EP0284762A2 - Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler - Google Patents

Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler Download PDF

Info

Publication number
EP0284762A2
EP0284762A2 EP88102397A EP88102397A EP0284762A2 EP 0284762 A2 EP0284762 A2 EP 0284762A2 EP 88102397 A EP88102397 A EP 88102397A EP 88102397 A EP88102397 A EP 88102397A EP 0284762 A2 EP0284762 A2 EP 0284762A2
Authority
EP
European Patent Office
Prior art keywords
inner jacket
jacket
water
spray nozzles
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88102397A
Other languages
English (en)
French (fr)
Other versions
EP0284762B1 (de
EP0284762A3 (en
Inventor
Arnold Dr. Tolle
Manfred Förster
Heinz Haacker
Helmut Wensing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Deutsche Babcock Werke Energie und Umwelttechnik AG
Original Assignee
Deutsche Babcock Werke AG
MAN Gutehoffnungshutte GmbH
Deutsche Babcock Werke Energie und Umwelttechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Babcock Werke AG, MAN Gutehoffnungshutte GmbH, Deutsche Babcock Werke Energie und Umwelttechnik AG filed Critical Deutsche Babcock Werke AG
Priority to AT88102397T priority Critical patent/ATE64148T1/de
Publication of EP0284762A2 publication Critical patent/EP0284762A2/de
Publication of EP0284762A3 publication Critical patent/EP0284762A3/de
Application granted granted Critical
Publication of EP0284762B1 publication Critical patent/EP0284762B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/02Slagging producer

