EP0288799A2 - In einem Stapelgerüst angeordneter Container - Google Patents

In einem Stapelgerüst angeordneter Container Download PDF

Info

Publication number
EP0288799A2
EP0288799A2 EP88105603A EP88105603A EP0288799A2 EP 0288799 A2 EP0288799 A2 EP 0288799A2 EP 88105603 A EP88105603 A EP 88105603A EP 88105603 A EP88105603 A EP 88105603A EP 0288799 A2 EP0288799 A2 EP 0288799A2
Authority
EP
European Patent Office
Prior art keywords
container
container according
emptying
tube
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88105603A
Other languages
English (en)
French (fr)
Other versions
EP0288799A3 (en
EP0288799B1 (de
Inventor
Klaus Dietrich Nickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citadel Investments Ltd
Original Assignee
Braas GmbH
Kasa Technoplan GmbH
Citadel Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braas GmbH, Kasa Technoplan GmbH, Citadel Investments Ltd filed Critical Braas GmbH
Priority to AT88105603T priority Critical patent/ATE81635T1/de
Publication of EP0288799A2 publication Critical patent/EP0288799A2/de
Publication of EP0288799A3 publication Critical patent/EP0288799A3/de
Application granted granted Critical
Publication of EP0288799B1 publication Critical patent/EP0288799B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/128Large containers rigid specially adapted for transport tank containers, i.e. containers provided with supporting devices for handling

