetzung zu Blöcken gepreßt wird und diese unter Ausbildung einer definierten Kavernengeometrie um eine eine Längserstreckung aufweisende Strahlungsquelle hoher Energiedichte angeordnet werden und die definierte Kavernengeometrie durch radiales Vorschieben der Gemengeblöcke gegen die zentral angeordnete Strahlungsquelle entsprechend dem Ablauf des Schmelz- und/oder Schmelzreduktionsprozesses aufrechterhalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Strahlungsquelle hoher Energiedichte eine Plasmafackel verwendet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß nach dem Zünden einer von einer Graphitelektrode ausgehenden Plasmafackel mittels Argongas mit diesem Gas Kohlenwasserstoffe und/oder feindisperser Graphit eingebracht werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur exakten Zuführung der Gemengeblöcke Leitelemente angeordnet werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß SiO₂, MgO, TiO₂, Ta₂O₅ oder Al₂O₃ oder die entsprechenden Metalle einer Schmelzreduktion oder Schmelze unterworfen werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen einer in die Kaverne hineinreichenden Kopfelektrode und einer Anzahl von unmittelbar unter der Kaverne angeordneten Radialelektroden eine Plasmafackel aufgebaut wird und diese mit einer Grundlast zur Ionisierung der Gasatmosphäre beaufschlagt werden, während die Hauptlast derart an die Radialelektroden verteilt wird, daß eine gleichmäßige Abschmelzrate innerhalb der Kavernenoberfläche gewährleistet wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zusätzlich eine im Auffanggefäß für das Schmelzgut angeordnete Bodenelektrode zur Konstanthaltung der Badtemperatur von den Radialelektroden mit einem Energieeintrag versorgt wird.
  8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7 mit einer durch Blöcke (11) aus zu schmelzendem und/oder schmelzreduzierendem Gemenge gebildeten Kaverne (1) definierter Geometrie, radial angeordneten Leitelementen (2) zur Zuführung der Gemengeblöcke zum Zentrum, einem unter der Kaverne (1) angeordneten, mit Abzügen für die Metallschmelze und die flüssige Schlacke versehenen Auffanggefäß (3), einer zentralen Elektrodenanordnung (4), einer über der Kaverne (1) angeordneten Abdeckung (5), einer Gasabzugshaube (6) und einem Gasabzugsrohr (7).
  9. Vorrichtung nach Anspruch 8, gekennzeichnet durch mindestens ein zusätzliches, als Läuterzone dienendes Auffanggefäß (3'), das mit dem Auffanggefäß (3) unter der Kaverne (1) bzw. mit weiteren Auffanggefäßen (3") über Verbindungskanäle (8, 9) in Verbindung steht.
EP88890123A 1987-05-18 1988-05-17 Verfahren und Vorrichtung zur Durchführung heisschemischer Prozesse Expired - Lifetime EP0292469B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0125887A AT387986B (de) 1987-05-18 1987-05-18 Verfahren und vorrichtung zur durchfuehrung heisschemischer prozesse
AT1258/87 1987-05-18

Publications (2)

Publication Number Publication Date
EP0292469A1 EP0292469A1 (de) 1988-11-23
EP0292469B1 true EP0292469B1 (de) 1993-02-03

Family

ID=3510003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88890123A Expired - Lifetime EP0292469B1 (de) 1987-05-18 1988-05-17 Verfahren und Vorrichtung zur Durchführung heisschemischer Prozesse

Country Status (16)

