EP0284762A2 - Apparatus for cooling synthesis gas in a Quench cooler - Google Patents
Apparatus for cooling synthesis gas in a Quench cooler Download PDFInfo
- Publication number
- EP0284762A2 EP0284762A2 EP88102397A EP88102397A EP0284762A2 EP 0284762 A2 EP0284762 A2 EP 0284762A2 EP 88102397 A EP88102397 A EP 88102397A EP 88102397 A EP88102397 A EP 88102397A EP 0284762 A2 EP0284762 A2 EP 0284762A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- inner jacket
- jacket
- water
- spray nozzles
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 14
- 238000010791 quenching Methods 0.000 title claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 title claims description 12
- 238000003786 synthesis reaction Methods 0.000 title claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000007921 spray Substances 0.000 claims abstract description 12
- 238000002309 gasification Methods 0.000 claims abstract description 11
- 238000009413 insulation Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 abstract 1
- 239000002893 slag Substances 0.000 description 7
- 239000000428 dust Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/74—Construction of shells or jackets
- C10J3/76—Water jackets; Steam boiler-jackets
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/52—Ash-removing devices
- C10J3/526—Ash-removing devices for entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
- C10J3/845—Quench rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S48/00—Gas: heating and illuminating
- Y10S48/02—Slagging producer
Definitions
- the invention relates to a device for cooling a synthesis gas generated in a gasification reactor with the aid of a quench cooler according to the preamble of claim 1.
- a known quench cooler (DE-C-2 940 933) the inner jacket is provided with trickle cooling.
- the application of a water film on the surface of the inner jacket is difficult, since there is a risk that the water to be applied evaporates on the hot surface and thus the water film tears open.
- the gas generated in the gasification reactor is passed through the water sump, where it is cooled, saturated with water and freed from liquid slag and fly ash.
- a disadvantage of such quench cooling is that the water from the water sump also absorbs the halogen components of the synthesis gas and is heated by the gas. The water must therefore be subjected to treatment and cooling after the solids have been separated off.
- the gas entrains water droplets in which fine dust particles are suspended when it exits the water sump. These dust particles can bake on the wall of the cooler and in the subsequent pipes and lead to blockages.
- the invention has for its object to carry out the cooling of the synthesis gas in the generic device in such a way that the water sump remains free of halogen components and caking of dust is avoided.
- the water vapor content in the synthesis gas is adjusted by spraying water into the gas stream and not when it passes through the water sump.
- the surface temperature on the cooled inner jacket becomes approximately the same in normal operation Gasification operating pressure corresponding boiling temperature. The surface temperature is thus far above the saturation temperature corresponding to the water vapor pressure of the synthesis gas, so that undershoots on the inner jacket are reliably avoided.
- the spray nozzles are arranged, the intermediate section between the reactor outlet and the inner jacket ensures that the reactor outlet is kept warm, so that the reactor outlet is not blocked by solidification of the liquid slag outflow.
- a quench cooler which contains an outer pressure jacket 1, is flanged to the outlet of a pressure gasification reactor, not shown.
- the gas inlet 2 of the quench cooler is lined fireproof and has the same diameter as the outlet of the gasification reactor.
- An intermediate section 3 of enlarged diameter adjoins the gas inlet 2. The height of the intermediate section 3 corresponds to approximately half to a simple value of its diameter.
- the gas inlet 2 and the intermediate section 3 are provided with refractory heat insulation.
- the lower part of the inner jacket 5 receives a water sump 6, which is connected to an outlet nozzle 7 at the lower end of the pressure jacket 1.
- the water sump 6 serves to quench the liquid slag contained in the synthesis gas.
- the quenched slag is withdrawn from the outlet nozzle 7 together with the water from the water sump 6.
- one or more gas outlet connections 8 are provided, which are passed through the inner jacket 5 and the pressure jacket 1.
- guide surfaces 9 are arranged obliquely downwards in the form of a funnel and are led out of the course of the inner casing 5.
- the lower edges of the guide surfaces 9 project into the interior of the inner casing 5 and are supported on the inner casing 5 by means of pipes 10.
- the gas flowing through the inner jacket 5 is deflected in this way to improve dust separation before it exits through the gas outlet connection 8.