Definitions

  • the invention relates to a tubular container arranged in a stacking frame with curved or flat container bottoms for bulk material, preferably for fine dust with at least one filler neck and an emptying device and a pressure compensation device.
  • silo containers have the ISO / UIC standard or the dimensions prescribed by the railway. They can be used to transport bulk goods by road, rail or water on appropriate transport vehicles.
  • the well-known silo containers are loaded via filler necks, which are accessible from above through the stacking frame. Depending on the size, the - complete - emptying can be carried out via four, six or eight special outlets by means of stationary or stationary compressor systems with, for example, 2 atm air pressure.
  • Some silo containers also have to be tilted up to 50 ° for emptying in order to unload problematic bulk goods. Such containers then have a special discharge. (Brochure from Spitzer Silo-vehicles, D-6950 Mosbach near Heidelberg)
  • the known silo containers are used exclusively for transporting the bulk material, for example between a storage silo behind a mill or a shredding system and another storage silo in front of a further processing system. Between shredding and processing systems, the bulk goods must first be filled into a first storage silo, emptied from this - as required - for transport into the silo container and then, before further processing, transferred from the container to another storage silo using a device. This requires a considerable cost-intensive effort in terms of space, facilities and time.
  • known silo containers can be stacked according to their stacking frame dimensions, for example on transport ships or in a container terminal, but cannot be emptied when stacked.
  • the object of the present invention is to optimize the transfer of bulk materials, in particular problematic fine dust, between a comminution system and a further processing system.
  • the container arranged in a stacking frame is a rotary body mounted on rollers and rotatable about a longitudinal axis by a rotary drive or by hand, that a combined mechanical conveying device and fluidization device is provided that one of the container bottoms is designed as an emptying bottom and is combined with an emptying device which includes a passage for the bulk material through a central opening of the emptying bottom, and that the opposite container bottom is designed as a pressure equalizing bottom and is combined with a pressure equalizing device.
  • Such a container can be filled with essentially dry bulk material, preferably very fine dust, via its filler neck using a new filling device which is not part of the invention, directly from the closed system of a comminution system, and then, if necessary, stored for any length of time or on the respectively required means of transport to water the push or on the road - even over long distances.
  • the finest bulk goods in the container are unusable neither by agglomeration nor by chemical processes that may be taking place, since both can be interrupted or prevented by briefly rotating the container even if the residual moisture in the bulk goods is present.
  • the bulk material especially fine dust, can be directly and continuously released to a further processing production process without moisture absorption.
  • Fluidization is required before emptying the container if the bulk material has compressed due to gas separation due to the vibrations in the transporter (approx. 15% to 18% volume loss).
  • the fluidization blades in the container whirl up the bulk material during the rotation of the container and in the process bring it into contact with the gas bubble deposited in its upper region, the gas particles again accumulating on the surface of the solid particles. This makes the bulk material flowable. There is no enrichment of the moisture content beyond what was present when the container was filled, for example from the closed system of a shredding system.
  • the new containers can be stacked next to and on top of each other. Assuming that each container can hold about 30 tons of bulk goods, and four containers stacked on top of each other each stacking frame must be able to carry about 100 t (filling + dead weight). Because the containers are emptied via a passage in the central opening of their emptying floor, the battery-stacked containers can be connected to further line systems without difficulty and continuously discharged via them, the combined conveying and fluidizing device inside the container almost completely emptying enables and supports.
  • the container Before filling with potentially explosive bulk goods, the container is flushed with inert gas. It remains filled with this inert gas at a pressure of 0.2 bar and is thus rendered inert.
  • the inerting device belonging to the container is controlled via an O2 measuring point, which keeps the O2 content constant at about 6%.
  • dehumidified gas depending on the risk of explosion of the bulk material, air or inert gas
  • dehumidified gas can be used for gas compensation to equalize the pressure when the container is emptied, if the residual moisture content of the bulk material to be processed must not deteriorate.
  • the container In order to be able to discharge the frictional electricity that may arise during the fluidization process, the container is grounded opposite the stacking frame.
  • the stacking frame or the container is equipped with a transport lock, which holds the container securely in its stacking frame even when braking hard or in the event of unforeseen movements.
  • the transport lock can be operatively connected so that it cannot be switched on until the transport lock has been released.
  • the container can be stored on castors and its rotary drive can be done in different ways.
  • races are attached to the container and a separate drive ring is provided.
  • Each race ring is attached to the outer casing and is in running connection with four running rollers, each of which is mounted in a running frame of the stacking frame.
  • the drive ring is paired with a drive element which is connected to the rotary drive via a reduction gear.
  • the pairing between the drive ring and the drive element can take place as a sprocket, pinion, rack, chain, but also as a worm gear pairing. In the latter case, the reduction gear is designed as an angular gear.
  • two races are provided on the outer jacket of the container. Each of these races is operatively connected to three rollers and a drive wheel.
  • the rollers and the drive wheels are each mounted in the corners of a running frame of the stacking frame. At least one of the drive wheels mounted in a lower corner of the running frame is connected to the rotary drive via a reduction gear. Both drive wheels can be coupled to one another via a drive shaft.
  • the reduction gear can be rotatably connected with a hand crank in order to be able to empty the container in the event of a power failure or where the rotary drive of the container cannot be connected to a network.
  • the rotary drive includes a rotary motor that sits in the stacking frame and is an adjustable electric motor. This can be used to control the emptying of a container, but also of all containers stacked in a battery, for example via a process computer, and to adapt it to the requirements of a further processing process.
  • the mechanical combined conveying and fluidizing device includes one or more screw spirals fastened between the container bottoms on the inner casing, between which are located fluidizing blades arranged offset to one another and running in the direction of the longitudinal axis of the container.
  • the slope of the spiral screws towards the emptying floor can become smaller.
  • the screw spirals also transport the bulk material to the discharge floor. The design of the screw spirals allows the transport speed in connection with the rotation of the container to be influenced depending on the nature of the bulk material for which the containers are intended in the individual case.
  • the essence of the different emptying devices connected to the container is the material leadthrough the central opening in the emptying floor, which enables emptying when the container is rotating.
  • the emptying device is a suction emptying device
  • the feedthrough which is guided through the emptying base is a rotary feedthrough, at the outer end of which a suction connection is connected and at the inner end of which a suction nozzle is also directed downwards when the container is rotating, the lower end of which ends in a bulk material collecting space.
  • the bulk material which may have collapsed, must be loosened and made flowable. This is done by rotating the container without the suction emptying device being switched on.
  • suction emptying device in particular the rotary feedthrough, is combined with a so-called torque support, by means of which it is essentially achieved that the suction connection of the emptying device remains stationary with respect to the stacking structure even when the container is rotating. Details of the suction drain device tion can be found in claims 18 to 29.
  • a second exemplary embodiment of the emptying device is designed as a mechanical emptying device which includes a blade arrangement fastened to the inside of the emptying base.
  • the feedthrough in the drainage floor combined with this drainage device is also a rotary feedthrough. Details of this emptying device result from claims 30 to 35.
  • a third, relatively simple embodiment of a mechanical emptying device is characterized in claims 36 to 41.
  • This emptying device works independently of stationary auxiliary units or an electrical voltage. The emptying is accomplished simply by rotating the container within the stacking frame, in an emergency by hand drive.
  • a pressure compensation device is used when emptying, which is combined with the pressure compensation base. It essentially includes a gas feed-through, the gas feed-through receptacle fastened in the center of the pressure compensation base via star-shaped connecting lines connected to gas feed-throughs located at the outer edge of the pressure compensation base, and to the part of which is fixed relative to the stacking structure, a gas line is connected.
  • This gas line can be connected to air or gas bottles arranged in the stacking frame or also to a simple air inlet valve, which, however, is only used if the nature of the bulk material allows contact with the atmospheric air during emptying.
  • Each gas feedthrough near the circumference of the pressure compensation base is combined with a shut-off valve, the actuating plunger of which is on an am for the duration of a gassing period
  • Stacking cam attached control curve is present.
  • the arrangement is such that gassing of the container interior always and only takes place when the check valve currently in operation passes the control curve in the upper region.
  • an O2 measuring point can be arranged inside the container, which are in electrical connection with switching valves on the gas bottles in switching connection. If the O2 content inside the container should become too high, inert gas can be automatically filled into the container.
  • the filler neck, the emptying devices and the pressure compensation device are designed to be gas-tight with respect to the atmosphere.
  • the container according to the invention which is rotatably mounted in a stacking frame, all the disadvantages that previously had to be accepted in the intermediate storage and in the transport of very fine dust, such as additional money, space and space required for transferring and intermediate conveying systems as well Avoid accepting the risk of uncontrolled moisture absorption when decanting and intermediate conveying.
  • the container according to the invention can equally well be used in a shredding system as a receptacle for the bulk material, as a transport vessel over long distances as well as a storage container with its own emptying option - without having to be tipped over - and as a discharge vessel in the further processing of the bulk material, the container following the invention allows an optimum loading.
  • FIG. 1 is an overall isometric view of a tubular container 31 rotatably arranged in a stacking stand 1 arched container floors, of which an emptying floor 37 with a central opening 38 bordered by a reinforcing ring 40 can be seen.
  • the stacking frame 1 is composed in the usual way of struts and has a height 2, a length 3 and a width 4.
  • height 2, length 3 and width 4 can be measured in ISO or UIC dimensions.
  • the sizes can also be adapted, for example, to the dimensions prescribed by a railway.
  • the stacking frame 1 has a first moving frame 5 and a second moving frame 10.
  • three rollers 6 and, in each case in a lower corner of the frame, a drive wheel 7 are provided in each running frame 5 or 10.
  • the drive wheels 7 are driven by a rotary motor 8 via a reduction gear 9.
  • a drive shaft 16 is provided between the drive wheels 7 of the two running frames 5 and 10, in order to transmit the rotary drive to two races 35 and 36 with the force of only one rotary motor, which is fastened to the outer casing 33 of the container 31.
  • the rollers 11 mounted in the running frame 10 correspond to the rollers 6 in the moving frame 5.
  • the axes of rotation 12 of the rollers 6 and 11 and the axes of rotation 13 of the drive wheels 7 are unsprung in each corner of their running frame 5 or 10.
  • the axes of rotation 12 of the rollers 6 and 11 mounted in the upper corners of the running frames 5 and 10 can be supported by means of pressure springs (not shown) in order to avoid noise-producing movements of the container 31 within its stacking frame 1 during transport.
  • Fig. 1 shows that the reduction gear 9 is connected via a manual drive shaft 17 to a hand crank 18, which in turn can act on the manual drive shaft 17 via a reduction gear. This makes it possible to turn the container in the event of a power failure.
  • roller receptacles 19 which ensure proper storage of the rollers, but also of the drive wheels 7.
  • the drive wheels 7 can each have a tread made of hard rubber or the like, not shown. have in order to transmit the drive torque to the container 31 more securely.
  • two races 35, 36, each with three rollers 6, 10 and a drive wheel 7, can be used for each running frame 5, 10 in order to transmit the torque from the reduction gear 9 to the container 31.
  • At least one of the running rails 35, 36 is U-shaped and at the same time serves as an axial guide during the rotation of the container 31.
  • a support strut 20 can be seen, next to which gas bottles 21 are arranged.
  • the gas bottles 21 can be filled with air, but also with inert gas.
  • control box in which the essential components of the electrical or electronic control of the new container are arranged.
  • the gas bottles 21 are connected via a gas line 24 - as will be explained later - to a pressure compensation device 42 shown in FIGS. 10 to 13.
  • a rotary drive for the container 31 the rotary motor 8 acts on the container 31 via the reduction gear 9, a drive ring 25 and a drive element 26.
  • the running frame 5 and 10 rollers 6 and 11 are mounted in all four corners.
  • the rotary drive can, however, also be provided with a greenhouse gear toothing or not shown. a tooth chain drive.
  • the drive element 26 is designed as a worm and the drive ring 25 as a worm ring.
  • the reduction gear is designed as an angular gear.
  • the tubular container 31 itself has a longitudinal axis 32, an outer jacket 33 and an inner jacket 34.
  • filler neck 54 can be seen through which the container is filled with bulk material.
  • the filler neck 54 are dimensioned so that a man can get inside the container 31, for example to clean it with water.
  • the container 31 can be held in the stacking frame in such a way that the filler neck 54 point downwards in order to allow the cleaning water to drain off.
  • one or more helixes 55 are fastened, in the passages 57 of which fluidization blades 56 are offset with respect to one another and fastened in alignment with the longitudinal axis 32.
  • the fluidization blades 56 intensively fluidize the bulk material, which may have collapsed due to the transport, during the rotation of the container. In the process, gas particles from the upper area of the interior of the container accumulate on the bulk material particles, as a result of which the bulk material regains its original flowability, which had been lost during the transport due to degassing of the bulk material due to the shaking.
  • Fig. 1a shows a lower part of a transport lock 48. It consists essentially of a container brake pad 50 and a frame brake pad 51 opposite. Both brake pads 50 and 51 lie in the position of the container 31 shown in Fig. 1 within the Stacking stand 1 opposite. When the container 31 rotates within the stack The brake pads 50 and 51 can move past one another without interference, as can be seen, for example, in FIG. 2.
  • the container brake block 50 is fastened between two stiffening plates 49, whereas the frame brake block 51 is fastened between two stiffening surfaces 52 which are welded to the cross strut of the stacking frame 1, which is not shown.
  • the entire transport lock of the container 31 consists of four complexes 48.
  • An upper part of a transport lock and a lower part of the transport lock 48 are provided for each container floor 37 or 39.
  • Both lower parts of the transport lock 48 have, as can be seen in FIG. 1a, a rotating block 53 above the scaffold brake block 51, which is mounted in the approaches of the stiffening plates 52.
  • the rotary block 53 is pivoted in the direction of the arrow shown in FIG. 1 a and thereby passes between the stiffening plates 49, thereby preventing the container 31 from rotating and ensuring that the brake blocks 50 and 51 lie opposite one another.
  • an O2 measuring point 59 can be seen, which can electrically report the O2 content within the container. If this O2 content is too large, there is a risk of an explosion of the bulk material contained within the container 31. For this reason, actuation of the switching valves 22 can be triggered by the O2 measuring point via an electronic circuit, for example in the switch box 23, which are seated on the gas bottles 21 according to FIG. 3. If these gas bottles 21 are filled with inert gas, inertization of the endangered atmosphere within the container 31 can be ensured in this way.
  • a comparable sensor can also supply dried air into the interior regulate the container when additional air from the bottles 21 should be required to activate the bulk material particles.
  • FIGS. 2 to 7a A first exemplary embodiment of an emptying device is described with reference to FIGS. 2 to 7a.
  • FIG. 2 shows a simplified cross section through the emptying device 66. It has a rotary feed-through, generally designated 67, to the inner end of which a suction nozzle 68 and at the outer end of which a suction pump 69 can be connected or connected.
  • the suction pump 69 shown only schematically, can also be a very fine dust pump.
  • the rotary feedthrough 67 consists in particular of a bearing tube 60 with an outer flange 61 and an inner flange 63. Between the outer flange 61, inner flange 63 and bearing tube 60 stiffening ribs 64 are provided, as can be seen particularly clearly in FIG. 4. The outside of the outer flange 61 is designed as a bearing and sealing surface 61a.
  • a passage tube 62 is rotatably and tightly mounted within the bearing tube 60, the front end of which projects out of the bearing tube 60.
  • a torque arm 76 is attached, which is clearly shown in Fig. 7.
  • This torque support 76 is resiliently supported against the stack structure, it being possible for a switch 77 to be provided within this support, which is not described in detail, and which is arranged in the circuit of the rotary motor 8.
  • the rotary motor is switched off to prevent overloading.
  • This switch 77 can be dispensed with if, for example, according to FIG. 1, the rotary drive takes place via drive wheels 7. In the event of overload, these would simply slip through without endangering the rotary motor 8.
  • a spacer ring 65 is seated on the passage tube 62, which is arranged according to FIG. 4 between the torque support 76 and in the outer flange 61 of the bearing tube 60.
  • grub screws 76a are provided, by means of which the distance between the torque support 76 and the spacer ring 65 can be set.
  • a flange 79 of a suction connection 78 is fastened to the torque support 76 by means of screws 80, a shut-off element 94 also being fastened between the bottle 79 and the torque support 76.
  • the shut-off element 94 is a locking flap, not shown in detail.
  • the suction pump 69 indicated in FIG. 2 can be connected to the suction connection 78 in a manner known per se.
  • the inner end of the passage tube 62 has a recess, which can be seen in FIG. 5 and is open at the bottom and connected to the suction nozzle 64.
  • the passage tube 62 ends in a partial ring surface 62a, to which an end plate 96 is welded.
  • the diameter of this end plate 96 corresponds to the outer diameter of the passage tube 62.
  • This end plate 96 is shaped, as can be seen in FIG. 4, in such a way that a sufficiently large transition radius is ensured for the deflection of the sucked-in bulk material between the suction nozzle 68 and the passage tube 62.
  • a plug head 72 is screwed onto the end plate 96 by means of screws 98, and the upper end 68a of the suction nozzle 68 is welded into it.
  • a bearing and sealing ring 97 is welded on to the side of the plug-out head 72, by means of which a firm fit of the suction nozzle 68 in the plug-on head 72 is ensured and, moreover, a good rotary bearing relative to the inner flange 63 on the bearing tube is ensured.
  • the inner flange 63 is designed as a bearing and sealing ring 63a and the side of the bearing and sealing ring 67 facing this ensures good rotatability and good tightness.
  • the passage tube 62 is rotatably supported within the bearing tube 60 in a manner known per se and is sealed in a dust-tight manner by seals which are not described in detail but which are known per se.
  • Fig. 7a shows that the suction nozzle 68 consists of parallel suction tubes 70 with a square cross-section 71.
  • a pressure roller 75 is provided which, as can be seen in FIG. 4, runs on the rotating emptying floor 37.
  • the lower end 73 of the suction nozzle 68 ends in the bulk material collecting space 58 at a distance 74 above the inner shell 34 of the container 31.
  • Fig. 7 shows that the proboscis 68, but also the plug-on head 72, is surrounded by a triangular edge 99 in cross section, which primarily reduces the pressure of the bulk material when the container 31 rotates on the inlet and outlet edges of the suction nozzle 68.
  • FIGS. 8 and 9 show a second exemplary embodiment of a mechanical emptying device 81.
  • This has a rotary union, generally designated 82, and a blade arrangement 83.
  • a feed-through tube is guided, which consists of a front feed-through tube 90 and a feed-through tube 91 with a sharp edge by means of an extension ring 92.
  • a spacer ring 101 is provided on the front end of the feed-through tube 90.
  • This is adjoined by the torque support 76 which, as in the first exemplary embodiment, is supported against the stacking frame 1.
  • grub screws 76a are guided through the central plate of the torque support 76, through which the distance of the torque support 76 to the spacer ring 101 can be adjusted. With these grub screws, the proper rotating fit of the feed-through tube 90, 21 with respect to the running ring 88 is ensured.
  • a filler opening 86 is provided in the feed-through tube part 91, which is always directed upwards as a result of the torque support 76.
  • the blades of the blade arrangement 83 gradually shovel the bulk material into this filling opening, which accumulates in the bulk material collecting space 58 as a result of the action of the screw conveyor.
  • the shape of the blades is indicated by dashed lines in FIG. 9. They consist of sheets 102, the scooping edges 84 of which adjoin the inner jacket 34 of the emptying base 37 or the container 31.
  • the scooping ends 84a are oriented tangentially to the inner jacket 34 of the container 31.
  • the plates 102 of the blades are curved so that the bulk material picked up can always fall down during the rotation of the container.
  • the bulk material arrives at the discharge end 84b of the blade arrangement 83 and passes through the filling opening 86 into a delivery pipe 85 and from there to the discharge opening 87, which is in the front plate of the torques Support 76 is located below the center.
  • a blocking passage 94 which is screwed to the base plate of the torque support 76.
  • an unloading device 85 which is designed as a windbreak, can be arranged in front of the emptying opening 87 during the emptying process.
  • Fig. 9 shows the conveyor pipe 85 in dashed lines in plan view. Such a training, which narrows towards the discharge opening 87, will only be used in special cases.
  • the conveying pipe between the filling opening 86 and the emptying opening is normally widened in a trumpet shape in order to prevent the material to be jammed during emptying.
  • the extension ring 92 between the feed-through tubes 90 and 91 is designed on its outward-facing side as a bearing and sealing ring.
  • locking plates 193 can be provided, which are indicated in plan view in FIG. 9 and in cross section also in FIG. 8.
  • the previously described second exemplary embodiment of the emptying device 81 can have any number of individual blades belonging to the blade arrangement 83.
  • FIG. 9 six individual blades are indicated, which discharge the bulk material conveyed into the bulk material collecting space 58 by the screw spirals 55. Three or four individual blades can also be used.
  • a third embodiment of a mechanical emptying device 105 is shown.
  • the essential component of this emptying device is a scoop tube 106, the emptying end 107, 115 of which is coaxial with the Emptying floor 37 is guided.
  • the blade tube 106 has an end flange 108 which is screwed to the reinforcing ring 40 of the central opening 38.
  • the filling end 109 of the scoop tube 106 is designed as a scoop which lies tangentially on the inner casing 34 of the container 31 and whose front edge 110 is fastened to the container inner casing 34.
  • the bucket tube 106 rotates together with the container 31. It picks up the bulk material from the bulk material collection space 58. When the container 31 rotates in the bucket tube 106, the bulk material always falls down and, as can be seen from FIGS. 14 and 16, reaches the emptying end 107 and 115 of the bucket tube 106 from above.
  • a sliding sealing ring 111 On the outer surface of the end flange 108 there is a sliding sealing ring 111, to which a torque support 76 supported against the stacking frame 1 and a shut-off element 94 are fastened, in front of which a connecting flange is seated, which remains stationary relative to the stacking frame 1 during the rotation of the container 31.
  • Stiffening plates 114 are provided between the end flange 108 and the drain end 107 of the blade tube 106.
  • FIG. 16 shows in the direction of the arrows XV / XV a section through FIG. 14 and the shape of the blade tube 106, which can be welded together, for example, from preformed individual sheets.
  • FIG. 16 shows a very simple variant of the emptying device 115, in which a discharge tube 112 which widens outwards is screwed onto the outer surface of the end flange 108 and can be closed by a simple union nut 113.
  • the blade tube 106 is preferably expanded in a trumpet shape between its filling end 109 and its emptying end 105, 115.
  • the design of the emptying end 115 according to FIG. 16 is somewhat different from that of the emptying end 107 according to FIG. 14.
  • All emptying devices 66, 81 and 105 work together with a pressure compensation device 42, through which gas can be added to the container during emptying.
  • a pressure compensation device 42 through which gas can be added to the container during emptying.
  • FIGS. 10 to 13 it consists of a gas rotary leadthrough 43, the gas leadthrough receptacle 43a of which is fastened in the center 41 of the pressure compensation base 39.
  • connecting lines 44 end which, as can be seen in FIG. 10, are led outward in a star shape to gas leadthroughs 45 which, according to FIGS. 11 and 12, are fastened along the outer edge 39a of the pressure compensation base 39 and a gas passage into the interior enable the container 31.
  • the gas feedthroughs 45 on the outer edge 39a of the pressure compensation base 39 are combined with check valves 46, which have an actuating plunger 47, for example.
  • these actuating plungers 47 run in the upper region of their orbit on a control curve 47a indicated schematically in FIG. 10, so that the gas feedthroughs 45 in the upper region of the rotating container each become permeable.
  • the filler neck 54, the emptying devices 66, 81, 105 and the pressure compensation device 42 are made gas-tight with respect to the atmosphere.

Abstract

Ein in einem Stapelgerüst (1) auf Laufrollen (6) gelagerter und von einem Drehantrieb bzw. von Hand um seine Längsachse (32) drehbarer Container (31) ist als Rotationskörper ausgebildet und innen mit einer mechanischen Förderungs- und Fluidisierungseinrichtung ausgerüstet. Einer der Containerböden dient als Entleerungsboden (37) und ist mit einer Entleerungseinrichtung kombiniert, die eine durch eine Zentralöffnung (38) des Entleerungsbodens (37) geführte Durchführung für das Schüttgut einschließt. Der gegenüberliegende Containerboden dient als Druckausgleichboden (39) und ist mit einer Druckausgleichseinrichtung kombiniert.