Definitions

  • the invention relates to a device for cooling a synthesis gas generated in a gasification reactor with the aid of a quench cooler according to the preamble of claim 1.
  • a known quench cooler (DE-C-2 940 933) the inner jacket is provided with trickle cooling.
  • the application of a water film on the surface of the inner jacket is difficult, since there is a risk that the water to be applied evaporates on the hot surface and thus the water film tears open.
  • the gas generated in the gasification reactor is passed through the water sump, where it is cooled, saturated with water and freed from liquid slag and fly ash.
  • a disadvantage of such quench cooling is that the water from the water sump also absorbs the halogen components of the synthesis gas and is heated by the gas. The water must therefore be subjected to treatment and cooling after the solids have been separated off.
  • the gas entrains water droplets in which fine dust particles are suspended when it exits the water sump. These dust particles can bake on the wall of the cooler and in the subsequent pipes and lead to blockages.
  • the invention has for its object to carry out the cooling of the synthesis gas in the generic device in such a way that the water sump remains free of halogen components and caking of dust is avoided.
  • the water vapor content in the synthesis gas is adjusted by spraying water into the gas stream and not when it passes through the water sump.
  • the surface temperature on the cooled inner jacket becomes approximately the same in normal operation Gasification operating pressure corresponding boiling temperature. The surface temperature is thus far above the saturation temperature corresponding to the water vapor pressure of the synthesis gas, so that undershoots on the inner jacket are reliably avoided.
  • the spray nozzles are arranged, the intermediate section between the reactor outlet and the inner jacket ensures that the reactor outlet is kept warm, so that the reactor outlet is not blocked by solidification of the liquid slag outflow.
  • a quench cooler which contains an outer pressure jacket 1, is flanged to the outlet of a pressure gasification reactor, not shown.
  • the gas inlet 2 of the quench cooler is lined fireproof and has the same diameter as the outlet of the gasification reactor.
  • An intermediate section 3 of enlarged diameter adjoins the gas inlet 2. The height of the intermediate section 3 corresponds to approximately half to a simple value of its diameter.
  • the gas inlet 2 and the intermediate section 3 are provided with refractory heat insulation.
  • the lower part of the inner jacket 5 receives a water sump 6, which is connected to an outlet nozzle 7 at the lower end of the pressure jacket 1.
  • the water sump 6 serves to quench the liquid slag contained in the synthesis gas.
  • the quenched slag is withdrawn from the outlet nozzle 7 together with the water from the water sump 6.
  • one or more gas outlet connections 8 are provided, which are passed through the inner jacket 5 and the pressure jacket 1.
  • guide surfaces 9 are arranged obliquely downwards in the form of a funnel and are led out of the course of the inner casing 5.
  • the lower edges of the guide surfaces 9 project into the interior of the inner casing 5 and are supported on the inner casing 5 by means of pipes 10.
  • the gas flowing through the inner jacket 5 is deflected in this way to improve dust separation before it exits through the gas outlet connection 8.
  • the inner jacket 5 consists of a steel wall, which is provided on the back with an open, pressure-free relative to the process pressure evaporative cooling.
  • the pressure jacket 1 is provided in the lower part with a nozzle 11 which opens into the annular space 4.
  • Treated feed water is fed into the annular space 4 through the nozzle 11.
  • a chamber 12 is formed at the upper end of the annular space 4.
  • Downpipes 13 are arranged in the annular space 4 and are welded into a perforated plate 14. The downpipes 13 are passed through the inner jacket 5 with the lower ends below the level of the gas outlet connection 8 and connect the chamber 12 to the interior of the inner jacket 5, so that there is pressure compensation.
  • the lower ends of the downpipes 13 can end above the water sump 6 or can dip into the water sump 6.
  • the water volume within the annular space 4 is selected so large that in the event of any malfunctions in the quench system over a certain time, which is sufficient to take countermeasures, the entire residual and storage heat accumulated can be dissipated through the open evaporation system. Via the downpipes 13, the water fed continuously through the nozzle 11 during operation and the accumulated saturated steam are passed into the water sump 6.
  • Spray nozzles 15 protrude into the interior of the inner jacket 5.
  • the spray nozzles 15 are installed in cooled lances 16, which are interchangeably passed through the pressure jacket 1 and the inner jacket 5.
  • the spray nozzles 15 can be aligned both axially and radially with respect to the lance 16 or can be inclined downwards.
  • the lances 16 can be horizontal or obliquely downwards directional installed in the quench cooler. A first row of such lances 16 is arranged immediately below the intermediate section 3. Additional lances can be provided below this upper row of lances 16.
  • the front edges of the lances 16 lie on a pitch circle, the diameter of which is larger than the diameter of the intermediate section 3. In this way, the lances 16 are protected against slag flowing off.
  • the intermediate section 3 serves to ensure that the cooled synthesis gas does not come into contact with the edge of the gas inlet 2 by an internal backflow and would cool it, so that freezing of the slag flowing away, which would lead to a blockage of the gas inlet 2, is avoided becomes.
  • the amount of water added via the spray nozzles 15 is dimensioned such that the water evaporates almost completely and the synthesis gas is cooled to about 300 to 600 degrees C. when it exits through the gas outlet connection 8. At this temperature, the water vapor contained in the synthesis gas does not yet condense out, so that no significant amounts of halogens can get into the water of the water sump 6. The water sump does not heat up, which makes handling of the sump contents easier when discharging the quenched slag.
  • the cooled gas is optionally fed to a further processing system after further cooling in a radiation or convection cooler via a gas scrubber.
  • the inner jacket 5 is designed as a gas-tight tube wall.
  • the tube wall also forms the intermediate section 3.
  • the tubes are laid in a spiral in the tube wall and water is applied to them via tubes 17.
  • the spray nozzles 15 are integrated into the tube wall of the inner jacket 5.
  • the annular space between the inner jacket 5 and the pressure jacket 1 can also be filled with thermal insulation 18. Cooling tubes 19 are guided through this thermal insulation 18.