- the inner jacket 5 consists of a steel wall, which is provided on the back with an open, pressure-free relative to the process pressure evaporative cooling.
- the pressure jacket 1 is provided in the lower part with a nozzle 11 which opens into the annular space 4.
- Treated feed water is fed into the annular space 4 through the nozzle 11.
- a chamber 12 is formed at the upper end of the annular space 4.
- Downpipes 13 are arranged in the annular space 4 and are welded into a perforated plate 14. The downpipes 13 are passed through the inner jacket 5 with the lower ends below the level of the gas outlet connection 8 and connect the chamber 12 to the interior of the inner jacket 5, so that there is pressure compensation.
- the lower ends of the downpipes 13 can end above the water sump 6 or can dip into the water sump 6.
- the water volume within the annular space 4 is selected so large that in the event of any malfunctions in the quench system over a certain time, which is sufficient to take countermeasures, the entire residual and storage heat accumulated can be dissipated through the open evaporation system. Via the downpipes 13, the water fed continuously through the nozzle 11 during operation and the accumulated saturated steam are passed into the water sump 6.
- Spray nozzles 15 protrude into the interior of the inner jacket 5.
- the spray nozzles 15 are installed in cooled lances 16, which are interchangeably passed through the pressure jacket 1 and the inner jacket 5.
- the spray nozzles 15 can be aligned both axially and radially with respect to the lance 16 or can be inclined downwards.
- the lances 16 can be horizontal or obliquely downwards directional installed in the quench cooler. A first row of such lances 16 is arranged immediately below the intermediate section 3. Additional lances can be provided below this upper row of lances 16.
- the front edges of the lances 16 lie on a pitch circle, the diameter of which is larger than the diameter of the intermediate section 3. In this way, the lances 16 are protected against slag flowing off.
- the intermediate section 3 serves to ensure that the cooled synthesis gas does not come into contact with the edge of the gas inlet 2 by an internal backflow and would cool it, so that freezing of the slag flowing away, which would lead to a blockage of the gas inlet 2, is avoided becomes.
- the amount of water added via the spray nozzles 15 is dimensioned such that the water evaporates almost completely and the synthesis gas is cooled to about 300 to 600 degrees C. when it exits through the gas outlet connection 8. At this temperature, the water vapor contained in the synthesis gas does not yet condense out, so that no significant amounts of halogens can get into the water of the water sump 6. The water sump does not heat up, which makes handling of the sump contents easier when discharging the quenched slag.
- the cooled gas is optionally fed to a further processing system after further cooling in a radiation or convection cooler via a gas scrubber.
- the inner jacket 5 is designed as a gas-tight tube wall.
- the tube wall also forms the intermediate section 3.
- the tubes are laid in a spiral in the tube wall and water is applied to them via tubes 17.
- the spray nozzles 15 are integrated into the tube wall of the inner jacket 5.
- the annular space between the inner jacket 5 and the pressure jacket 1 can also be filled with thermal insulation 18. Cooling tubes 19 are guided through this thermal insulation 18.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Optical Couplings Of Light Guides (AREA)
- Defrosting Systems (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Kühlen eines in einem Vergasungsreaktor erzeugten Synthesegases mit Hilfe eines Quenchkühlers nach dem Oberbegriff des Anspruches 1.The invention relates to a device for cooling a synthesis gas generated in a gasification reactor with the aid of a quench cooler according to the preamble of claim 1.