Description

  • Die Erfindung bezieht sich auf einen in einem Stapelgerüst an­geordneten rohrförmigen Container mit gewölbten oder ebenen Con­tainerböden für Schüttgut, vorzugsweise für Feinststäube mit wenigstens einem Einfüllstutzen und einer Entleerungsvorrich­tung sowie einer Druckausgleichsvorrichtung.
  • Die Sapelgerüste derartiger, unter dem Namen Silo-Container bekannter Transportbehälter weisen ISO/UIC-Standard oder die von der Eisenbahn vorgeschriebenen Abmessungen auf. Mit ihnen lassen sich Schüttgüter auf entsprechenden Transportfahrzeugen über Straße, Schiene oder Wasser transportieren. Beladen wer­den die bekannten Silo-Container über Füllstutzen, die von oben durch das Stapelgerüst zugänglich sind. Die - restlose - Ent­leerung kann je nach Größe über vier, sechs oder acht Spezial­ausläufe durch am Containerfahrgestell montierte oder stationäre Kompressoranlagen mit beispielsweise 2 Atü Luftdruck erfolgen. Manche Silo-Container müssen zwecks Entleerung auch bis zu 50° gekippt werden, um problematische Schüttgüter zu entladen. Der­artige Container besitzen dann einen Spezialaustrag. (Prospekt der Fa. Spitzer Silo-Fahrzeuge, D-6950 Mosbach bei Heidelberg)
  • Die bekannten Silo-Container werden ausschließlich zum Trans­port des Schüttgutes, beispielsweise zwischen einem Vorratssilo hinter einer Mühle oder einer Zerkleinerungsanlage und einem weiteren Vorratssilo vor einer Weiterverarbeitungsanlage ver­wendet. Zwischen den Zerkleinerungs- und Weiterverarbeitungs­ anlagen muß das Schüttgut zunächst in ein erstes Vorratssilo abgefüllt, aus diesem - nach Bedarf - zum Transport in den Silo-­Container entleert und anschließend, vor der Weiterverarbeitung über eine Vorrichtung aus dem Container erneut in ein weiteres Vorratssilo umgefüllt werden. Hierfür ist ein beträchtlicher kostenintensiver Aufwand an Platz, Anlagen und Zeit notwendig.
  • Schwierigkeiten besonderer Art ergeben sich dabei mit proble­matischen Feinststäuben, die bei der Entleerung schwer fließ­fähig sind oder auch zu Agglomeration und zur Brückenbildung neigen. Für Vorratssilos sind zur Vermeidung dieser Störungen Austragshilfen, wie pneumatische Fluidisierungsböden o.dgl. entwickelt worden, deren Einsatz bei Silo-Containern diese aber erheblich verteuern würde. Ganz abgesehen davon würde durch den Einbau von Fluidisierungsböden das Fassungsvermögen der Container herabgesetzt und der apparative Aufwand für das Entleeren erhöht werden.
  • Für den Transport schwer fließfähiger Schüttgüter wird daher bisher beispielsweise auf teure Bulk-Container mit eingebautem Fluidisierungsinlet ausgewichen (AZO-Containerinlet, AZO-Ma­schinenfabrik Adolf Zimmermann, D-6960 Osterburken). Diese Bulk-Container haben sich jedoch nicht bewährt, weil sie in­folge der Scheuerwirkung des Schüttgutes während des Trans­portes oft schon nach wenigen Einsätzen unbrauchbar geworden sind. Die Bulk-Container eignen sich auch nicht für den direk­ten Anschluß an einen Weiterverarbeitungsprozeß, da ein kon­tinuierliches Entleeren ohne ständiges Nachkippen nicht mög­lich ist. Sie müssen zunächst in ein Zwischensilo entleert werden.
  • Hinzu kommt, daß bekannte Silo-Container nach Maßgabe ihrer Sta­pelgerüstabmessungen, beispielsweise auf Transportschiffen oder in einem Container-Terminal zwar stapelbar, im gestapelten Zu­stand aber nicht entleerbar sind.
  • Besonders nachteilig ist diese Eigenart bisheriger Silo-Con­ tainer bei der Zwischenlagerung und dem Zwischentransport von Feinststäuben, die feuchtigkeitsempfindlich sind. Bei jedem Um­füllen kommen sie mit der atmosphärischen Luft in Berührung, wobei die ursprünglich nach dem Zerkleinerungsprozeß im wesent­lichen trocknen Feinststäube Feuchtigkeit aufnehmen, die vor ihrer Weiterverarbeitung oft kostenaufwendig wieder entfernt werden muß.
  • Dem gegenüber liegt der vorliegenden Erfindung die Aufgabe zu­grunde, das Verbringen von Schüttgütern, insbesondere von pro­blematischen Feinststäuben, zwischen einer Zerkleinerungsan­lage und einer Weiterverarbeitungsanlage wesentlich zu opti­mieren.
  • Es wurde gefunden, daß sich diese Aufgabe in überraschend ein­facher Weise dadurch lösen läßt, daß der in einem Stapelgerüst angeordnete Container ein auf Laufrollen gelagerter und von einem Drehantrieb bzw. von Hand um eine Längsachse drehbarer Rotationskörper ist, daß im Container eine kombinierte mecha­nische Förder- und Fluidisierungseinrichtung vorgesehen ist, daß einer der Containerböden als Entleerungsboden ausgebildet und mit einer Entleerungsvorrichtung kombiniert ist, die eine durch eine Zentralöffnung des Entleerungsbodens geführte Durch­führung für das Schüttgut einschließt, und daß der gegenüber­liegende Containerboden als Druckausgleichsboden ausgebildet und mit einer Druckausgleichseinrichtung kombiniert ist.
  • Ein derartiger Container kann über eine nicht zur Erfindung ge­hörende neue Fülleinrichtung direkt aus dem geschlossenen System einer Zerkleinerunsanläge über seinen Einfüllstutzen mit im wesentlichen trockenen Schüttgut, vorzugsweise Feinststäuben befüllt und danach, wenn notwendig, beliebig lange zwischenge­lagert oder auf dem jeweils erforderlichen Transportmittel zu Wasser, auf der Schiebe oder auf der Straße - auch über lange Entfernungen - transportiert werden.
  • Auch bei längeren Lagerzeiten wird feinstes Schüttgut im Con­tainer weder durch Agglomeration noch durch möglicherweise ab­laufende chemische Prozesse unbrauchbar, da beides schon durch kurzzeitiges Drehen des Containers auch bei vorhandener Rest­feuchte des Schüttgutes unterbrochen bzw. verhindert werden kann. Durch unterschiedliche, an die jeweilige Praxis ange­paßte Entleerungsvorrichtungen des Containers kann das Schütt­gut, vor allem Feinststaub, ohne Feuchtigkeitsaufnahme direkt und kontinuierlich an einen weiterverarbeitenden Produktions­prozeß abgegeben werden.
  • Dabei wird zum Fluidisieren des Schüttgutes im gasdichten Con­tainer kein zusätzliches von außen zugeführtes Gas benötigt. Vielmehr reicht die beim Befüllen des Containers zusammen mit dem fließfähigen Feinststaub eingebrachte Gasmenge aus. Sollte, aus welchem Grunde auch immer, für die Fluidisierung eine Gas­nachführung erforderlich sein, so erfolgt diese durch eine Druckausgleichsvorrichtung, mit der der Container ausgerüstet ist.
  • Das Fluidisieren ist vor dem Entleeren des Containers erforder­lich, wenn sich das Schüttgut durch Gasabspaltung infolge der Transporterschütterungen verdichtet hat (ca. 15% bis 18% Volu­mensverlust). Durch die im Container vorhandenen Fluidisierungs­schaufeln wird das Schüttgut bei der Rotation des Containers aufgewirbelt und dabei mit der in seinem oberen Bereich abge­lagerten Gasblase in Verbindung gebracht, wobei sich die Gas­partikel wieder an der Oberfläche der Feststoffpartikel anla­gern. Dadurch wird das Schüttgut fließfähig. Eine Anreicherung des Feuchtigkeitsgehaltes über das Maß hinaus, was bei der Be­füllung des Containers, beispielsweise aus dem geschlossenen System einer Zerkleinerungsanlage vorhanden war, erfolgt nicht.
  • Die neuen Container können neben- und übereinandergestapelt wer­den. Geht man davon aus, daß jeder Container etwa 30 t Schütt­gut aufnehmen kann, und vier Container übereinander gestapelt werden sollen, muß jedes Stapelgerüst etwa 100 t tragen können (Befüllung + Eigengewicht). Dadurch, daß die Entleerung der Container über eine Durchführung in der Zentralöffnung ihres Entleerungsbodens erfolgt, können die batterieweise gestapelten Container ohne Schwierigkeiten an weiterführende Leitungssysteme angeschlossen und über diese kontinuierlich entladen werden, wobei die kombinierte Förder- und Fluidisierungseinrichtung im Inneren der Container eine nahezu vollständige Entleerung er­möglicht und unterstützt.
  • Vor dem Befüllen mit explosionsgefährdeten Schüttgütern wird der Container mit Inertgas gespült. Er bleibt mit diesem Inert­gas bei einem Druck von 0,2 bar befüllt und ist dadurch inerti­siert. Die zum Container gehörende Inertisierungsvorrichtung wird über eine O₂-Meßstelle gesteuert, die den O₂-Gehalt kon­stant auf etwa 6% hält.
  • Für die Gasnachführung zum Druckausgleich beim Entleeren des Containers kann ausschließlich entfeuchtetes Gas (je nach Ex­plosionsgefahr des Schüttgutes Luft oder Inertgas) verwendet werden, wenn sich der Restfeuchtigkeitsgehalt des weiterzuver­arbeitenden Schüttgutes nicht verschlechtern darf.
  • Um die beim Fluidisierungsvorgang unter Umständen entstehende Reibungselektrizität ableiten zu können, ist der Container ge­genüber dem Stapelgerüst geerdet. Das Stapelgerüst bzw. der Container ist mit einer Transportsicherung ausgerüstet, die den Container auch bei starkem Bremsen bzw. bei unvorherge­sehenen Bewegungsabläufen sicher in seinem Stapelgerüst hält. Die Transportsicherung kann mit dem Einschalten des Drehantrie­bes so in Wirkverbindung stehen, daß dieser erst eingeschaltet werden kann, wenn zuvor die Transportsicherung gelöst ist.
  • Die Lagerung des Containers auf Laufrollen und sein Drehantrieb können auf unterschiedliche Weise erfolgen. In einem ersten Aus­führungsbeispiel sind dazu am Container befestigte Laufringe und ein gesonderter Antriebsring vorgesehen. Jeder Laufring ist am Außenmantel befestigt und steht mit vier in je einem Laufrahmen des Stapelgerüstes gelagerten Läufrollen in Laufver­bindung. Der Antriebsring ist mit einem Antriebselement ge­paart, welches über ein Untersetzungsgetriebe mit dem Drehan­trieb in Antriebsverbindung steht. Die Paarung zwischen An­triebsring und Antriebselement kann als Zahnkranz-, Ritzel-, Triebstock-, Ketten- aber auch als Schneckenradpaarung erfolgen. Im letzteren Fall ist das Untersetzungsgetriebe als Winkelge­triebe ausgebildet.
  • In einem anderen Ausführungsbeispiel sind am Außenmantel des Containers zwei Laufringe vorgesehen. Jeder dieser Laufringe steht mit drei Laufrollen und einem Antriebsrad in Wirkverbin­dung. Die Laufrollen und die Antriebsräder sind jeweils in den Ecken je eines Laufrahmens des Stapelgerüstes gelagert. Wenig­stens eines der in einer unteren Ecke des Laufrahmens gelager­ten Antriebsräder ist über ein Untersetzungsgetriebe an den Drehantrieb angeschlossen. Beide Antriebsräder können über eine Antriebswelle miteinander verkoppelt sein.
  • Unter Umständen ist es erforderlich, daß pro Laufrahmen zwei Laufringe mit je drei Laufrollen und einem Antriebsrad vorge­sehen werden. Von Vorteil ist es auch, wenn die Antriebsräder mit einem Laufkranz aus Hartgummi versehen sind. Das Unter­setzungsgetriebe kann mit einer Handkurbel in Drehverbindung stehen, um bei Stromausfall oder dort, wo der Drehantrieb des Containers nicht an ein Netz anchließbar ist, gleichwohl eine Entleerung des Containers durchführen zu können.