Abstract

Ein Quenchkühler zum Kühlen eines Synthesegases ist unterhalb des Ausganges eines Vergasungsreaktors angeordnet und umfaßt einen gekühlten Innenmantel (5), der in einem Abstand von einem Druckmantel (1) umgeben ist. Zwischen dem Innenmantel (5) und dem Ausgang des Vergasungsreaktors ist ein Zwischenabschnitt (3) angeordnet, dessen Durchmesser geringer ist als der des Innenmantels (5) und größer als der des Ausganges des Vergasungsreaktors. In den Innenraum des Innenmantels (5) ragen Sprühdüsen (15) hinein. Ein oder mehrere Gasaustrittsstutzen (8) sind in einer Ebene oberhalb eines im unteren Teil des Druckmantels (1) vorgesehenen Wassersumpfes (6) durch den Innenmantel (5) hindurchgeführt. Zwischen dem Innenmantel (5) und dem Druckmantel (1) ist eine zum Innenraum des Innenmantels (5) hin offene, differenzdrucklose Verdampfungskühlung vorgesehen.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Kühlen eines in einem Vergasungsreaktor erzeugten Synthesegases mit Hilfe eines Quenchkühlers nach dem Oberbegriff des Anspruches 1.
  • Bei einem bekannten Quenchkühler (DE-C-2 940 933) ist der Innenmantel mit einer Rieselkühlung versehen. Das Aufbringen eines Wasserfilmes auf die Oberfläche des Innenmantels ist schwierig, da die Gefahr besteht, daß das aufzubringende Wasser an der heißen Oberfläche verdampft und somit der Wasserfilm aufreißt. Das in dem Vergasungsreaktor erzeugte Gas wird bei dem bekannten Quenchkühler durch den Wassersumpf hindurchgeführt, wobei es gekühlt, mit Wasser gesättigt und von flüssiger Schlacke und Flugasche befreit wird. Ungünstig bei einer solchen Quenchkühlung ist, daß das Wasser des Wassersumpfes auch die Halogen-Bestandteile des Synthesegases aufnimmt und durch das Gas erwärmt wird. Das Wasser muß daher nach dem Abtrennen der Feststoffe einer Aufbereitung und Kühlung unterworfen werden. Weiterhin besteht bei dem bekannten Quenchkühler die Gefahr, daß das Gas bei dem Austritt aus dem Wassersumpf Wassertropfen mitreißt, in denen feine Staubteilchen suspendiert sind. Diese Staubteilchen können an der Wand des Kühlers und in den nachfolgenden Rohrleitungen anbacken und zu Verstopfungen führen.
  • Der Erfindung liegt die Aufgabe zugrunde, die Kühlung des Synthesegases in der gattungsgemäßen Vorrichtung derart zu führen, daß der Wassersumpf frei von Halogen-Bestandteilen bleibt und Anbackungen von Staub vermieden werden.
  • Diese Aufgabe wird bei einer gattungsgemäßen Vorrichtung erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Bei dieser Vorrichtung wird der Wasserdampfgehalt im Synthesegas durch Einsprühen von Wasser in den Gasstrom und nicht beim Durchtritt durch den Wassersumpf eingestellt. Die Oberflächentemperatur an dem gekühlten Innenmantel wird im Normalbetrieb etwa gleich der dem Vergasungsbetriebsdruck entsprechenden Siedetemperatur sein. Die Oberflächentemperatur liegt damit weit über der dem Wasserdampfdruck des Synthesegases entsprechenden Sättigungstemperatur, so daß Taupunktunterschreitungen an dem Innenmantel sicher vermieden werden. Bei der Anordnung der Sprühdüsen wird durch den Zwischenabschnitt zwischen dem Reaktorausgang und dem Innenmantel erreicht, daß der Reaktorausgang warmgehalten wird, so daß ein Verstopfen des Reaktorausganges durch Erstarren des flüssigen Schlackeabflusses verhindert wird.
  • Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
    • Fig. 1 den Längsschnitt durch eine Ausführungsform der Erfindung,
    • Fig. 2 und 3 im Längsschnitt andere Ausführungsformen der Erfindung und
    • Fig. 4 die Einzelheit Z nach Fig. 1
  • An den Ausgang eines nicht dargestellten Druckvergasungsreaktors ist ein Quenchkühler angeflanscht, der einen äußeren Druckmantel 1 enthält. Der Gaseintritt 2 des Quenchkühlers ist feuerfest ausgekleidet und weist denselben Durchmesser auf wie der Ausgang des Vergasungsreaktors. An den Gaseintritt 2 schließt sich ein Zwischenabschnitt 3 von vergrößertem Durchmesser an. Die Höhe des Zwischenabschnittes 3 entspricht etwa dem halben bis einfachen Wert seines Durchmessers. Der Gaseintritt 2 und der Zwischenabschnitt 3 sind mit einer feuerfesten Wärmeisolierung versehen.
  • Unterhalb des Gaseintrittes 2 ist mit Abstand von dem Druckmantel 1 unter Bildung eines Ringraumes 4 ein Innenmantel 5 angeordnet, der mit dem Druckmantel 1 dicht verbunden ist. Der untere Teil des Innenmantels 5 nimmt einen Wassersumpf 6 auf, der mit einem Austrittsstutzen 7 am unteren Ende des Druckmantels 1 in Verbindung steht. Der Wassersumpf 6 dient dazu, die in dem Synthesegas enthaltene flüssige Schlacke abzuschrecken. Die abgeschreckte Schlacke wird zusammen mit dem Wasser des Wassersumpfes 6 aus dem Austrittsstutzen 7 abgezogen.