Bei einem bekannten Quenchkühler (DE-C-2 940 933) ist der Innenmantel mit einer Rieselkühlung versehen. Das Aufbringen eines Wasserfilmes auf die Oberfläche des Innenmantels ist schwierig, da die Gefahr besteht, daß das aufzubringende Wasser an der heißen Oberfläche verdampft und somit der Wasserfilm aufreißt. Das in dem Vergasungsreaktor erzeugte Gas wird bei dem bekannten Quenchkühler durch den Wassersumpf hindurchgeführt, wobei es gekühlt, mit Wasser gesättigt und von flüssiger Schlacke und Flugasche befreit wird. Ungünstig bei einer solchen Quenchkühlung ist, daß das Wasser des Wassersumpfes auch die Halogen-Bestandteile des Synthesegases aufnimmt und durch das Gas erwärmt wird. Das Wasser muß daher nach dem Abtrennen der Feststoffe einer Aufbereitung und Kühlung unterworfen werden. Weiterhin besteht bei dem bekannten Quenchkühler die Gefahr, daß das Gas bei dem Austritt aus dem Wassersumpf Wassertropfen mitreißt, in denen feine Staubteilchen suspendiert sind. Diese Staubteilchen können an der Wand des Kühlers und in den nachfolgenden Rohrleitungen anbacken und zu Verstopfungen führen.In a known quench cooler (DE-C-2 940 933) the inner jacket is provided with trickle cooling. The application of a water film on the surface of the inner jacket is difficult, since there is a risk that the water to be applied evaporates on the hot surface and thus the water film tears open. In the known quench cooler, the gas generated in the gasification reactor is passed through the water sump, where it is cooled, saturated with water and freed from liquid slag and fly ash. A disadvantage of such quench cooling is that the water from the water sump also absorbs the halogen components of the synthesis gas and is heated by the gas. The water must therefore be subjected to treatment and cooling after the solids have been separated off. Furthermore, in the known quench cooler, there is the risk that the gas entrains water droplets in which fine dust particles are suspended when it exits the water sump. These dust particles can bake on the wall of the cooler and in the subsequent pipes and lead to blockages.
Der Erfindung liegt die Aufgabe zugrunde, die Kühlung des Synthesegases in der gattungsgemäßen Vorrichtung derart zu führen, daß der Wassersumpf frei von Halogen-Bestandteilen bleibt und Anbackungen von Staub vermieden werden.The invention has for its object to carry out the cooling of the synthesis gas in the generic device in such a way that the water sump remains free of halogen components and caking of dust is avoided.
Diese Aufgabe wird bei einer gattungsgemäßen Vorrichtung erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved according to the invention in a generic device by the characterizing features of claim 1. Advantageous embodiments of the invention are specified in the subclaims.
Bei dieser Vorrichtung wird der Wasserdampfgehalt im Synthesegas durch Einsprühen von Wasser in den Gasstrom und nicht beim Durchtritt durch den Wassersumpf eingestellt. Die Oberflächentemperatur an dem gekühlten Innenmantel wird im Normalbetrieb etwa gleich der dem Vergasungsbetriebsdruck entsprechenden Siedetemperatur sein. Die Oberflächentemperatur liegt damit weit über der dem Wasserdampfdruck des Synthesegases entsprechenden Sättigungstemperatur, so daß Taupunktunterschreitungen an dem Innenmantel sicher vermieden werden. Bei der Anordnung der Sprühdüsen wird durch den Zwischenabschnitt zwischen dem Reaktorausgang und dem Innenmantel erreicht, daß der Reaktorausgang warmgehalten wird, so daß ein Verstopfen des Reaktorausganges durch Erstarren des flüssigen Schlackeabflusses verhindert wird.In this device, the water vapor content in the synthesis gas is adjusted by spraying water into the gas stream and not when it passes through the water sump. The surface temperature on the cooled inner jacket becomes approximately the same in normal operation Gasification operating pressure corresponding boiling temperature. The surface temperature is thus far above the saturation temperature corresponding to the water vapor pressure of the synthesis gas, so that undershoots on the inner jacket are reliably avoided. When the spray nozzles are arranged, the intermediate section between the reactor outlet and the inner jacket ensures that the reactor outlet is kept warm, so that the reactor outlet is not blocked by solidification of the liquid slag outflow.
Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
- Fig. 1 den Längsschnitt durch eine Ausführungsform der Erfindung,
- Fig. 2 und 3 im Längsschnitt andere Ausführungsformen der Erfindung und
- Fig. 4 die Einzelheit Z nach Fig. 1
- 1 shows the longitudinal section through an embodiment of the invention,
- 2 and 3 in longitudinal section other embodiments of the invention and
- 4 shows the detail Z according to FIG. 1
An den Ausgang eines nicht dargestellten Druckvergasungsreaktors ist ein Quenchkühler angeflanscht, der einen äußeren Druckmantel 1 enthält. Der Gaseintritt 2 des Quenchkühlers ist feuerfest ausgekleidet und weist denselben Durchmesser auf wie der Ausgang des Vergasungsreaktors. An den Gaseintritt 2 schließt sich ein Zwischenabschnitt 3 von vergrößertem Durchmesser an. Die Höhe des Zwischenabschnittes 3 entspricht etwa dem halben bis einfachen Wert seines Durchmessers. Der Gaseintritt 2 und der Zwischenabschnitt 3 sind mit einer feuerfesten Wärmeisolierung versehen.A quench cooler, which contains an outer pressure jacket 1, is flanged to the outlet of a pressure gasification reactor, not shown. The
Unterhalb des Gaseintrittes 2 ist mit Abstand von dem Druckmantel 1 unter Bildung eines Ringraumes 4 ein Innenmantel 5 angeordnet, der mit dem Druckmantel 1 dicht verbunden ist. Der untere Teil des Innenmantels 5 nimmt einen Wassersumpf 6 auf, der mit einem Austrittsstutzen 7 am unteren Ende des Druckmantels 1 in Verbindung steht. Der Wassersumpf 6 dient dazu, die in dem Synthesegas enthaltene flüssige Schlacke abzuschrecken. Die abgeschreckte Schlacke wird zusammen mit dem Wasser des Wassersumpfes 6 aus dem Austrittsstutzen 7 abgezogen.An
Oberhalb des Wassersumpfes 6 sind ein oder mehrere Gasaustrittsstutzen 8 vorgesehen, die durch den Innenmantel 5 und den Druckmantel 1 hindurchgeführt sind. Vor der Eintrittsebene der Gasaustrittsstutzen 8 sind schräg nach unten gerichtete Leitflächen 9 in Form eines Trichters angeordnet, die aus dem Verlauf des Innenmantels 5 herausgeführt sind. Die Unterkanten der Leitflächen 9 springen in den Innenraum des Innenmantels 5 vor und sind über Rohre 10 an dem Innenmantel 5 abgestützt. Das den Innenmantel 5 durchströmende Gas wird auf diese Weise zur Verbesserung der Staubabscheidung umgelenkt, bevor es durch die Gasaustrittsstutzen 8 austritt.Above the
Nach Fig. 1 besteht der Innenmantel 5 aus einer Stahlwand, die auf der Rückseite mit einer offenen, relativ zum Prozeßdruck drucklosen Verdampfungskühlung versehen ist. Zu diesem Zweck ist der Druckmantel 1 im unteren Teil mit einem Stutzen 11 versehen, der in den Ringraum 4 einmündet. Durch den Stutzen 11 wird aufbereitetes Speisewasser in den Ringraum 4 eingespeist. Am oberen Ende des Ringraumes 4 ist eine Kammer 12 gebildet. In dem Ringraum 4 sind Fallrohre 13 angeordnet, die in ein Lochblech 14 eingeschweißt sind. Die Fallrohre 13 sind mit den unteren Enden unterhalb der Ebene der Gasaustrittsstutzen 8 durch den Innenmantel 5 hindurchgeführt und verbinden die Kammer 12 mit dem Innenraum des Innenmantels 5, so daß ein Druckausgleich besteht. Die unteren Enden der Fallrohre 13 können oberhalb des Wassersumpfes 6 enden, oder in den Wassersumpf 6 eintauchen. Das Wasservolumen innerhalb des Ringraumes 4 ist so groß gewählt, daß bei eventuellen Störfällen am Quenchsystem über eine gewisse Zeit, die ausreicht um Gegenmaßnahmen zu treffen, die gesamte anfallende Rest- und Speicherwärme durch das offene Ausdampfsystem abgeführt werden kann. Über die Fallrohre 13 wird das im Betrieb kontinuierlich über den Stutzen 11 eingespeiste Wasser sowie der anfallende Sattdampf in den Wassersumpf 6 geleitet.According to Fig. 1, the
In den Innenraum des Innenmantels 5 ragen Sprühdüsen 15 hinein. Die Sprühdüsen 15 sind in gekühlte Lanzen 16 eingebaut, die auswechselbar durch den Druckmantel 1 und den Innenmantel 5 hindurchgeführt sind. Wie in Fig. 4 zu erkennen ist, können die Sprühdüsen 15 sowohl axial als auch radial zur Lanze 16 ausgerichtet oder schräg nach unten geneigt sein. Die Lanzen 16 können horizontal oder schräg nach unten gerichtet in dem Quenchkühler eingebaut sein. Eine erste Reihe solcher Lanzen 16 ist unmittelbar unterhalb des Zwischenabschnittes 3 angeordnet. Weitere Lanzen können unterhalb dieser oberen Reihe von Lanzen 16 vorgesehen werden.