  • Der Drehantrieb schließt einen Drehmotor ein, der im Stapelge­rüst sitzt und ein regelbarer Elektromotor ist. Mit diesem kann die Entleerung eines Containers, aber auch aller in einer Batterie gestapelten Container beispielsweise über einen Pro­zeßrechner gesteuert und an den Bedarf eines Weiterverarbeitungs­prozesses angepaßt werden.
  • Die mechanische kombinierte Förder- und Fluidisierungseinrich­tung schließt eine oder mehrere, zwischen den Containerböden am Innenmantel befestigte Schneckenwendeln ein, zwischen denen in Richtung der Längsachse des Containers verlaufende, versetzt zu­einander angeordnete Fluidisierungsschaufeln sitzen. Dabei kann die Steigung der Schneckelwendeln zum Entleerungsboden hin ge­ringer werden. Bei der Rotation des Containers wird durch die Fluidisierungsschaufeln eine Durchwirbelung des Schüttgutes vor­genommen. Durch die Schneckenwendeln erfolgt zugleich ein Trans­port des Schüttgutes zum Entleerungsboden hin. Durch die Gestal­tung der Schneckenwendeln kann die Transportgeschwindigkeit in Verbindung mit der Umdrehung des Containers je nach der Beschaf­fenheit des Schüttgutes, für welche die Container im Einzelfall bestimmt sind, beeinflußt werden.
  • Das wesentliche der mit dem Container verbundenen unterschied­lichen Entleerungsvorrichtungen ist die durch die Zentralöffnung im Entleerungsboden geführte Materialdurchführung, die eine Ent­leerung bei rotierendem Container ermöglicht.
  • Im einem ersten Ausführungsbeispiel ist die Entleerungsvorrich­tung eine Saugentleerungsvorrichtung, deren durch den Entlee­rungsboden geführte Durchführung eine Drehdurchführung ist, an deren äußeres Ende ein Sauganschluß und an deren inneres Ende ein auch bei rotierendem Container abwärts gerichteter Saug­rüssel angeschlossen ist, dessen unteres Ende in einem Schütt­gutsammelraum endet. Bevor die Entleerung durch diese Saugent­leerungseinrichtung beginnt, muß das unter Umständen zusammen­gesackte Schüttgut aufgelockert und fließfähig gemacht werden. Dieses geschieht dadurch, daß der Container gedreht wird, ohne daß die Saugentleerungsvorrichtung eingeschaltet ist. Die Saug­entleerungsvorrichtung, insbesondere die Drehdurchführung, ist mit einer sog. Drehmomentenstütze kombiniert, durch die im wesentliche erreicht wird, daß der Sauganschluß der Entleerungs­vorrichtung auch bei rotierendem Container gegenüber dem Sta­pelgerüst stillsteht. Einzelheiten der Saugentleerungsvorrich­ tung lassen sich den Ansprüchen 18 bis 29 entnehmen.
  • Ein zweites Ausführungsbeispiel der Entleerungsvorrichtung ist als mechanische Entleerungsvorrichtung ausgebildet, die eine an der Innenseite des Entleerungsbodens befestigte Schaufelan­ordnung einschließt. Auch die mit dieser Entleerungsvorrichtung kombinierte Durchführung im Entleerungsboden ist eine Drehdurch­führung. Einzelheiten dieser Entleerungsvorrichtung ergeben sich aus den Ansprüchen 30 bis 35.
  • Ein drittes, relativ einfaches Ausführungsbeispiel einer mecha­nischen Entleerungsvorrichtung ist in den Ansprüchen 36 bis 41 gekennzeichnet. Diese Entleerungsvorrichtung arbeitet unabhängig von stationären Hilfsaggregaten bzw. einer elektrischen Spannung. Allein durch die Rotation des Containers innerhalb des Stapel­gerüstes, im Notfall durch Handantrieb, wird die Entleerung be­werkstelligt.
  • In allen Fällen kommt bei der Entleerung eine Druckausgleichs­vorrichtung zum Tragen, die mit dem Druckausgleichsboden kom­biniert ist. Sie schließt im wesentlichen eine Gasdurchführung ein, deren im Zentrum des Druckausgleichsbodens befestigte Gas­durchführungsaufnahme über sternförmig nach außen geführte Ver­bindungsleitungen an am Außenrand des Druckausgleichsbodens sitzende Gasdurchführungen in das Innere des Containers ange­schlossen sind, und an deren relativ zum Stapelgerüst festlie­genden Teil eine Gasleitung angeschlossen ist. Diese Gasleitung kann mit im Stapelgerüst angeordneten Luft- bzw. Gasflaschen oder auch mit einem einfachen Lufteintrittsventil verbunden sein, welches jedoch nur dann zum Einsatz kommt, wenn die Be­schaffenheit des Schüttgutes beim Entleeren einen Kontakt mit der atmosphärischen Luft gestattet.
  • Jede Gasdurchführung in der Nähe des Umfanges des Druckausgleichs­bodens ist mit einem Sperrventil kombiniert, dessen Betätigungs­stössel für die Dauer einer Begasungszeitspanne an einer am Stapelgerüst befestigten Steuerkurve anliegt. Die Anordnung ist so getroffen, daß immer und nur dann eine Begasung des Container-­Innenraumes stattfindet, wenn das jeweils in Tätigkeit befind­liche Sperrventil im oberen Bereich an der Steuerkurve vorbei­läuft.
  • In Container, die vorzugsweise zum Transport und zur Lagerung be­sonders gefährdeter Schüttgüter eingesetzt werden, kann inner­halb des Containers eine O₂-Meßstelle angeordnet sein, die elektrisch mit Schaltventilen an den Gasflaschen in Schaltver­bindung stehen. Wenn der O₂-Gehalt innerhalb des Containers zu hoch werden sollte, kann so automatisch Inertgas in den Container eingefüllt werden.
  • Von Vorteil ist, wenn die Einfüllstutzen, die Entleerungsvorrich­tungen und die Druckausgleichsvorrichtung gegenüber der Atmos­phäre gasdicht ausgebildet ist.
  • Mit dem erfindungsgemäßen, in einem Stapelgerüst drehbar gela­gerten Container, lassen sich alle Nachteile, die bei der Zwischenlagerung und bei dem Transport von Feinststäuben bisher in Kauf zu nehmen waren, wie zusätzlicher Geld-, Raum- und Platz-­bedarf für Umfüll- und Zwischenförderanlagen sowie Inkaufnahme der Gefahr unkontrollierter Feuchtigkeitsaufnahme beim Umfül­len und Zwischenfördern vermeiden. Der Container nach der Er­findung kann gleichgut sowohl in einer Zerkleinerungsanlage als Aufnahmegefäß für das Schüttgut, als Transportgefäß über lange Strecken wie auch als Lagerbehälter mit eigener Entleerungsmög­lichkeit - ohne umgekippt werden zu müssen - und als Austrags­gefäß bei der Weiterverarbeitung des Schüttgutes dienen, wobei der Container nach der Erfindung ein Optimum an Beladung zuläßt.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung beschrieben.
  • Es zeigt:
    • Fig. 1 eine isometrische Gesamtansicht des Containers,
    • Fig. 1a Einzelheiten der Transportsicherung,
    • Fig. 2 einen Querschnitt durch ein erstes Ausführungsbei­spiel einer Entleerungsvorrichtung entlang der Linie II/II in Fig. 3,
    • Fig. 3 eine Ansicht auf die Entleerungsvorrichtung nach Fig. 2 nach Maßgabe der Linie III/III in Fig. 2,
    • Fig. 4 einen vergrößerten Querschnitt durch das Ausfüh­rungsbeispiel nach Fig. 2,
    • Fig. 5 eine Konstruktionseinzelheit als Schnitt entlang der Linie V/V in Fig. 4,
    • Fig. 6 Einzelheiten des ersten Ausführungsbeispieles der Entleerungsvorrichtung,
    • Fig. 7 einen Saugrüssel in Vorderansicht,
    • Fig. 7a einen Querschnitt durch Fig. 7 entlang der Linie VIIA/VIIA,
    • Fig. 8 einen Querschnitt durch ein zweites Ausführungs­beispiel einer Entleerungsvorrichtung nach Maßgabe der Linie VIII/VIII in Fig. 9,
    • Fig. 9 eine Ansicht auf die Entleerungsvorrichtung nach Maßgabe der Linie IX/IX in Fig. 8,
    • Fig. 10 eine Ansicht auf eine Druckausgleichsvorrichtung nach Maßgabe der Linie X/X in Fig. 11,
    • Fig. 11 eine Draufsicht auf die Druckausgleichsvorrichtung nach Maßgabe der Linie XI/XI in Fig. 10,
    • Fig. 12 ein Detail der Druckausgleichsvorrichtung,
    • Fig. 13 ein weiteres Detail der Druckausgleichsvorrichtung,
    • Fig. 14 einen Schnitt durch ein drittes Ausführungsbei­spiel einer Entleerungsvorrichtung,
    • Fig. 15 einen Schnitt durch Fig. 14 entlang der Linie XV/XV und
    • Fig. 16 eine einfache Variante der Entleerungsvorrichtung nach Fig. 14.
  • Fig. 1 zeigt in isometrischer Gesamtansicht einen in einem Sta­pelgerüst 1 drehbar angeordneten rohrförmigen Container 31 mit gewölbten Containerböden, von denen ein Entleerungsboden 37 mit einer von einem Verstärkungsring 40 eingefaßten Zentralöffnung 38 erkennbar ist.
  • Das Stapelgerüst 1 ist in üblicher Weise aus Streben zusammenge­setzt und weist eine Höhe 2, eine Länge 3 sowie eine Breite 4 auf. Je nach Verwendungszweck können Höhe 2, Länge 3 und Breite 4 in ISO- bzw. UIC-Maßen bemessen sein. Die Größen können aber auch beispielsweise an die von einer Eisenbahn vorgeschriebenen Maße angepaßt sein.
  • Das Stapelgerüst 1 weist einen ersten Laufrahmen 5 und einen zweiten Laufrahmen 10 auf. Im dargestellten Ausführungsbeispiel sind in jedem Laufrahmen 5 bzw. 10 drei Laufrollen 6 sowie, je­weils in einer unteren Ecke des Laufrahmens, ein Antriebsrad 7 vorgesehen. Die Antriebsräder 7 werden über ein Untersetzungs­getriebe 9 von einem Drehmotor 8 angetrieben. Zwischen den An­triebsrädern 7 der beiden Laufrahmen 5 und 10 ist eine Antriebs­welle 16 vorgesehen, um mit der Kraft nur eines Drehmotors den Drehantrieb auf zwei Laufringe 35 und 36 zu übertragen, die am Außenmantel 33 des Containers 31 befestigt ist. Die im Laufrah­men 10 gelagerten Laufrollen 11 entsprechen den Laufrollen 6 im Laufrahmen 5. Normalerweise sind die Drehachsen 12 der Lauf­rollen 6 bzw. 11 und die Drehachsen 13 der Antriebsräder 7 un­gefedert in je eine Ecke ihres Laufrahmens 5 bzw. 10 gelagert. Für Sonderzwecke können die Drehachsen 12 der in den oberen Ecken der Laufrahmen 5 und 10 gelagerten Laufrollen 6 bzw. 11 aber mittels nicht dargestellter Andruckfedern gelagert sein, um beim Transport geräuscherzeugende Bewegungen des Containers 31 innerhalb seines Stapelgerüstes 1 zu vermeiden.
  • Fig. 1 läßt erkennen, daß das Untersetzungsgetriebe 9 über eine Handantriebswelle 17 an eine Handkurbel 18 angeschlossen ist, die wiederum über ein Untersetzungsgetriebe auf die Handan­triebswelle 17 einwirken kann. Hiermit ist es möglich, bei Stromausfall den Container zu drehen.
  • In jedem der Laufrahmen 5 bzw. 10 sind sog. Laufrollenaufnahmen 19 vorhanden, die für eine ordnungsgemäße Lagerung der Laufrol­len, aber auch der Antriebsräder 7 sorgen.
  • Die Antriebsräder 7 können je einen nicht dargestellten Lauf­kranz aus Hartgummi o.dgl. aufweisen, um sicherer das Antriebs­drehmoment auf den Container 31 zu übertragen. In besonderen Fällen können pro Laufrahmen 5, 10 auch je zwei Laufringe 35, 36 mit je drei Laufrollen 6, 10 und einem Antriebsrad 7 zum Einsatz kommen, um das Drehmoment vom Untersetzungsgetriebe 9 auf den Container 31 zu übertragen. Wenigstens eine der Lauf­schienen 35, 36 ist U-förmig ausgebildet und dient während der Rotation des Containers 31 zugleich als axiale Führung.
  • Im vorderen Bereich der Fig. 1 ist eine Stützstrebe 20 erkenn­bar, neben der Gasflaschen 21 angeordnet sind. Wie später er­läutert werden wird, können die Gasflaschen 21 mit Luft, aber auch mit Inertgas gefüllt sein.