  • Oberhalb des Wassersumpfes 6 sind ein oder mehrere Gasaustrittsstutzen 8 vorgesehen, die durch den Innenmantel 5 und den Druckmantel 1 hindurchgeführt sind. Vor der Eintrittsebene der Gasaustrittsstutzen 8 sind schräg nach unten gerichtete Leitflächen 9 in Form eines Trichters angeordnet, die aus dem Verlauf des Innenmantels 5 herausgeführt sind. Die Unterkanten der Leitflächen 9 springen in den Innenraum des Innenmantels 5 vor und sind über Rohre 10 an dem Innenmantel 5 abgestützt. Das den Innenmantel 5 durchströmende Gas wird auf diese Weise zur Verbesserung der Staubabscheidung umgelenkt, bevor es durch die Gasaustrittsstutzen 8 austritt.
  • Nach Fig. 1 besteht der Innenmantel 5 aus einer Stahlwand, die auf der Rückseite mit einer offenen, relativ zum Prozeßdruck drucklosen Verdampfungskühlung versehen ist. Zu diesem Zweck ist der Druckmantel 1 im unteren Teil mit einem Stutzen 11 versehen, der in den Ringraum 4 einmündet. Durch den Stutzen 11 wird aufbereitetes Speisewasser in den Ringraum 4 eingespeist. Am oberen Ende des Ringraumes 4 ist eine Kammer 12 gebildet. In dem Ringraum 4 sind Fallrohre 13 angeordnet, die in ein Lochblech 14 eingeschweißt sind. Die Fallrohre 13 sind mit den unteren Enden unterhalb der Ebene der Gasaustrittsstutzen 8 durch den Innenmantel 5 hindurchgeführt und verbinden die Kammer 12 mit dem Innenraum des Innenmantels 5, so daß ein Druckausgleich besteht. Die unteren Enden der Fallrohre 13 können oberhalb des Wassersumpfes 6 enden, oder in den Wassersumpf 6 eintauchen. Das Wasservolumen innerhalb des Ringraumes 4 ist so groß gewählt, daß bei eventuellen Störfällen am Quenchsystem über eine gewisse Zeit, die ausreicht um Gegenmaßnahmen zu treffen, die gesamte anfallende Rest- und Speicherwärme durch das offene Ausdampfsystem abgeführt werden kann. Über die Fallrohre 13 wird das im Betrieb kontinuierlich über den Stutzen 11 eingespeiste Wasser sowie der anfallende Sattdampf in den Wassersumpf 6 geleitet.
  • In den Innenraum des Innenmantels 5 ragen Sprühdüsen 15 hinein. Die Sprühdüsen 15 sind in gekühlte Lanzen 16 eingebaut, die auswechselbar durch den Druckmantel 1 und den Innenmantel 5 hindurchgeführt sind. Wie in Fig. 4 zu erkennen ist, können die Sprühdüsen 15 sowohl axial als auch radial zur Lanze 16 ausgerichtet oder schräg nach unten geneigt sein. Die Lanzen 16 können horizontal oder schräg nach unten gerichtet in dem Quenchkühler eingebaut sein. Eine erste Reihe solcher Lanzen 16 ist unmittelbar unterhalb des Zwischenabschnittes 3 angeordnet. Weitere Lanzen können unterhalb dieser oberen Reihe von Lanzen 16 vorgesehen werden.
  • Die Vorderkanten der Lanzen 16 liegen auf einem Teilkreis, dessen Durchmesser größer ist als der Durchmesser des Zwischenabschnittes 3. Auf diese Weise werden die Lanzen 16 vor abfließender Schlacke geschützt. Im übrigen dient der Zwischenabschnitt 3 dazu, daß das abgekühlte Synthesegas durch eine interne Rückströmung nicht mit der Kante des Gaseintrittes 2 in Berührung kommt und diese abkühlen würde, so daß ein Einfrieren der abfließenden Schlacke, das zu einem Verstopfen des Gaseintrittes 2 führen würde, vermieden wird.
  • Durch die Kühlung des Innenmantels 5 nimmt dieser eine Oberflächentemperatur an, die oberhalb des Taupunktes des Synthesegases liegt. Die über die Sprühdüsen 15 aufgegebene Wassermenge ist so bemessen, daß das Wasser nahezu vollständig verdampft und das Synthesegas beim Austritt durch die Gasaustrittsstutzen 8 auf etwa 300 bis 600 Grad C abgekühlt ist. Bei dieser Temperatur kondensiert der in dem Synthesegas enthaltene Wasserdampf noch nicht aus, so daß keine nennenswerten Mengen an Halogenen in das Wasser des Wassersumpfes 6 gelangen können. Eine Aufheizung des Wassersumpfes unterbleibt, wodurch die Handhabung des Sumpfinhaltes beim Austragen der abgeschreckten Schlacke erleichtert wird. Das abgekühlte Gas wird gegebenenfalls nach einer weiteren Abkühlung in einem Strahlungs- ­oder Konvektionskühler über einen Gaswäscher einer Weiterverarbeitungsanlage zugeführt.
  • Nach Fig. 2 ist der Innenmantel 5 als gasdichte Rohrwand ausgebildet. Die Rohrwand bildet auch den Zwischenabschnitt 3. Die Rohre sind in der Rohrwand spiralförmig verlegt und werden über Rohre 17 mit Wasser beaufschlagt. Bei dieser Anordnung sind die Sprühdüsen 15 in die Rohrwand des Innenmantels 5 integriert.
  • Wie in Fig. 3 dargestellt ist, kann der Ringraum zwischen dem Innenmantel 5 und dem Druckmantel 1 auch mit einer Wärmeisolierung 18 ausgefüllt sein. Durch diese Wärmeisolierung 18 sind Kühlrohre 19 geführt.