Die Vorderkanten der Lanzen 16 liegen auf einem Teilkreis, dessen Durchmesser größer ist als der Durchmesser des Zwischenabschnittes 3. Auf diese Weise werden die Lanzen 16 vor abfließender Schlacke geschützt. Im übrigen dient der Zwischenabschnitt 3 dazu, daß das abgekühlte Synthesegas durch eine interne Rückströmung nicht mit der Kante des Gaseintrittes 2 in Berührung kommt und diese abkühlen würde, so daß ein Einfrieren der abfließenden Schlacke, das zu einem Verstopfen des Gaseintrittes 2 führen würde, vermieden wird.The front edges of the
Durch die Kühlung des Innenmantels 5 nimmt dieser eine Oberflächentemperatur an, die oberhalb des Taupunktes des Synthesegases liegt. Die über die Sprühdüsen 15 aufgegebene Wassermenge ist so bemessen, daß das Wasser nahezu vollständig verdampft und das Synthesegas beim Austritt durch die Gasaustrittsstutzen 8 auf etwa 300 bis 600 Grad C abgekühlt ist. Bei dieser Temperatur kondensiert der in dem Synthesegas enthaltene Wasserdampf noch nicht aus, so daß keine nennenswerten Mengen an Halogenen in das Wasser des Wassersumpfes 6 gelangen können. Eine Aufheizung des Wassersumpfes unterbleibt, wodurch die Handhabung des Sumpfinhaltes beim Austragen der abgeschreckten Schlacke erleichtert wird. Das abgekühlte Gas wird gegebenenfalls nach einer weiteren Abkühlung in einem Strahlungs- oder Konvektionskühler über einen Gaswäscher einer Weiterverarbeitungsanlage zugeführt.As a result of the cooling of the
Nach Fig. 2 ist der Innenmantel 5 als gasdichte Rohrwand ausgebildet. Die Rohrwand bildet auch den Zwischenabschnitt 3. Die Rohre sind in der Rohrwand spiralförmig verlegt und werden über Rohre 17 mit Wasser beaufschlagt. Bei dieser Anordnung sind die Sprühdüsen 15 in die Rohrwand des Innenmantels 5 integriert.2, the
Wie in Fig. 3 dargestellt ist, kann der Ringraum zwischen dem Innenmantel 5 und dem Druckmantel 1 auch mit einer Wärmeisolierung 18 ausgefüllt sein. Durch diese Wärmeisolierung 18 sind Kühlrohre 19 geführt.As shown in FIG. 3, the annular space between the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88102397T ATE64148T1 (en) | 1987-04-03 | 1988-02-19 | DEVICE FOR COOLING A SYNTHESIS GAS IN A QUENCH REFRIGERATOR. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873711314 DE3711314A1 (en) | 1987-04-03 | 1987-04-03 | DEVICE FOR COOLING A SYNTHESIS GAS IN A QUENCH COOLER |
DE3711314 | 1987-04-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0284762A2 true EP0284762A2 (en) | 1988-10-05 |
EP0284762A3 EP0284762A3 (en) | 1989-02-08 |
EP0284762B1 EP0284762B1 (en) | 1991-06-05 |
Family
ID=6324823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88102397A Expired - Lifetime EP0284762B1 (en) | 1987-04-03 | 1988-02-19 | Apparatus for cooling synthesis gas in a quench cooler |
Country Status (8)
Country | Link |
---|---|
US (1) | US4848982A (en) |
EP (1) | EP0284762B1 (en) |
JP (1) | JPS63260986A (en) |
CN (1) | CN1014071B (en) |
AT (1) | ATE64148T1 (en) |
DE (2) | DE3711314A1 (en) |
FI (1) | FI88807C (en) |
ZA (1) | ZA881409B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0433579A1 (en) * | 1989-11-17 | 1991-06-26 | Krupp Koppers GmbH | Process and apparatus for cooling rough gas from partial oxidation |
EP0586837A2 (en) * | 1992-09-09 | 1994-03-16 | Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft | Device for cooling hot gases |
WO1998045388A2 (en) * | 1997-04-08 | 1998-10-15 | Metallgesellschaft Ag | Synthesis gas generator with combustion and quench chambers |