  • Mit 23 ist ein Schaltkasten angedeutet, in welchem die wesent­lichen Bestandteile der elektrischen bzw. elektronischen Steue­rung des neuen Containers angeordnet sind.
  • Die Gasflaschen 21 sind über eine Gasleitung 24 - wie dies später erläutert wird - mit einer in den Fig. 10 bis 13 dargestellten Druckausgleichsvorrichtung 42 verbunden.
  • In einem weiteren Ausführungsbeispiel eines Drehantriebes für den Container 31 wirkt der Drehmotor 8 über das Untersetzungs­getriebe 9, einen Antriebsring 25 und ein Antriebselement 26 auf den Container 31 ein. In diesem Falle sind in allen vier Ecken der Laufrahmen 5 bzw. 10 Laufrollen 6 bzw. 11 gelagert. In Fig. 1 ist die Paarung eines Antriebsringes 25 und eines An­triebselementes 26 über eine Kette 28 angedeutet. Ohne am Kern der Erfindung etwas zu ändern, kann der Drehantrieb aber auch über eine nicht dargestellte Treibstockverzahnung bzw. einen Zahnkettenantrieb erfolgen. Für ein Ausführungsbeispiel ist vorgesehen, daß das Antriebselement 26 als Schnecke und der Antriebsring 25 als Schneckenkranz ausgebildet ist. In die­sem Falle ist das Untersetzungsgetriebe als Winkelgetriebe aus­gebildet. Auch diese Drehantriebe sind über die Handantriebs­welle 17 mit der Handkurbel 18 verbunden, um im Notfall eine Drehung des Containers 31 auch von Hand durchführen zu können.
  • Der rohrförmige Container 31 selbst weist eine Längsachse 32, einen Außenmantel 33 sowie einen Innenmantel 34 auf. Weiterhin sind Einfüllstutzen 54 erkennbar, durch welche der Container mit Schüttgut befüllt wird. Die Einfüllstutzen 54 sind so be­messen, daß ein Mann in das Innere des Containers 31 gelangen kann, um diesen beispielsweise mit Wasser zu reinigen. Dabei kann der Container 31 so im Stapelgerüst festgehalten werden, daß die Einfüllstutzen 54 nach unten zeigen, um einen Abfluß des Reinigungswassers zu ermöglichen.
  • Am Innenmantel 34 des Containers sind eine oder mehrere Schnek­kenwendeln 55 befestigt, in deren Gängen 57 Fluidisierungs­schaufeln 56 versetzt zueinander und in Ausrichtung mit der Längsachse 32 befestigt sind. Durch die Fluidisierungsschau­feln 56 wird während der Rotation des Containers eine inten­sive Fluidisierung des unter Umständen durch den Transport zusammengesackten Schüttgutes vorgenommen. Dabei lagern sich Gaspartikel aus dem oberen Bereich des Containerinneren an den Schüttgutpartikeln an, wodurch das Schüttgut seine ursprüngliche Fließfähigkeit zurückerhält, die während des Transportes durch Entgasung des Schüttgutes durch das Rütteln verlorengegangen war.
  • Fig. 1a zeigt einen unteren Teil einer Transportsicherung 48. Sie besteht im wesentlichen aus einem Container-Bremsklotz 50 und einem dem gegenüberliegenden Gerüst-Bremsklotz 51. Beide Bremsklötze 50 und 51 liegen sich in der in Fig. 1 dargestell­ten Lage des Containers 31 innerhalb des Stapelgerüstes 1 ge­genüber. Beim Rotieren des Containers 31 innerhalb des Stapel­ gerüstes können die Bremsklötze 50 und 51 sich störungsfrei an­einander vorbeibewegen, wie dieses beispielsweise Fig. 2 er­kennen läßt.
  • Der Container-Bremsklotz 50 ist zwischen zwei Versteifungsblechen 49 befestigt, wohingegen der Gerüst-Bremsklotz 51 zwischen zwei Versteifungsflächen 52 befestigt ist, die an der nicht bezeich­neten Querstrebe des Stapelgerüstes 1 angeschweißt sind.
  • Die gesamte Transportsicherung des Containers 31 besteht aus vier Komplexen 48. Je Containerboden 37 bzw. 39 ist ein oberer Teil einer Transportsicherung und ein unterer Teil der Trans­portsicherung 48 vorgesehen. Beide unteren Teile der Transport­sicherung 48 weisen, wie dieses die Fig. 1a erkennen läßt, ober­halb des Gerüst-Bremsklotzes 51 einen Drehklotz 53 auf, der in Ansätzen der Versteifungsbleche 52 gelagert ist. Während des Transportes des Containers wird der Drehklotz 53 in Richtung des in Fig. 1a dargestellten Pfeiles verschwenkt und gelangt da­bei zwischen die Versteifungsbleche 49, wodurch eine Rotation des Containers 31 verhindert und das Gegenüberliegen der Brems­klötze 50 und 51 sichergestellt wird.
  • Innerhalb des Containers 31 ist eine O₂-Meßstelle 59 erkennbar, die elektrisch den O₂-Gehalt innerhalb des Containers melden kann. Wenn dieser O₂-Gehalt zu groß wird, ist die Gefahr einer Explosion des innerhalb des Containers 31 enthaltenen Schütt­gutes zu befürchten. Aus diesem Grunde kann von der O₂-Meßstelle über eine elektronische Schaltung, beispielsweise im Schaltkasten 23, eine Betätigung der Schaltventile 22 ausgelöst werden, die gemäß Fig. 3 auf den Gasflaschen 21 sitzen. Wenn diese Gas­flaschen 21 mit Inertgas gefüllt sind, kann auf diese Weise eine Inertisierung der gefährdeten Atmosphäre innerhalb des Containers 31 sichergestellt werden.
  • Ohne am Kern der Erfindung etwas zu ändern, kann ein vergleich­barer Fühler auch die Zufuhr von getrockneter Luft in das Innere des Containers dann regeln, wenn zur Aktivierung der Schüttgut­partikel zusätzlich Luft aus den Flaschen 21 erforderlich sein sollte.
  • Der mit 37 in Fig. 1 bezeichnete Entleerungsboden, vor allem seine Zentralöffnung 38, dient zur Aufnahme von drei unterschied­lichen Entleerungsvorrichtungen 66, 81 bzw. 105. Ein erstes Aus­führungsbeispiel einer Entleerungsvorrichtung wird anhand der Fig. 2 bis 7a beschrieben.
  • Fig. 2 zeigt einen vereinfachten Querschnitt durch die Entlee­rungsvorrichtung 66. Sie weist eine allgemein mit 67 bezeichnete Drehdurchführung auf, an deren inneren Ende ein Saugrüssel 68 und an deren äußeren Ende eine Saugpumpe 69 angeschlossen bzw. anschließbar ist. Die nur schematisch dargestellte Saugpumpe 69 kann auch eine Feinststaubpumpe sein.
  • Details der Entleerungsvorrichtung 66 werden jetzt anhand der Fig. 4 bis 7a beschrieben. Die Drehdurchführung 67 besteht im einzelnen aus einem Lagerrohr 60 mit einem Außenflansch 61 und einem Innenflansch 63. Zwischen Außenflansch 61, Innenflansch 63 und Lagerrohr 60 sind Versteifungsrippen 64 vorgesehen wie dieses vor allem Fig. 4 deutlich erkennen läßt. Die Außenseite des Außenflansches 61 ist als Lager- und Dichtfläche 61a ausge­bildet.
  • Innerhalb des Lagerrohres 60 ist drehbar und dicht ein Durchlaß­rohr 62 gelagert, dessen vorderes Ende aus dem Lagerrohr 60 her­ausragt. An diesem herausragenden Ende des Durchlaßrohres 62 ist eine Drehmomentenstütze 76 befestigt, die deutlich in Fig. 7 dargestellt ist. Diese Drehmomentenstütze 76 ist gegen das Sta­pelgerüst federnd abgestützt, wobei innerhalb dieser im einzelnen nicht beschriebenen Abstützung ein Schalter 77 vorgesehen sein kann, der im Stromkreis des Drehmotors 8 angeordnet ist. Wenn die Belastung auf den Saugrüssel 68 während der Rotation in­folge des Schüttgutdruckes zu stark wird, kann, insbesondere wenn ein Drehantrieb 25, 26, 28 vorgesehen ist, der Drehmotor abgeschaltet werden, um eine Überlastung zu verhindern. Dieser Schalter 77 wird entbehrlich, wenn beispielsweise gemäß Fig. 1 der Drehantrieb über Antriebsräder 7 erfolgt. Diese würden bei Überlastung einfach durchrutschen, ohne den Drehmotor 8 zu ge­fährden.
  • Auf dem Durchlaßrohr 62 sitzt ein Distanzring 65, der gemäß Fig. 4 zwischen der Drehmomentenstütze 76 und im Außenflansch 61 des Lagerrohres 60 angeordnet ist. In der Drehmomentenstütze sind, wie dieses auch die Fig. 4 erkennen läßt, Madenschrauben 76a vorgesehen, durch welche der Abstand zwischen der Drehmo­mentenstütze 76 und dem Distanzring 65 eingestellt werden kann.
  • An die Drehmomentenstütze 76 ist mittels Schrauben 80 ein Flansch 79 eines Sauganschlusses 78 befestigt, wobei zwischen Flasch 79 und Drehmomentenstütze 76 ein Absperrorgan 94 mitbefestigt wird. Im dargestellten Ausführungsbeispiel ist das Absperrorgan 94 eine im einzelnen nicht gezeigte Sperrklappe.
  • An den Sauganschluß 78 kann in an sich bekannter Weise die in Fig. 2 angedeutete Saugpumpe 69 angeschlossen werden.
  • Das innere Ende des Durchlaßrohres 62 weist eine in Fig. 5 er­kennbare nach unten offene an den Saugrüssel 64 angeschlossene Ausnehmung auf. Das Durchlaßrohr 62 endet in einer Teilring­fläche 62a, an welche eine Endplatte 96 angeschweißt ist. Der Durchmesser dieser Endplatte 96 entspricht dem Außendurchmes­ser des Durchlaßrohres 62. Diese Endplatte 96 ist, wie die Fig. 4 erkennen läßt, so geformt, daß ein hinreichend großer Über­gangsradius für die Umlenkung des angesaugten Schüttgutes zwischen dem Saugrüssel 68 und dem Durchlaßrohr 62 gewährleistet ist.
  • Mittels Schrauben 98 ist an die Endplatte 96 ein Aufsteckkopf 72 festgeschraubt, in welche das obere Ende 68a des Saugrüssels 68 eingeschweißt ist. An die zum Absperrorgan 94 hinweisende Seite des Austeckkopfes 72 ist ein Lager- und Dichtungsring 97 angeschweißt, durch den ein fester Sitz des Saugrüssels 68 im Aufsteckkopf 72 gewährleistet ist und zudem eine gute Dreh­lagerung gegenüber dem Innenflansch 63 am Lagerrohr gewähr­leistet wird. Der Innenflansch 63 ist als Lager- und Dichtungs­ring 63a ausgebildet und die diesem zugewandte Seite des Lager- und Dichtungsringes 67 sichert eine gute Drehbarkeit und eine gute Dichtheit.
  • Das Durchlaßrohr 62 ist innerhalb des Lagerrohres 60 in an sich bekannter Weise drehbar gelagert und durch im einzelnen nicht bezeichnete, aber an sich bekannte Dichtungen staubdicht abge­dichtet.
  • Die Fig. 7a läßt erkennen, daß der Saugrüssel 68 aus parallel geführten Saugrohren 70 mit viereckigem Querschnitt 71 besteht. Im unteren Bereich des Saugrüssels 68 ist eine Andruckrolle 75 vorgesehen, die, wie dieses die Fig. 4 erkennen läßt, am rotierenden Entleerungsboden 37 abläuft.
  • Das untere Ende 73 des Saugrüssels 68 endet im Schüttgutsammel­raum 58 mit einem Abstand 74 oberhalb des Innenmantels 34 des Containers 31.
  • Fig. 7 läßt erkennen, daß der Saugrüssel 68, aber auch der Auf­steckkopf 72, von einem im Querschnitt dreieckförmigen Rand 99 umgeben ist, der vor allem den Druck des Schüttgutes beim Rotieren des Containers 31 auf die Zu- und Ablaufkanten des Saugrüssels 68 vermindert.