Claims (13)

1. Vorrichtung zum Kühlen eines in einem Vergasungsreaktor erzeugten Synthesegases mit Hilfe eines Quenchkühlers, der unterhalb des Ausganges des Vergasungsreaktors angeordnet ist und einen gekühlten Innenmantel (5) umfaßt, der in einem Abstand von einem Druckmantel (1) umgeben ist und einen Wassersumpf (6) aufnimmt, wobei zwischen dem Innenmantel (5) und dem Ausgang des Vergasungsreaktors ein Zwischenabschnitt (3) angeordnet ist, dessen Durchmesser geringer ist als der des Innenmantels (5) und größer als der des Ausganges des Vergasungsreaktors, dadurch gekennzeichnet, daß in den Innenraum des Innenmantels (5) Sprühdüsen (15) hineinragen und daß ein oder mehrere Gasaustrittsstutzen (8) in einer Ebene oberhalb des Wassersumpfes (6) durch den Innenmantel (5) hindurchgeführt sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß vor der Eintrittsebene der Gasaustrittsstutzen (8) Leitflächen (9) angeordnet sind, die aus dem Verlauf des Innenmantels (5) austreten und deren Unterkanten in den Innenraum des Innenmantels (5) vorspringen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vorderkanten der Sprühdüsen (15) auf einem Teilkreis angeordnet sind, der größer ist als der Durchmesser des Zwischenabschnittes (3).
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwischen dem Innenmantel (5) und dem Druckmantel (1) eine zum Innenraum des Innenmantels (5) hin offene, differenzdrucklose Verdampfungskühlung vorgesehen ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Ringraum (4) zwischen dem Druckmantel (1) und dem Innenmantel (5) mit Wasser gefüllt ist und am oberen Ende eine Kammer (12) aufweist und daß in dem Ringraum (4) Fallrohre (13) angeordnet sind, die unterhalb der Gasaustrittsstutzen (8) durch den Innenmantel (5) hindurchgeführt sind und die Kammer (12) mit dem Innenraum des Innenmantels (5) verbinden.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Fallrohre (13) oberhalb des Wassersumpfes (6) enden.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Fallrohre (13) in den Wassersumpf (6) eintauchen.
8. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Innenmantel (5) aus einer gasdichten, von Wasser durchströmten Rohrwand besteht.
9. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Ringraum (4) zwischen dem Innenmantel (5) und dem Druckmantel (1) mit einer Wärmeisolierung (18) ausgefüllt ist, durch die Kühlrohre (19) geführt sind.
10. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Sprühdüsen (15) in auswechselbaren, gekühlten Lanzen (16) angeordnet sind.
11. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Sprühdüsen (15) in den Innenmantel (5) integriert sind.
12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Lanzen (16) schräg nach unten gerichtet sind.
13. Vorrichtung nach Anspruch 3 oder 10, dadurch gekennzeichnet, daß die Sprühdüsen (15) oder die Lanzen (16) in mehreren Ebenen übereinander angeordnet sind.
EP88102397A 1987-04-03 1988-02-19 Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler Expired - Lifetime EP0284762B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102397T ATE64148T1 (de) 1987-04-03 1988-02-19 Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873711314 DE3711314A1 (de) 1987-04-03 1987-04-03 Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
DE3711314 1987-04-03