EP1939271A1 (en) | 2006-12-18 | 2008-07-02 | Pratt & Whitney Rocketdyne Inc. | Dump cooled gasifier |
WO2009033543A1 (en) * | 2007-09-07 | 2009-03-19 | Choren Industries Gmbh | Method and device for treating charged hot gas |
DE102010045482A1 (en) | 2010-09-16 | 2012-03-22 | Choren Industries Gmbh | Slag treatment device for coal gasifier plant, has dip tube with inner and outer pipes between which annular gap is formed and connected with annular coolant chamber, and coolant feed pipe connected at lower portion of dip tube |
WO2012034700A2 (en) | 2010-09-16 | 2012-03-22 | Choren Industries Gmbh | Device and method for treating a hot gas flow containing slag |
EP2598615A1 (en) * | 2010-06-18 | 2013-06-05 | Gasek OY | Method and apparatus for gasifying solid fuel |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4017219A1 (en) * | 1990-05-29 | 1991-12-05 | Babcock Werke Ag | DEVICE FOR GASIFYING CARBONATED MATERIALS |
US5248483A (en) * | 1991-03-28 | 1993-09-28 | Phillips Petroleum Company | Apparatus and methods for producing ceramic products |
EP0616022B1 (en) * | 1993-03-16 | 1995-09-13 | Krupp Koppers GmbH | Process for pressure gasification of fine particulate fuels |
DE59301475D1 (en) * | 1993-03-16 | 1996-02-29 | Krupp Koppers Gmbh | Gasification apparatus for the pressure gasification of fine-particle fuels |
DE19654806C2 (en) * | 1996-12-31 | 2001-06-13 | Axiva Gmbh | Optimization of the cooling water system of a polyolefin plant |
DE19930051C2 (en) * | 1999-06-30 | 2001-06-13 | Daimler Chrysler Ag | Device and method for carrying out a water quench |
CN101166813B (en) * | 2005-05-02 | 2011-11-23 | 国际壳牌研究有限公司 | Method and system for producing synthesis gas |
CN1919980B (en) * | 2005-08-24 | 2012-07-04 | 未来能源有限公司 | Gasification method and device for producing synthesis gases by partial oxidation of fuels containing ash at elevated pressure and with quench-cooling of the crude gas |
DE102005043212A1 (en) * | 2005-09-09 | 2007-03-15 | Future Energy Gmbh | Solid fuel, e.g. anthracite or gasification, for e.g. fluidized bed reactor, involves taking water-washed raw gas for deposition of particulate matters of partial condensation, where raw gas is indirectly cooled at preset temperature |
DE102006031816B4 (en) * | 2006-07-07 | 2008-04-30 | Siemens Fuel Gasification Technology Gmbh | Method and device for cooling hot gases and liquefied slag in entrained flow gasification |
DE102007006990B4 (en) * | 2007-02-07 | 2016-03-10 | Air Liquide Global E&C Solutions Germany Gmbh | Process and apparatus for the conversion of raw gases in the partial oxidation of gaseous and liquid hydrocarbons |
US8012436B2 (en) * | 2007-09-04 | 2011-09-06 | Shell Oil Company | Quenching vessel |
CN101547730B (en) * | 2007-09-04 | 2012-02-01 | 国际壳牌研究有限公司 | Spray nozzle manifold and process for quenching a hot gas using such an arrangement |
WO2010023306A2 (en) | 2008-09-01 | 2010-03-04 | Shell Internationale Research Maatschappij B.V. | Self cleaning arrangement |
JP6394988B2 (en) * | 2015-08-21 | 2018-09-26 | Jfeエンジニアリング株式会社 | Exhaust gas temperature reduction tower and exhaust gas temperature reduction method |
DE102015216783A1 (en) * | 2015-09-02 | 2017-03-02 | Siemens Aktiengesellschaft | Non-blocking water overflow from the water jacket of a quencher into the quench space |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1217014B (en) * | 1957-12-13 | 1966-05-18 | Texaco Development Corp | Device for the production of carbon dioxide and hydrogen |