  • In den Fig. 8 und 9 ist ein zweites Ausführungsbeispiel einer mechanischen Entleerungsvorrichtung 81 dargestellt. Diese weist eine allgemein mit 82 bezeichnete Drehdurchführung sowie eine Schaufelanordnung 83 auf. Am Verstärkungsring 40 der Zentral­öffnung 38 des Druckausgleichsbodens 37 ist ein Laufkranz 88 mit einem äußeren Lager- und Dichtungsring 88a und einem inne­ ren Lager- und Dichtungsring 88b angeflanscht. Durch die durch den Laufkranz 88 definierte Zentralöffnung 38 des Entleerungs­bodens 37 ist ein Durchführungsrohr geführt, welches aus einem vorderen Durchführungsrohr 90 und einem mittels eines Erweite­rungsringes 92 scharfkantig dem gegenüber erweiterten Durchfüh­rungsrohr 91 besteht. Auf dem vorderen Ende des Durchführungs­rohres 90 sitzt ein Außenflansch 100, zwischen dem und dem äuße­ren Lager- und Dichtungsring 88a ein Distanzring 101 vorgesehen ist. An diesen grenzt die Drehmomentenstütze 76 an, die - wie im ersten Ausführungsbeispiel - gegen des Stapelgerüst 1 abge­stützt ist. Durch die Zentralplatte der Drehmomentenstütze 76 sind wiederum Madenschrauben 76a geführt, durch welche der Ab­stand der Drehmomentenstütze 76 zum Distanzring 101 eingestellt werden kann. Mit diesen Madenschrauben wird der ordnungsgemäße Drehsitz des Durchführungsrohres 90, 21 bezüglich des Lauf­kranzes 88 sichergestellt.
  • Im Durchführungsrohrteil 91 ist eine Einfüllöffnung 86 vorge­sehen, die infolge der Drehmomentenstütze 76 stets nach oben gerichtet ist. In diese Einfüllöffnung schaufeln die Schaufeln der Schaufelanordnung 83 nach und nach das Schüttgut, welches sich infolge der Wirkung der Förderschnecke im Schüttgutsammel­raum 58 ansammelt.
  • Die Form der Schaufeln ist durch gestrichelte Linien in Fig. 9 angedeutet. Sie bestehen aus Blechen 102, deren Schöpfkanten 84 an den Innenmantel 34 des Entleerungsbodens 37 bzw. des Containers 31 angrenzen. Dabei sind die Schöpfenden 84a tangen­tial zum Innenmantel 34 des Containers 31 ausgerichtet.
  • Die Bleche 102 der Schaufeln sind so gewölbt, daß das aufge­nommene Schüttgut während der Rotation des Containers immer nach unten fallen kann. Das Schüttgut gelangt an das Entlee­rungsende 84b der Schaufelanordnung 83 und gelangt durch die Einfüllöffnung 86 in ein Förderrohr 85 und von diesem zur Ent­leerungsöffnung 87, die in der Frontplatte der Drehmomenten­ stütze 76 unterhalb deren Mitte angeordnet ist. Vor dieser Ent­leerungsöffnung 87 sitzt wiederum ein Absperrorgang 94, welches mit der Grundplatte der Drehmomentenstütze 76 verschraubt ist. Um eine ordnungsgemäße mechanische Entleerung des Containers 31 sicherzustellen, kann während des Entleerungsvorganges vor die Entleerungsöffnung 87 eine Entladevorrichtung 85 angeordnet werden, die als Windschutz ausgebildet ist.
  • Fig. 9 läßt das Förderrohr 85 gestrichelt in Draufsicht erkennen. Eine solche, sich zur Entleerungsöffnung 87 hin verengende Aus­bildung wird nur in Sonderfällen zum Einsatz kommen. Normaler­weise ist das Förderrohr zwischen der Einfüllöffnung 86 und der Entleerungsöffnung trompetenförmig erweitert, um einen Stau des Fördergutes bei der Entleerung zu vermeiden.
  • Der Erweiterungsring 92 zwischen den Durchführungsrohren 90 und 91 ist auf seiner nach außen weisenden Seite als Lager- und Dichtungsring ausgebildet.
  • Damit durch den Förderdruck des Schüttgutes während der Rotation des Containers 31 die Schaufelanordnung 83 nicht zerstört wird, können Sperrbleche 193 vorgesehen sein, die in Draufsicht in Fig. 9 und im Querschnitt auch in Fig. 8 angedeutet sind.
  • Das zuvor geschilderte zweite Ausführungsbeispiel der Entlee­rungsvorrichtung 81 kann beliebig viele zur Schaufelanordnung 83 gehörende Einzelschaufeln aufweisen. In Fig. 9 sind sechs Einzelschaufeln angedeutet, die das von den Schneckenwendeln 55 in den Schüttgutsammelraum 58 geförderte Schüttgut austra­gen. Ebensogut können auch drei oder vier Einzelschaufeln zum Einsatz kommen.
  • In den Fig. 14, 15, 16 ist ein drittes Ausführungsbeispiel einer mechanischen Entleerungsvorrichtung 105 dargestellt. Der wesent­liche Bestandteil dieser Entleerungsvorrichtung ist ein Schau­felrohr 106, dessen Entleerungsende 107, 115 koaxial durch den Entleerungsboden 37 geführt ist. Das Schaufelrohr 106 weist einen Endflansch 108 auf, der mit dem Verstärkungsring 40 der Zentral­öffnung 38 verschraubt ist. Das Einfüllende 109 des Schaufelroh­res 106 ist als Schaufel ausgebildet, die tangential am Innen­mantel 34 des Containers 31 anliegt und deren Vorderkante 110 am Container-Innenmantel 34 befestigt ist. Das Schaufelrohr 106 dreht sich zusammen mit dem Container 31. Es nimmt das Schütt­gut aus dem Schüttgutsammelraum 58 auf. Das Schüttgut fällt bei der Drehung des Containers 31 im Schaufelrohr 106 stets nach un­ten und gelangt so, wie dieses die Fig. 14 und 16 erkennen lassen, von oben in das Entleerungsende 107 bzw. 115 des Schaufelrohres 106.
  • An der Außenfläche des Endflansches 108 liegt ein Gleitdichtring 111 an, an dem eine gegen das Stapelgerüst 1 abgestützte Dreh­momentenstütze 76 und ein Absperrorgan 94 befestigt sind, vor dem ein Anschlußflansch sitzt, der während der Rotation des Containers 31 gegenüber dem Stapelgerüst 1 stillsteht. Zwischen dem Endflansch 108 und dem Entleerungsende 107 des Schaufel­rohres 106 sind Versteifungsbleche 114 vorgesehen.
  • Fig. 16 zeigt in Richtung der Pfeile XV/XV einen Schnitt durch Fig. 14 und die Formgebung des Schaufelrohres 106, welches bei­spielsweise aus vorgeformten Einzelblechen zusammengeschweißt sein kann.
  • Fig. 16 zeigt eine sehr einfache Variante der Entleerungsvorrich­tung 115, bei der an die Außenfläche des Endflansches 108 ein sich nach außen erweiterndes Austragsrohr 112 angeschraubt ist, welches durch eine einfache Überwurfmutter 113 verschließbar ist. In beiden Ausführungsbeispielen ist das Schaufelrohr 106 zwischen seinem Einfüllende 109 und seinem Entleerungsende 105, 115 vorzugsweise trompetenförmig erweitert. Das Entleerungsende 115 gemäß Fig. 16 ist konstruktiv etwas anders ausgebildet als das Entleerungsende 107 gemäß Fig. 14.
  • Alle Entleerungsvorrichtungen 66, 81 und 105 wirken zusammen mit einer Druckausgleichsvorrichtung 42, durch die beim Entleeren Gas in den Container nachgeführt werden kann. Sie besteht, wie dieses die Fig. 10 bis 13 erkennen lassen, aus einer Gasdreh­durchführung 43, deren Gasdurchführungsaufnahme 43a im Zentrum 41 des Druckausgleichsbodens 39 befestigt ist. In der Gasdreh­durchführungaufnahme 43a enden Verbindungsleitungen 44, die, wie dieses die Fig. 10 erkennen läßt, sternförmig nach außen zu Gasdurchführungen 45 gerführt sind, die gemäß Fig. 11 und 12 entlang des Außenrandes 39a des Druckausgleichsbodens 39 be­festigt sind und einen Gasdurchlaß in das Innere des Containers 31 ermöglichen.
  • An dem drehbar in der Gasdrehdurchführungsaufnahme 43a angeordne­ten Teil 43 der Gasdrehdurchführung endet die Gasleitung 24, die mit den Gasflaschen 21, aber auch mit einem nur schematisch an­gedeuteten Lufteintrittsventil 27 verbunden sein kann. Nach Be­darf kann daher getrocknete Luft oder getrocknetes Inertgas aus den Gasflaschen 21 oder die Luft der freien Atmsophäre in die Gasdrehdurchführung 43 gelangen.
  • Die Gasdurchführungen 45 am Außenrand 39a des Druckausgleichs­bodens 39 sind mit Sperrventilen 46 kombiniert, die beispiels­weise einen Betätigungsstössel 47 aufweisen. Während der Rota­tion des Containers 31 laufen diese Betätigungsstössel 47 im oberen Bereich ihrer Umlaufbahn an einer schemastisch in Fig. 10 angedeuteten Steuerkurve 47a an, so daß die Gasdurchführungen 45 im oberen Bereich des rotierenden Containers jeweils durch­lässig werden.
  • Ohne am Kern der Erfindung etwas zu ändern, können anstelle der dargestellten Gasdrehdurchführung 43 und der Gasdurchführungen 45 mit Sperrventilen 46 auch andere entsprechende Schaltungsele­mente zum Einsatz kommen.
  • Um elektrostatische Spannungen abzuleiten, die beim Rotieren des Containers 31 entstehen können, ist dieser gegenüber seinem Stapelgerüst auf an sich bekannte, hier im einzelnen nicht dar­gestellte Weise geerdet.
  • Bei bevorzugten Ausführungsbeispielen der Erfindung sind die Einfüllstutzen 54, die Entleerungsvorrichtungen 66, 81, 105 und die Druckausgleichsvorrichtung 42 gegenüber der Atmsophäre gas­dicht ausgebildet.
  • Liste der verwendeten Bezeichnungen
    • 1 Stapelgerüst
    • 2 Höhe
    • 3 Länge
    • 4 Breite
    • 5 Laufrahmen
    • 6 Laufrolle
    • 7 Antriebsrad
    • 8 Drehmotor
    • 9 Untersetzungsgetriebe
    • 10 Laufrahmen
    • 11 Laufrolle
    • 12 Drehachse
    • 13 Drehachse
    • 14 Feder
    • 15
    • 16 Antriebswelle
    • 17 Handantriebswelle
    • 18 Handkurbel
    • 19 Laufrollenaufnahme
    • 20 Stützstrebe
    • 21 Gasflasche
    • 22 Schaltventil
    • 23 Schaltkasten
    • 24 Gasleitung
    • 25 Antriebsring
    • 26 Antriebselement
    • 27 Lufteintrittsventil
    • 28 Kette
    • 29
    • 30
    • 31 Container
    • 32 Längsachse
    • 33 Außenmantel
    • 34 Innenmantel
    • 35 Laufring
    • 36 Laufring
    • 37 Entleerungsboden
    • 38 Zentralöffnung
    • 39 Druckausgleichsboden
    • 39a Außenrand
    • 40 Verstärkungsring
    • 41 Zentrum
    • 42 Druckausgleichsvorrichtung
    • 43 Gasdrehdurchführung
    • 43a Gasdrehdurchführungsaufnahme
    • 44 Verbindungsleitung
    • 45 Gasdurchführung
    • 46 Sperrventil
    • 47 Betätigungsstössel
    • 47a Steuerkurve
    • 48 Transportsicherung
    • 49 Versteifungsblech
    • 50 Container-Bremsklotz
    • 51 Gerüst-Bremsklotz
    • 52 Versteifungsblech
    • 53 Drehklotz
    • 54 Einfüllstutzen
    • 55 Schneckenwendel
    • 56 Fluidisierungsschaufel
    • 57 Gang der Förderschnecke
    • 58 Schüttgutsammelraum
    • 59 O₂-Meßstelle
    • 60 Lagerrohr
    • 61 Außenflansch
    • 61a Lager- und Dichtfläche
    • 62 Durchlaßrohr
    • 62a Teilringfläche
    • 63 Innenflansch
    • 63a Lager- und Dichtungsring
    • 64 Versteifungsrippe
    • 65 Distanzring
    • 66 Entleerungsvorrichtung
    • 67 Drehdurchführung
    • 68 Saugrüssel
    • 68a oberes Ende
    • 69 Saugpumpe
    • 70 Saugrohr
    • 71 Querschnitt
    • 72 Aufsteckkopf
    • 73 unteres Ende
    • 74 Abstand
    • 75 Andruckrolle
    • 76 Drehmomentenstütze
    • 76a Madenschraube
    • 77 Schalter
    • 78 Sauganschluß
    • 79 Flansch
    • 80 Schraube
    • 81 Entleerungsvorrichtung
    • 82 Drehdurchführung
    • 83 Schaufelanordnung
    • 84 Schöpfkante
    • 84a Schöpfende
    • 84b Entleerungsende
    • 85 Förderrohr
    • 86 Einfüllöffnung
    • 87 Entleerungsöffnung
    • 88 Laufkranz
    • 88a äußerer Lager- und Dichtkreisring
    • 88b innerer Lager- und Dichtkreisring
    • 89
    • 90 Durchführungsrohr
    • 91 Durchführungsrohr
    • 92 Erweiterungsring
    • 93
    • 94 Absperrorgan
    • 95 Entladevorrichtung
    • 96 Endplatte
    • 97 Lager- und Dichtungsring
    • 98 Schraube
    • 99 Rand
    • 100 Außenflansch
    • 101 Distanzring
    • 102 Blech
    • 103 Sperrblech
    • 104 Überwurfring
    • 105 Entleerungsvorrichtung
    • 106 Schaufelrohr
    • 107 Entleerungsende
    • 108 Endflansch
    • 109 Einfüllende
    • 110 Vorderkante
    • 111 Gleit-Dichtring
    • 112 Austragsrohr
    • 113 Überwurfmutter
    • 114 Versteifungsblech
    • 115 Entleerungsende