Publications (3)

Publication Number Publication Date
EP0284762A2 true EP0284762A2 (de) 1988-10-05
EP0284762A3 EP0284762A3 (en) 1989-02-08
EP0284762B1 EP0284762B1 (de) 1991-06-05

Family

ID=6324823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102397A Expired - Lifetime EP0284762B1 (de) 1987-04-03 1988-02-19 Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler

Country Status (8)

Country Link
US (1) US4848982A (de)
EP (1) EP0284762B1 (de)
JP (1) JPS63260986A (de)
CN (1) CN1014071B (de)
AT (1) ATE64148T1 (de)
DE (2) DE3711314A1 (de)
FI (1) FI88807C (de)
ZA (1) ZA881409B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433579A1 (de) * 1989-11-17 1991-06-26 Krupp Koppers GmbH Verfahren und Vorrichtung zur Kühlung von Partialoxidationsrohgas
EP0586837A2 (de) * 1992-09-09 1994-03-16 Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft Vorrichtung zur Kühlung von heissen Gasen
WO1998045388A2 (en) * 1997-04-08 1998-10-15 Metallgesellschaft Ag Synthesis gas generator with combustion and quench chambers
EP1939271A1 (de) 2006-12-18 2008-07-02 Pratt & Whitney Rocketdyne Inc. Dampfgekühlter Vergaser
WO2009033543A1 (de) * 2007-09-07 2009-03-19 Choren Industries Gmbh Verfahren und vorrichtung zur behandlung von beladenem heissgas
DE102010045482A1 (de) 2010-09-16 2012-03-22 Choren Industries Gmbh Vorrichtung und Verfahren zur Behandlung eines schlackehaltigen Heißgasstromes
WO2012034700A2 (de) 2010-09-16 2012-03-22 Choren Industries Gmbh Vorrichtung und verfahren zur behandlung eines schlackehaltigen heissgasstromes
EP2598615A1 (de) * 2010-06-18 2013-06-05 Gasek OY Verfahren und vorrichtung zur vergasung von feststoffbrennstoff

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017219A1 (de) * 1990-05-29 1991-12-05 Babcock Werke Ag Vorrichtung zur vergasung von kohlenstoffhaltigen materialien
US5248483A (en) * 1991-03-28 1993-09-28 Phillips Petroleum Company Apparatus and methods for producing ceramic products
ES2078078T3 (es) * 1993-03-16 1995-12-01 Krupp Koppers Gmbh Procedimiento para la gasificacion bajo presion de combustibles finamente divididos.
ES2083787T3 (es) * 1993-03-16 1996-04-16 Krupp Koppers Gmbh Aparato de gasificacion para gasificar a presion combustibles finamente divididos.
DE19654806C2 (de) * 1996-12-31 2001-06-13 Axiva Gmbh Optimierung des Kühlwassersystems einer Polyolefinanlage
DE19930051C2 (de) * 1999-06-30 2001-06-13 Daimler Chrysler Ag Vorrichtung und Verfahren zur Durchführung eines Wasser-Quenches
EP1877522B1 (de) * 2005-05-02 2018-02-28 Shell Internationale Research Maatschappij B.V. Verfahren zur abkühlung von synthesegas
CN1919980B (zh) * 2005-08-24 2012-07-04 未来能源有限公司 通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备
DE102005043212A1 (de) * 2005-09-09 2007-03-15 Future Energy Gmbh Verfahren und Vorrichtung zur Erzeugung von Synthesegasen durch Partialoxidation von aus aschehaltigen Brennstoffen hergestellten Slurries und Vollquenchung des Rohgases
DE102006031816B4 (de) 2006-07-07 2008-04-30 Siemens Fuel Gasification Technology Gmbh Verfahren und Vorrichtung zur Kühlung von heißen Gasen und verflüssigter Schlacke bei der Flugstromvergasung
DE102007006990B4 (de) * 2007-02-07 2016-03-10 Air Liquide Global E&C Solutions Germany Gmbh Verfahren und Vorrichtung zur Konvertierung von Rohgasen bei der Partialoxidation gasförmiger und flüssiger Kohlenwasserstoffe
AU2008294831B2 (en) * 2007-09-04 2012-02-02 Air Products And Chemicals, Inc. Quenching vessel
CN101547730B (zh) * 2007-09-04 2012-02-01 国际壳牌研究有限公司 喷嘴总管以及利用这种布置结构的高温气体骤冷方法
EP2321388B1 (de) 2008-09-01 2015-09-30 Shell Internationale Research Maatschappij B.V. Selbstreinigende anordnung
JP6394988B2 (ja) * 2015-08-21 2018-09-26 Jfeエンジニアリング株式会社 排ガス減温塔及び排ガス減温方法
DE102015216783A1 (de) * 2015-09-02 2017-03-02 Siemens Aktiengesellschaft Verblockungsfreier Wasserüberlauf aus dem Wassermantel eines Quenchers in den Quenchraum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217014B (de) * 1957-12-13 1966-05-18 Texaco Development Corp Vorrichtung zur Herstellung von Kohlenoxyd und Wasserstoff
DE2650512A1 (de) * 1976-11-04 1978-05-11 Siegener Ag Geisweid Vorrichtung zum reinigen von synthesegas
GB2093175A (en) * 1981-02-12 1982-08-25 Texaco Development Corp Synthesis gas cooler and waste heat boiler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223398A (en) * 1963-02-20 1965-12-14 Kaiser Ind Corp Lance for use in a basic oxygen conversion process
DE1501387A1 (de) * 1965-01-13 1969-05-29 Knapsack Ag Rohrfoermiger Einspritzkuehler zum Abschrecken von heissen,agressiven Gasen
US4218423A (en) * 1978-11-06 1980-08-19 Texaco Inc. Quench ring and dip tube assembly for a reactor vessel
CH661054A5 (de) * 1981-10-23 1987-06-30 Sulzer Ag Gaskuehler an synthesegasgenerator.
DE3205346C2 (de) * 1982-02-15 1983-12-15 L. & C. Steinmüller GmbH, 5270 Gummersbach Zweistufen-Vergaser
DE3248096C2 (de) * 1982-12-24 1985-01-31 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Stehende Vorrichtung zum Kühlen von unter hohem Druck stehenden Gasen mit hohem Staubanteil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217014B (de) * 1957-12-13 1966-05-18 Texaco Development Corp Vorrichtung zur Herstellung von Kohlenoxyd und Wasserstoff
DE2650512A1 (de) * 1976-11-04 1978-05-11 Siegener Ag Geisweid Vorrichtung zum reinigen von synthesegas
GB2093175A (en) * 1981-02-12 1982-08-25 Texaco Development Corp Synthesis gas cooler and waste heat boiler