Country Link
US (1) US4985067A (de)
EP (1) EP0292469B1 (de)
JP (1) JPH02501074A (de)
CN (1) CN1016971B (de)
AT (2) AT387986B (de)
AU (1) AU607768B2 (de)
DD (1) DD271717A5 (de)
DE (1) DE3878036D1 (de)
DK (1) DK17489A (de)
FI (1) FI890244A0 (de)
IL (1) IL86404A (de)
NZ (1) NZ224688A (de)
PH (1) PH26880A (de)
PT (1) PT87518B (de)
WO (1) WO1988009390A1 (de)
ZA (1) ZA883448B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589672A1 (de) * 2011-11-03 2013-05-08 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Lichtbogenofens
KR102540460B1 (ko) 2017-07-31 2023-06-12 다우 글로벌 테크놀로지스 엘엘씨 와이어 및 케이블 절연 층 및 재킷 층을 위한 수분 경화성 조성물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1433351A1 (de) * 1967-04-19 1968-11-28 Rlieinstahl Exp U Industrieanl OElschmelzofen fuer die Verhuettung von Eisenerzen
US3565602A (en) * 1968-05-21 1971-02-23 Kobe Steel Ltd Method of producing an alloy from high melting temperature reactive metals
FR2088946A5 (en) * 1970-04-30 1972-01-07 Heurtey Sa Reduction process - for metal oxides
DE2110274C2 (de) * 1971-03-04 1973-01-04 Fried. Krupp Gmbh, 4300 Essen Vorrichtung zum Einschmelzen von Metallschwamm durch inerte Gasplasmen
US4033757A (en) * 1975-09-05 1977-07-05 Reynolds Metals Company Carbothermic reduction process
SU825644A1 (ru) * 1978-06-20 1981-04-30 Vnii Avtom Chernoj Metallurg СИСТЕМА АВТОМАТИЧЕСКОГО КОНТРОЛЯПАРАМЕТРОВ ГАЗОРАСПРЕДЕЛЕНИЯ ПО РАДИУСУ КОЛОШНИКА ДОМЕННОЙ ПЕЧИ101Изобретение относитс к металлургии черных и цветных металлов и может быть использовано в системах, управл емых вычислительными устройствами, прецназ— наченными цл автоматического контрол газораспределени по радиусу колошника доменных печей.Известно устройство дл автоматического отбора проб газа по радиусу домен?-- ной печи и их анализа, содержащее зонд, предназначенный дл отбора проб газа, механизм перемещени этого зонда во внутрь шахты печи, гибкий шпанг дл передачи проб газа к коллектору. Устройство работает периодически. Каждые два часа зонд вводитс в печь по радиусу колошника дл последовательного отбора .проб газа в нескольких точках радиуса. Перва проба отбираетс из центра печи, а последн с периферии. Пробы газа, отобранные из шахты, передаютс через гибкий шланг и систему трубопроводов на анализ fl].20Недостаток этого устройства — невозможность ввода зонда в печь и отбора проб газа автоматически по нужной прог— .рамме.Известна также система, предназначенна дл контрол распределени газового потока в доменной печи. Эта система содержит амбразуру и зонд дл одновременного отбора проб газа по радиусу доменной печи и измерени его температуры при помощи термопары, трубу дл отбора и передачи проб газа на анализ, механизм перемещени зонда во внутрь шахты печи, пульт местного управлени механизма перемещени зонда, воздухораспределитель, емкости дл хранени проб газа, газоанализатор, управл ющий комплекс с мнемосхемой и пультом управлени н прибор дл регистрации параметров газа н температуры. Зонд- с термопарой и трубой дл отбора проб газа вводитс в шахту доменной печи до центра с последующим выводом и остановками в заданных точках радиуса. При продвижении зонда во
SU825664A1 (ru) * 1978-10-18 1981-04-30 Предприятие П/Я Г-4696 СПОСОБ ЗАГРУЗКИ МАТЕРИАЛОВВ РУДНОТЕРМИЧЕСКУТО ЭЛЕКТРОПЕЧЬ10IИзобретение относитс к черной и цветной металлургии, конкретно к производству ферросплавов.Известен способ загрузки материалов в руднотермическую электропечь, включающий загрузку шихты с более высоким электросопротивлением относительно основной в полости, образующиес вокруг электродов. Способ эффективен дл руднотермических электропечей с распадом электродов, равным 2,2-2,8 их диаметров [^Q.Недостаток известного способа заключен в том, что при распадах электродов, равных 3,5-10 их диаметров, главным местом утечки тока вл етс не область между электродами, а под-, электродное пространство. Поэтому предпочтительно подать шихту с более высоким, электросопротивлением не в jg полости, образующейс у электродов, а в межэлектродное пространство. Кроме того подача шихты непосредственно в образующуюс полость при увеличен-1Sных распадах электродов приводит к трудности набора электрической нагрузки и к захолаживанию подэлектрод- ного плавильного тигл .Цель изобретени - увеличение мощности печи за счет повышени напр жени на электродах.Цель достигаетс тем, что шихту загружают вокруг электродов на площадь, внешн граница которой удалена от поверхности электрода на рассто нии 1,0-4,2 его диаметра, а в межэлектродное пространство загружают слой окисла.Сущность предлагаемого заключена в создании в межэлектродном пространстве за пределами рабочих тиглей перегородок из основных или кислых окислов. На примере получени ферросилици с 45% кремни экспериментально определено изменение допустимых значений напр жений на электродах при различных диаметрах распада электродов. Опыты проведены в
AT375960B (de) * 1982-12-07 1984-09-25 Voest Alpine Ag Verfahren und einrichtung zur herstellung von metallen, insbesondere von fluessigem roheisen, stahlvormaterial oder ferrolegierungen
EP0118655B1 (de) * 1982-12-22 1988-03-02 VOEST-ALPINE Aktiengesellschaft Verfahren zur Durchführung von metallurgischen oder chemischen Prozessen und Niederschachtofen
SU1148885A1 (ru) * 1983-11-18 1985-04-07 Сибирский ордена Трудового Красного Знамени металлургический институт им.Серго Орджоникидзе Способ выплавки металлического марганца