Claims (49)

1. In einem Stapelgerüst angeordneter rohrförmiger Container mit gewölbten oder ebenen Containerböden für Schüttgut, vorzugs­weise Feinststäube, mit wenigstens einem Einfüllstutzen und einer Entleerungsvorrichtung sowie einer Druckausgleichsvor­richtung,
dadurch gekennzeichnet,
daß der Container (31) ein auf Laufrollen (6, 11) gelagerter und von einem Drehantrieb (8) bzw. von Hand (17, 18) um seine Längsachse drehbarer Rotationskörper ist, daß im Container (31) eine kombinierte mechanische Förder- und Fluidisierungs­einrichtung (55, 56) vorgesehen ist, daß einer der Container­böden (37, 39) als Entleerungsboden (37) ausgebildet und mit einer Entleerungsvorrichtung (66, 81) kombiniert ist, die eine durch eine Zentralöffnung (38) des Entleerungsbodens (37) geführte Durchführung (67, 82, 112) für das Schüttgut einschließt und daß der gegenüberliegende Containerboden als Druckaus­gleichsboden (39) ausgebildet und mit einer Druckausgleichs­einrichtung (42) kombiniert ist.
2. Container nach Anspruch 1, dadurch gekennzeichnet, daß an ihm Laufringe (35, 36) und ein Antriebsring (25) vorgesehen sind, daß jeder Laufring (35, 36) am Außenmantel (33) befestigt und mit vier in je einem Laufrahmen (5, 10) des Stapelgerüstes (1) gelagerten Laufrollen (6, 11) in Laufverbindung steht und daß der Antriebsring (25) mit einem Antriebselement (26) gepaart ist, welches über ein Untersetzungsgetriebe (9) mit dem Dreh­antrieb (8) in Antriebsverbindung steht.
3. Container nach Anspruch 2, dadurch gekennzeichnet, daß jede Laufrolle (6, 11) in einer Ecke ihres Laufrahmens (5, 10) an­geordnet ist.
4. Container nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Paarung zwischen Antriebsring (25) und Antriebselement (26) als Kettengetriebe ausgebildet ist.
5. Container nach Anspruch 4, dadurch gekennzeichnet, daß der An­triebsring (25) des Kettengetriebes um die Zentralöffnung (38) im Entleerungsboden (37) herum angeordnet ist.
6. Container nach Anspruch 1, dadurch gekennzeichnet, daß an seinem Außenmantel (33) zwei Laufringe (35, 36) vorgesehen sind, daß jeder Laufring (35, 36) mit drei Laufrollen (6, 11) und einem Antriebsrad (7) in Wirkverbindung steht, die je­weils in den Ecken je eines Laufrahmens (5, 10) des Stapel­gerüstes (1) gelagert sind und daß wenigstens eines der in einer unteren Ecke des Laufrahmens (5, 10) gelagerte Antriebs­räder (7) über ein Untersetzungsgetriebe (9) an den Drehan­trieb (8) angeschlossen ist.
7. Container nach Anspruch 6, dadurch gekennzeichnet, daß die Antriebsräder (7) beider Laufrahmen (5, 10) über eine An­triebswelle (16) miteinander verbunden sind.
8. Container nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß pro Laufrahmen (5, 10) zwei Laufringe (35, 36) mit je drei Laufrollen (6, 11) und einem Antriebsrad (7) vorgesehen sind.
9. Container nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Antriebsräder (7) mit einem Laufkranz aus Hargummi o.dgl. versehen sind.
10. Container nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß das Untersetzungsgetriebe (9) mit einer Handkurbel (18) in Drehverbindung (17) steht.
11. Container nach den Ansprüchen 1 bis 10, dadurch gekennzeich­net, daß der Drehantrieb einen Drehmotor (8) einschließt, der im Stapelgerüst (1) sitzt und ein regelbarer Elektromotor ist.
12. Container nach Anspruch 1, dadurch gekennzeichnet, daß zwischen ihm und dem Stapelgerüst (1) eine Transportsicherung vorge­sehen ist.
13. Container nach Anspruch 12, dadurch gekennzeichnet, daß die Transportsicherung (48) je Containerboden (37, 39) einen obe­ren und einen unteren Container-Bremsklotz (50) aufweist, der in Transportstellung des Containers (31) je einen an einen oberen bzw. unteren Querstrebe des Stapelgerüstes (1) befestig­ten Gerüst-Bremsklotz (51) gegenüberliegt.
14. Container nach den Ansprüchen 12 und 13, dadurch gekennzeich­net, daß die Container-Bremsklötze (50) und die Gerüst-Brems­klötze (51) je zwischen zwei mit dem Container (31) bzw. mit dem Stapelgerüst (1) verbundenen Versteifungsblechen (49, 52) sitzen.
15. Container nach Anspruch 14, dadurch gekennzeichnet, daß beide Versteifungsbleche (52) jedes unteren Gerüst-Bremsklotzes (51) nach oben ragende Ansätze aufweisen, zwischen denen ein Dreh­klotz (53) gelagert ist, der in Transportstellung in den Zwischenraum zwischen den Versteifungsblechen (49) des gegen­überliegenden Container-Bremsklotzes (50) einschwenkbar ist.
16. Container nach den Ansprüchen 1 bis 15, dadurch gekennzeich­net, daß die kombinierte mechanische Förder- und Fluidisie­rungseinrichtung (55, 56) eine oder mehrere, zwischen den Containerböden (37, 39) am Innenmantel (34) befestigte Schnek­ kenwendeln (55) einschließt, zwischen denen in Richtung der Längsachse (32) des Containers (31) verlaufende, versetzt zueinander angeordnete Fluidisierungsschaufeln (56) sitzen.
17. Container nach Anspruch 16, dadurch gekennzeichnet, daß die Steigung der Schneckenwendeln (55) zum Entleerungsboden (37) hin geringer wird.
18. Container nach den Ansprüche 1 bis 17, dadurch gekennzeich­net, daß die Entleerungsvorrichtung eine Saugentleerungsvor­richtung (66) ist, deren durch den Entleerungsboden (37) ge­führte Durchführung eine Drehdurchführung (67) ist, an deren äußeres Ende ein Sauganschluß (78) und an deren inneres Ende ein auch bei rotierendem Container (31) abwärts gerichteter Saugrüssel (68) angeschlossen ist, dessen unteres Ende (73) in einem Schüttgutsammelraum (58) endet.
19. Container nach Anspruch 18, dadurch gekennzeichnet, daß die Drehdurchführung (67) aus einem in das Innere des Containers (31) hineinragenden Lagerrohr (60) mit einem an einen Ver­stärkungsring (40) der Zentralöffnung (38) des Entleerungs­bodens (37) angeflanschten Außenflansch (61) und einem im Lagerrohr (60) drehbar und dicht gelagerten Durchlaßrohr (62) besteht.
20. Container nach den Ansprüchen 18 und 19, dadurch gekennzeich­net, daß am Lagerrohr (60) ein Innenflansch (63) befestigt ist und daß zwischen diesem, dem Außenflansch (61) und dem Lagerrohr (60) Versteifungsrippen (64) befestigt sind.
21. Container nach den Ansprüchen 18 bis 20, dadurch gekennzeich­net, daß auf dem über den Außenflansch (61) des Lagerrohres (60) hinausragenden äußeren Ende des Durchlaßrohres (62) eine gegen das Stapelgerüst (1) abgestützte Drehmomentenstütze (76) befestigt ist.
22. Container nach den Ansprüchen 18 bis 21, dadurch gekennzeich­net, daß auf dem äußeren Ende des Durchlaßrohres (62), zwischen dem Außenflansch (61) des Lagerrohres (60) und der Drehmomen­tenstütze (76) ein Distanzring (65) sitzt, der an der Lager- und Dichtfläche (61a) des Außenflansches (61) anliegt und dessen Abstand zur Drehmomentenstütze (76) durch in dieser sitzende Madenschrauben (76a) einstellbar ist.
23. Container nach den Ansprüchen 18 bis 22, dadurch gekennzeich­net, daß der Sauganschluß (78) einen Flansch (79) besitzt, der unter Zwischenfügung eines Absperrorganes (72) an der Drehmomentenstütze (76) durch Schrauben (80) befestigt ist.
24. Container nach Anspruch 18, dadurch gekennzeichnet, daß das obere Ende (68a) des Saugrüssels (68) fest mit einem Aufsteck­kopf (72) verbunden ist, der auf dem über den Innenflansch (63) des Lagerrohres (60) hinausragenden Teil des Durchlaß­rohres (62) sitzt.
25. Container nach Anspruch 24, dadurch gekennzeichnet, daß der über den Innenflansch (63) des Lagerrohres (60) hinausragen­de Teil des Durchlaßrohres (62) einen unteren Ausschnitt auf­weist, und daß an die verbleibende Teilringfläche (62a) eine Endplatte (96) angeschweißt ist.
26. Container nach den Ansprüchen 24 und 25, dadurch gekennzeich­net, daß auf der dem Innenflansch (63) des Lagerrohres (60) zugewandten Seite des Aufsteckkopfes (72) ein Lager- und Dich­tungsring (97) befestigt ist, der im montierten Zustand gegen den ebenfalls als Lager- und Dichtungsring (63a) augebilde­ten Innenflansch (63) des Lagerrohres (60) anliegt.
27. Container nach den Ansprüchen 24 bis 26, dadurch gekennzeich­net, daß der Aufsteckkopf (72) mittels Schrauben (98) an der Endplatte (96) am Durchlaßrohr (62) befestigt ist.
28. Container nach den Ansprüchen 24 bis 27, dadurch gekennzeich­net, daß der Saugrüssel (68) aus parallel liegenden Saugroh­ren (70) mit viereckigem Querschnitt (71) besteht, und daß ab seinem unteren Bereich eine auf dem Entleerungsboden (37) abrollende Andruckrolle (35) befestigt ist.
29. Container nach den Ansprüchen 24 bis 28, dadurch gekennzeich­net, daß die Zulauf- und Ablaufkanten des Saugrüssels (68) sowie sein Aufsteckkopf (72) von einem im Querschnitt drei­eckförmigen Rand (99) umgeben ist.
30. Container nach den Ansprüchen 1 bis 17, dadurch gekennzeich­net, daß die Entleerungsvorrichtung eine mechanische Entlee­rungsvorrichtung (81) mit einer an der Innenseite des Ent­leerungsbodens (37) befestigten Schaufelanordnung (83) ist, und daß die Durchführung durch den Entleerungsboden (37) eine Drehdurchführung (82) ist, an deren äußeres Ende eine Ent­leerungsöffnung (87) und an deren inneres Ene eine Anordnung zur Schüttgutabführung (85, 90, 91) mit oben liegender Ein­füllöffnung (86) angeschlossen ist.
31. Container nach Anspruch 30, dadurch gekennzeichnet, daß die Drehdurchführung (82) einen an dem Verstärkungsring (40) der Zentralöffnung (38) des Entleerungsbodens (37) angeflanschten Laufkranz (88) mit einem inneren und einem äußeren Lager- und Dichtkreisring (88a, b) einschließt.
32. Container nach den Ansprüchen 30 und 31, dadurch gekennzeich­net, daß die Anordnung zur Schüttgutabführung ein scharfkan­tig nach innen erweitertes Durchführungsrohr (90, 91) ein­schließt, dessen als Lager- und Dichtungsring ausgebildeter Erweiterungsring (92) am inneren Lager- und Dichtkreisring (88b) des Laufkranzes (88) anliegt und an dessem nach außen rangenden Durchführungsrohr (90) ein Außenendflansch (100) vorgesehen ist, in den eine gegen das Stapelgerüst (1) abge­stützte Drehmomentenstütze (76) angeflanscht ist.
33. Container nach Anspruch 32, dadurch gekennzeichnet, daß zwischen dem Außenflansch (100) und dem äußeren Lager- und Dichtkreisring (88a) des Laufkranzes (88) ein Distanzring (101) angeordnet ist, dessen Abstand zur Drehmomentenstütze (76) durch Madenschrauben (76a) einstellbar ist.
34. Container nach den Ansprüchen 30 bis 33, dadurch gekennzeich­net, daß die Entleerungsöffnung (87) unterhalb des Zentrums in der Frontplatte mit einem Absperrorgan (94) versehenen Drehmomentenstütze (76) liegt, und daß sie innerhalb der An­ordnung zur Schüttgutabführung (90, 91) mit der Einfüllöff­nung (86) über ein Förderrohr (85) verbunden ist, das bei Feinststäuben zur Entleerungsöffnung (87) hin trompentenförmig erweitert ist.
35. Container nach den Ansprüchen 30 bis 34, dadurch gekennzeich­net, daß die Schaufelanordnung (83) wenigstens eine Entlee­rungsschaufel mit einer Schöpfkante (84) einschließt, die im Schüttgutsammelraum (58) gleichlaufend zum Innenmantel (34) des Containers (31) verläuft.
36. Container nach Anspruch 35, dadurch gekennzeichnet, daß die Schaufelanordnung (83) mehrere aus mit dem Entleerungsboden (37) verschweißten bogenförmigen Blechen (102) geformte Ent­leerungsschaufeln aufweist, deren Schöpfenden (84a) tangen­tial in den Innenmantel (34) des Containers (31) und des Entleerungsbodens (37) münden, deren Entleerungsenden (84b) senkrecht gegenüber dem erweiterten Durchführungsrohrteil (91) der Anordnung zur Schüttgutabführung angeordnet sind und die durch Sperrbleche (103) gegen das Innere des Containers (31) abgegrenzt sind.
37. Container nach den Ansprüchen 1 bis 17, dadurch gekennzeich­net, daß die Entleerungsvorrichtung eine mechanische Entlee­rungsvorrichtung (105) mit einem Schaufelrohr (106) ist, dessen Entleerungsende (107, 115) koaxial durch den Ent­ leerungsboden (37) geführt ist und einen Endflansch (108) auf­weist, der mit dem Verstärkungsring (40) der Zentralöffnung (38) verschraubt ist und dessen Einfüllende (109) als Schau­fel ausgebildet ist, die tangential am Innenmantel (34) des Containers (31) anliegt.
38. Container nach den Ansprüchen 17 bis 37, dadurch gekennzeich­net, daß an der Außenfläche des Endflansches (108) ein Gleit-­Dichtring (111) anliegt, an dem eine gegen des Stapelgerüst (1) abgestützte Drehmomentenstütze (76) und ein Absperrorgan (94) befestigt sind.
39. Container nach den Ansprüchen 17 bis 37, dadurch gekennzeich­net, daß an der Außenfläche des Endflansches (108) ein sich nach außen erweiterndes, durch eine Überwurfmutter (113) ver­schließbares Austragsrohr (112) befestigt ist.
40. Container nach den Ansprüchen 37 bis 39, dadurch gekennzeich­net, daß sich der Querschnitt des Schaufelrohres (106) zwischen seinem Einfüllende (109) und seinem Entleerungsende (107, 115) vorzugsweise trompetenförmig erweitert.
41. Container nach den Ansprüchen 37 bis 40, dadurch gekennzeich­net, daß zwischen dem Endflansch (108),des Schaufelhrohres (106) und seinem Entleerungsende (107, 115) Versteifungsbleche (114) befestigt sind.
42. Container nach den Ansprüchen 1 bis 15, dadurch gekennzeich­net, daß die Druckausgleichsvorrichtung (42) eine Gasdurch­führung (43, 43a) einschließt, deren im Zentrum (41) des Druckausgleichsbodens (39) befestigte Gasdurchführungsauf­nahme (43a) über sternförmig nach außen Geführte Verbindungs­leitungen (44) an am Außenrand (39a) des Druckausgleichsbo­dens (39) sitzende Gasdurchführungen (45) in das Innere des Containers (31) angeschlossen sind und an deren relativ zum Stapelgerüst (1) festliegenden Teil 943) eine Gasleitung (24) angeschlossen ist.
43. Container nach Anspruch 42, dadurch gekennzeichnet, daß die Gasleitung (24) mit im Stapelgerüst (1) angeordneten Luft- bzw. Gasflaschen (21) oder mit einem Lufteintrittsventil (27) verbunden ist.
44. Container nach den Ansprüchen 42 und 43, dadurch gekennzeich­net, daß jede Gasdurchführung (45) mit einem Sperrventil (46, 47) kombiniert ist, welches jeweils in oberen Bereich der Um­laufbahn für eine bestimmte Begasungszeitspanne öffnet.
45. Container nach Anspruch 44, dadurch gkennzeichnet, daß das Sperrventil (46) einen Betätigungsstössel (47) aufweist, der für die Dauer der Begasungszeitspanne an einer Steuerkurve (47a) anliegt.
46. Container nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb des Containers (31) eine O₂-Meßstelle (59) angeordnet ist, die elektrisch mit Schalt­ventilen (22) an den Gasflaschen (21) in Schaltverbindung steht.
47. Container nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Drehmomentenstütze (76) mit einem Schalter (77) im Stromkreis des Drehmotors (8) in Wirk­verbindung steht.
48. Container nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, daß er gegenüber dem Stapelgerüst (1) geerdet ist.
49. Container nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Einfüllstutzen (54), die Ent­leerungsvorrichtungen (66, 81, 105) und die Druckausgleichs­vorrichtung (42) gegenüber der Atmosphäre gasdicht ausgebil­det sind.
EP88105603A 1987-04-30 1988-04-08 In einem Stapelgerüst angeordneter Container Expired - Lifetime EP0288799B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88105603T ATE81635T1 (de) 1987-04-30 1988-04-08 In einem stapelgeruest angeordneter container.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3714396 1987-04-30
DE19873714396 DE3714396A1 (de) 1987-04-30 1987-04-30 In einem stapelgeruest angeordneter container