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433579A1 (de) * 1989-11-17 1991-06-26 Krupp Koppers GmbH Verfahren und Vorrichtung zur Kühlung von Partialoxidationsrohgas
EP0586837A2 (de) * 1992-09-09 1994-03-16 Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft Vorrichtung zur Kühlung von heissen Gasen
EP0586837A3 (en) * 1992-09-09 1994-05-18 Babcock Energie Umwelt Device for cooling hot gases
WO1998045388A2 (en) * 1997-04-08 1998-10-15 Metallgesellschaft Ag Synthesis gas generator with combustion and quench chambers
EP0870818A3 (de) * 1997-04-08 1998-11-18 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegaserzeuger mit Brenn- und Quenchkammer
WO1998045388A3 (en) * 1997-04-08 1999-01-07 Metallgesellschaft Ag Synthesis gas generator with combustion and quench chambers
US5976203A (en) * 1997-04-08 1999-11-02 Metallgesellschaft Aktiengellschaft Synthesis gas generator with combustion and quench chambers
US7740671B2 (en) 2006-12-18 2010-06-22 Pratt & Whitney Rocketdyne, Inc. Dump cooled gasifier
EP1939271A1 (de) 2006-12-18 2008-07-02 Pratt & Whitney Rocketdyne Inc. Dampfgekühlter Vergaser
WO2009033543A1 (de) * 2007-09-07 2009-03-19 Choren Industries Gmbh Verfahren und vorrichtung zur behandlung von beladenem heissgas
CN101809125A (zh) * 2007-09-07 2010-08-18 科林工业有限公司 负载热气的处理方法和设备
EP2598615A1 (de) * 2010-06-18 2013-06-05 Gasek OY Verfahren und vorrichtung zur vergasung von feststoffbrennstoff
EP2598615A4 (de) * 2010-06-18 2014-03-19 Gasek Oy Verfahren und vorrichtung zur vergasung von feststoffbrennstoff
DE102010045482A1 (de) 2010-09-16 2012-03-22 Choren Industries Gmbh Vorrichtung und Verfahren zur Behandlung eines schlackehaltigen Heißgasstromes
WO2012034700A2 (de) 2010-09-16 2012-03-22 Choren Industries Gmbh Vorrichtung und verfahren zur behandlung eines schlackehaltigen heissgasstromes
US8945286B2 (en) 2010-09-16 2015-02-03 Ccg Energy Technology Company Ltd. Device and method for treating a hot gas flow containing slag