Also Published As

Publication number Publication date
DD271717A5 (de) 1989-09-13
ATA125887A (de) 1988-09-15
IL86404A (en) 1991-12-12
JPH02501074A (ja) 1990-04-12
ZA883448B (en) 1989-02-22
CN1016971B (zh) 1992-06-10
PT87518B (pt) 1992-09-30
DE3878036D1 (de) 1993-03-18
PT87518A (pt) 1989-05-31
DK17489D0 (da) 1989-01-16
EP0292469A1 (de) 1988-11-23
ATE85368T1 (de) 1993-02-15
FI890244A (fi) 1989-01-17
AU607768B2 (en) 1991-03-14
AU1726188A (en) 1988-12-21
FI890244A0 (fi) 1989-01-17
PH26880A (en) 1992-11-16
DK17489A (da) 1989-03-08
CN88103911A (zh) 1988-12-14
WO1988009390A1 (en) 1988-12-01
AT387986B (de) 1989-04-10
IL86404A0 (en) 1988-11-15
US4985067A (en) 1991-01-15
NZ224688A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
DE2737720C3 (de) Verfahren zur carbothermischen Reduktion von Aluminiumoxid
DE3047194C2 (de)
DE2207048A1 (de) Einrichtung zur Erzeugung eines elektrischen Lichtbogens und Verfahren zur Gewinnung oder Behandlung von Metallen mittels einer solchen Einrichtung
DE3042222C2 (de) Verfahren zur Reduktion von feinkörnigen, unter anderem Eisenoxide enthaltenden Metalloxiden unter Gewinnung von bei der Temperatur der Eisenschmelze flüchtigen Metallen
DE2156041C3 (de) Verfahren zum kontinuierlichen Schmelzen und Windfrischen von Kupferkonzentralen und Vorrichtung für dieses
DE2710970C2 (de) Verfahren zur Gewinnung von Roh- bzw. Blasenkupfer aus sulfidischem Kupferrohmaterial
DE3234311C2 (de) Verfahren zur Rückgewinnung von Metallen aus flüssiger Schlacke
CH683181A5 (de) Rückgewinnung von Aluminiumoxiden aus Aluminiumabstrich oder Aluminiumabfällen.
EP0118412A2 (de) Verfahren zur Durchführung von Schmelz-, schmelzmetallurgischen und/oder reduktionsmetallurgischen Prozessen in einem Plasmaschmelzofen sowie Einrichtung zur Durchführung des Verfahrens
DE3616868A1 (de) Gewinnungsverfahren fuer nichteisenmetalle
DE2616653C2 (de)
EP0292469B1 (de) Verfahren und Vorrichtung zur Durchführung heisschemischer Prozesse
DE2715736A1 (de) Verfahren zur reduktion von vanadiumoxiden
CH657152A5 (de) Verfahren zur herstellung von aluminium-silizium-legierungen.
DE2645585C3 (de) Verfahren zur kontinuierlichen oder diskontinuierlichen Behandlung von geschmolzenen schwermetalloxidhaltigen Schlacken zur Freisetzung von Wertmetallen und/oder deren Verbindungen
DE4108687A1 (de) Verfahren zur reduktion von ne-metalloxiden in schlacken
DE3920522A1 (de) Aggregat zur gewinnung von metallischem blei aus sulfidischen bleikonzentraten
DE3816697C1 (en) Process for recovering rare metals
DE2638082C2 (de) Verfahren zur Verarbeitung von zinnhaltigen Materialien mit einem Eisengehalt von mehr als 3 Gew %
DE3207026A1 (de) Verfahren zur konzentrierung oder gewinnung von nichteisenmetallen
DE2547204C2 (de) Carbothermisches Verfahren zur Gewinnung von Aluminium
DE205866C (de)
AT156468B (de) Verfahren zur Herstellung von kristallinem Beryllium.
DE961215C (de) Verfahren zur elektrothermischen Gewinnung von Magnesium
DE2715744C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890522

17Q First examination report despatched

Effective date: 19901113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930203

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930203

Ref country code: FR

Effective date: 19930203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930203

Ref country code: NL

Effective date: 19930203

Ref country code: BE

Effective date: 19930203

Ref country code: GB

Effective date: 19930203

Ref country code: SE

Effective date: 19930203

REF Corresponds to:

Ref document number: 85368

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3878036

Country of ref document: DE

Date of ref document: 19930318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930528

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930604

Year of fee payment: 6

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930727

Year of fee payment: 6

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930203

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940517

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201