Publications (3)

Publication Number Publication Date
EP0288799A2 true EP0288799A2 (de) 1988-11-02
EP0288799A3 EP0288799A3 (en) 1989-01-25
EP0288799B1 EP0288799B1 (de) 1992-10-21

Family

ID=6326569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105603A Expired - Lifetime EP0288799B1 (de) 1987-04-30 1988-04-08 In einem Stapelgerüst angeordneter Container

Country Status (6)

Country Link
US (1) US4899901A (de)
EP (1) EP0288799B1 (de)
AT (1) ATE81635T1 (de)
CA (1) CA1299500C (de)
DE (1) DE3714396A1 (de)
ES (1) ES2039006T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6186923B1 (en) 1997-05-31 2001-02-13 Zf Friedrichshafen Ag Increased automatic gear box spontaneity
EP1847482A1 (de) * 2006-04-20 2007-10-24 Jochen Dipl.-Ing. Häfner Trommelfördersilo
DE102014115378A1 (de) 2014-10-22 2016-04-28 Federal-Mogul Bremsbelag Gmbh Rotierbares Silosystem für Schüttgut

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8909771U1 (de) * 1989-08-14 1990-12-13 Westerwaelder Eisenwerk Gerhard Gmbh, 5241 Weitefeld, De
US6079580A (en) * 1998-04-15 2000-06-27 Snyder Industries, Inc. Molded tank
US6193099B1 (en) 1999-03-29 2001-02-27 Snyder Industries, Inc. Rotationally molded part having integrally formed reinforcement
US6573418B2 (en) 2000-07-10 2003-06-03 Bp Corporation North America Inc. Process for production of para-xylene incorporating pressure swing adsorption and simulated moving bed adsorption
CN101554948B (zh) * 2009-05-27 2011-01-05 齐齐哈尔轨道交通装备有限责任公司 一种罐式集装箱及其罐体
WO2014121140A1 (en) 2013-02-01 2014-08-07 Agility Fuel Systems, Inc. Modular fuel storage system
US20150044012A1 (en) * 2013-08-07 2015-02-12 Commodity Shipping Solutions, Llc Rotating shipping and storage container
US9616799B1 (en) * 2013-10-16 2017-04-11 Racehorse Investments, L.L.C. Pneumatic tank trailer
US9789916B1 (en) 2013-10-16 2017-10-17 Racehorse Investments, L.L.C. Pneumatic tank trailer
US9758083B1 (en) * 2013-10-16 2017-09-12 Racehorse Investments, L.L.C. Pneumatic tank trailer
US10195937B2 (en) 2015-08-10 2019-02-05 Agility Fuel Systems Llc Modular fuel storage system
CN110002115A (zh) * 2018-01-05 2019-07-12 苏州和突环境科技有限公司 一种双层储罐
RU204547U1 (ru) * 2021-02-18 2021-05-31 Акционерное общество "Рузаевский завод химического машиностроения" (АО "Рузхиммаш") Контейнер-цистерна
RU210084U1 (ru) * 2021-11-08 2022-03-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Устройство для отгрузки живой рыбы повышенной герметичности

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE493121C (de) * 1925-03-14 1930-03-05 Rudolf Pawlikowski Dipl Ing Fahrzeug zum Transport von Staubgut, insbesondere Kohlenstaub
US2000631A (en) * 1932-05-12 1935-05-07 Charles E Windecker Car
FR2030079A1 (de) * 1968-11-22 1970-10-30 Tills Engineering Co
WO1980001904A1 (en) * 1979-03-05 1980-09-18 Dynatrans Ab Method of emptying a powder or like material out of a container
JPS61125942A (ja) * 1984-11-26 1986-06-13 Showa Aircraft Ind Co Ltd 粉粒体運搬車の排出装置
EP0188336A2 (de) * 1985-01-11 1986-07-23 National Research Development Corporation Behälter für Schüttgut

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655753A (en) * 1926-03-02 1928-01-10 George W Cole Feeder
US2436959A (en) * 1946-06-17 1948-03-02 Galion Metallic Vault Co Vehicle transporting means
US2720340A (en) * 1953-01-22 1955-10-11 August W Gustafson Fertilizer distributor
US2797070A (en) * 1955-10-31 1957-06-25 Dow Chemical Co Materials blending and dispensing apparatus
SE361457B (de) * 1972-02-29 1973-11-05 Westerwaelder Eisen Gerhard
US3901411A (en) * 1973-11-19 1975-08-26 John F Bauman Apparatus for dispensing pavement sealer material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE493121C (de) * 1925-03-14 1930-03-05 Rudolf Pawlikowski Dipl Ing Fahrzeug zum Transport von Staubgut, insbesondere Kohlenstaub
US2000631A (en) * 1932-05-12 1935-05-07 Charles E Windecker Car
FR2030079A1 (de) * 1968-11-22 1970-10-30 Tills Engineering Co
WO1980001904A1 (en) * 1979-03-05 1980-09-18 Dynatrans Ab Method of emptying a powder or like material out of a container
JPS61125942A (ja) * 1984-11-26 1986-06-13 Showa Aircraft Ind Co Ltd 粉粒体運搬車の排出装置
EP0188336A2 (de) * 1985-01-11 1986-07-23 National Research Development Corporation Behälter für Schüttgut

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 315 (M-529)[2371], 25. Oktober 1986; & JP-A-61 125 942 (SHOWA AIRCRAFT IND. CO. LTD) 13-06-1986 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6186923B1 (en) 1997-05-31 2001-02-13 Zf Friedrichshafen Ag Increased automatic gear box spontaneity
EP1847482A1 (de) * 2006-04-20 2007-10-24 Jochen Dipl.-Ing. Häfner Trommelfördersilo
DE102014115378A1 (de) 2014-10-22 2016-04-28 Federal-Mogul Bremsbelag Gmbh Rotierbares Silosystem für Schüttgut
DE102014115378B4 (de) * 2014-10-22 2018-02-22 Federal-Mogul Bremsbelag Gmbh Rotierbares Silosystem für Schüttgut

Also Published As

Publication number Publication date
ES2039006T3 (es) 1993-08-16
US4899901A (en) 1990-02-13
EP0288799A3 (en) 1989-01-25
EP0288799B1 (de) 1992-10-21
CA1299500C (en) 1992-04-28
ATE81635T1 (de) 1992-11-15
DE3714396A1 (de) 1988-12-01
DE3714396C2 (de) 1990-05-10

Similar Documents

Publication Publication Date Title
EP0288799B1 (de) In einem Stapelgerüst angeordneter Container
EP0937004A1 (de) Vorrichtung und verfahren zum pneumatischen fördern pulverförmiger stoffe sowie deren verwendung
EP0274629B1 (de) Schwerkraftmischer
DE2457624C3 (de) Anlage zum Sortieren und Zerkleinern von radioaktiven Abfällen für eine Paketierpresse
DE2920206A1 (de) Transportbehaelter
DE4415488C2 (de) System zum Andocken eines Behälters an eine Übergabeöffnung in einem Gerät, Behälter und Gerät
DE7730505U1 (de) Mobile entladevorrichtung fuer massengut
DE3390175T1 (de) Apparat und Verfahren zum Entladen von Schüttgütern
EP2100825A2 (de) Transport- und Lagercontainer
DE60105121T2 (de) Vorrichtung zum Entleeren eines Fasses
EP0548502A2 (de) Füllvorrichtung
EP0680902B1 (de) Vorrichtung zum Andocken eines Containers an einen Entleerungstrichter in der pharmazeutischen Industrie
DE2107094C3 (de) Einrichtung zum Umschlag von Abfallstoffen wie Müll mit einem losen Großraumbefiä'ffer ohne Fahrgestell
DE3115948C2 (de) Beschickungseinrichtung für eine Müllverbrennungsanlage
EP0909732B1 (de) Vorrichtung zum Andocken
EP3183069B1 (de) Transportwagen, überladebrücke, versandgutsortieranlage und nachrüstsatz für versandgutsortiermaschine
DE2939648C2 (de) Fahrzeug zum Transport und zum Entleeren eines Schüttgutcontainers
EP1997753B1 (de) Verfahren und Anordnung zum Entladen von rieselfähigen Medien aus Tanklastzügen
DE10013461B4 (de) Beladekopf mit Produktverteiler und Verschlußsystem
DE4216505A1 (de) Verfahren für Transport, Lagerung und Dosierung von schüttfähigen Feststoffen
EP1590279A1 (de) Förderanlage, insbesondere für zement
DE1456902C3 (de) Schleudervorrichtung zum Umschlagen von Schüttgut
DE10107277A1 (de) Trocknungsanlage zur Behandlung empfindlicher Schüttgüter
DE4437614A1 (de) Transportbehälter und Umschlagvorrichtung für Schüttgut sowie Transport- und Umschlagverfahren für Schüttgut
DE10153042C1 (de) Einwaageeinrichtung zum Einwiegen eines schüttfähigen Produktes aus einem Container in einen Befüllraum und Verfahren zur Anwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890720

17Q First examination report despatched

Effective date: 19910109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921021

Ref country code: NL

Effective date: 19921021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19921021

Ref country code: GB

Effective date: 19921021

REF Corresponds to:

Ref document number: 81635

Country of ref document: AT

Date of ref document: 19921115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19921021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930430

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CITADEL INVESTMENTS LIMITED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CITADEL INVESTMENTS LIMITED

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039006

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950413

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950420

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950421

Year of fee payment: 8

Ref country code: BE

Payment date: 19950421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950428

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960430

Ref country code: CH

Effective date: 19960430

Ref country code: BE

Effective date: 19960430

BERE Be: lapsed

Owner name: CITADEL INVESTMENTS LTD

Effective date: 19960430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050408