Also Published As

Publication number Publication date
FI881329A (fi) 1988-10-04
EP0284762B1 (de) 1991-06-05
JPS63260986A (ja) 1988-10-27
EP0284762A3 (en) 1989-02-08
DE3711314A1 (de) 1988-10-13
ATE64148T1 (de) 1991-06-15
FI881329A0 (fi) 1988-03-21
US4848982A (en) 1989-07-18
CN1014071B (zh) 1991-09-25
DE3863104D1 (de) 1991-07-11
CN88101732A (zh) 1988-10-19
ZA881409B (en) 1988-09-15
FI88807B (fi) 1993-03-31
FI88807C (fi) 1993-07-12

Similar Documents

Publication Publication Date Title
EP0284762B1 (de) Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler
DE2412561B2 (de) Vorrichtung zum Direktabschrecken des heißen gasförmigen Produktes der Kohlenwasserstoff-Pyrolyse
DE1758357A1 (de) Vorrichtung zum Abschrecken und/oder Waschen von Heissgasen
DE3112256A1 (de) Verfahren zur nutzung der abwaerme und zur gewinnung von wassergas beim kuehlen von aus einem kammerofen ausgestossenem gluehenden koks
EP0297420B1 (de) Anlage zur Pyrolyse von Abfallmaterial
EP0567674A1 (de) Wärmetauscher zum Kühlen von in einer Kohlevergasungsanlage erzeugtem Synthesegas
DE4229895C2 (de) Vorrichtung zur Kühlung eines heißen Gases, insbesondere eines in einer Verbrennungs- bzw. Vergasungkammer durch Verbrennung von kohlenstoffhaltigem Brennstoff erzeugten heißen Nutzgases
DE3137576A1 (de) Vorrichtung in stehender bauweise zum abkuehlen von aus einem vergasungsprozess stammenden prozessgasen
DD280975A1 (de) Verfahren und vorrichtung zur kuehlung und reinigung von mit schlacke bzw. staub beladenen druckvergasungsgasen
DE3137586C2 (de)
DD237544A5 (de) Vorrichtung zum abkuehlen eines heissen produktgases
DE3628866C2 (de)
DE2035630C3 (de) Vorrichtung zur Herstellung gasförmiger Olefine durch thermische Spaltung von flüssigen oder gasförmigen Kohlenwasserstoffen
DE3205346A1 (de) Zweistufen-vergaser
EP0088221A2 (de) Vorrichtung zum Kühlen eines in einem Vergaser erzeugten Gases
DE4332686C1 (de) Verfahren und Vorrichtung zur Reinigung der Abluft von Anlagen zur Verfestigung von Schmelzen
DE2526815C2 (de)
DE1583676B1 (de) Verfahren und Vorrichtung zur Herstellung von Aluminiumpulver
DE2931773A1 (de) System zum verringern des schwefeldioxidgehalts
EP0218125B1 (de) Vorrichtung zum Abscheiden von Wasserdampf, Lösungsmitteln und/oder Schadstoffen aus einem Gasstrom
CH640878A5 (de) Verfahren zum schmelzen von pech.
DE2935991C2 (de) Verfahren und Vorrichtung zur Gaskühlung und Schlackegranulierung am Austritt von Reaktoren
CH642607A5 (de) Vorrichtung zur anreicherung von mineralischen saeuren, insbesondere von schwefelsaeure.
EP0433579B1 (de) Verfahren und Vorrichtung zur Kühlung von Partialoxidationsrohgas
EP0630397B1 (de) Verfahren zum kühlen eines staubbeladenen rohgases aus der vergasung eines festen kohlenstoffhaltigen brennstoffes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890120

17Q First examination report despatched

Effective date: 19900313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH

Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 64148

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3863104

Country of ref document: DE

Date of ref document: 19910711

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950117

Year of fee payment: 8

Ref country code: FR

Payment date: 19950117

Year of fee payment: 8

Ref country code: CH

Payment date: 19950117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950118

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 88102397.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960219

Ref country code: AT

Effective date: 19960219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960229

Ref country code: CH

Effective date: 19960229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050219