DE2650512A1 (en) * | 1976-11-04 | 1978-05-11 | Siegener Ag Geisweid | Slag removal from synthesis gas - by cooling tubes in intermediate container to solidify liquid slag droplets |
GB2093175A (en) * | 1981-02-12 | 1982-08-25 | Texaco Development Corp | Synthesis gas cooler and waste heat boiler |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3223398A (en) * | 1963-02-20 | 1965-12-14 | Kaiser Ind Corp | Lance for use in a basic oxygen conversion process |
DE1501387A1 (en) * | 1965-01-13 | 1969-05-29 | Knapsack Ag | Tubular injection cooler for quenching hot, aggressive gases |
US4218423A (en) * | 1978-11-06 | 1980-08-19 | Texaco Inc. | Quench ring and dip tube assembly for a reactor vessel |
CH661054A5 (en) * | 1981-10-23 | 1987-06-30 | Sulzer Ag | GAS COOLER TO SYNTHESIS GAS GENERATOR. |
DE3205346C2 (en) * | 1982-02-15 | 1983-12-15 | L. & C. Steinmüller GmbH, 5270 Gummersbach | Two-stage carburetor |
DE3248096C2 (en) * | 1982-12-24 | 1985-01-31 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Standing device for cooling gases under high pressure with a high proportion of dust |
-
1987
- 1987-04-03 DE DE19873711314 patent/DE3711314A1/en not_active Withdrawn
-
1988
- 1988-02-19 DE DE8888102397T patent/DE3863104D1/en not_active Expired - Lifetime
- 1988-02-19 AT AT88102397T patent/ATE64148T1/en not_active IP Right Cessation
- 1988-02-19 EP EP88102397A patent/EP0284762B1/en not_active Expired - Lifetime
- 1988-02-29 ZA ZA881409A patent/ZA881409B/en unknown
- 1988-03-21 FI FI881329A patent/FI88807C/en not_active IP Right Cessation
- 1988-04-01 JP JP63081161A patent/JPS63260986A/en active Pending
- 1988-04-02 CN CN88101732A patent/CN1014071B/en not_active Expired
- 1988-04-04 US US07/177,531 patent/US4848982A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1217014B (en) * | 1957-12-13 | 1966-05-18 | Texaco Development Corp | Device for the production of carbon dioxide and hydrogen |
DE2650512A1 (en) * | 1976-11-04 | 1978-05-11 | Siegener Ag Geisweid | Slag removal from synthesis gas - by cooling tubes in intermediate container to solidify liquid slag droplets |
GB2093175A (en) * | 1981-02-12 | 1982-08-25 | Texaco Development Corp | Synthesis gas cooler and waste heat boiler |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0433579A1 (en) * | 1989-11-17 | 1991-06-26 | Krupp Koppers GmbH | Process and apparatus for cooling rough gas from partial oxidation |
EP0586837A2 (en) * | 1992-09-09 | 1994-03-16 | Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft | Device for cooling hot gases |
EP0586837A3 (en) * | 1992-09-09 | 1994-05-18 | Babcock Energie Umwelt | Device for cooling hot gases |
WO1998045388A2 (en) * | 1997-04-08 | 1998-10-15 | Metallgesellschaft Ag | Synthesis gas generator with combustion and quench chambers |
EP0870818A3 (en) * | 1997-04-08 | 1998-11-18 | MAN Gutehoffnungshütte Aktiengesellschaft | Synthesis gas producer with combustion and quench chamber |
WO1998045388A3 (en) * | 1997-04-08 | 1999-01-07 | Metallgesellschaft Ag | Synthesis gas generator with combustion and quench chambers |
US5976203A (en) * | 1997-04-08 | 1999-11-02 | Metallgesellschaft Aktiengellschaft | Synthesis gas generator with combustion and quench chambers |
US7740671B2 (en) | 2006-12-18 | 2010-06-22 | Pratt & Whitney Rocketdyne, Inc. | Dump cooled gasifier |
EP1939271A1 (en) | 2006-12-18 | 2008-07-02 | Pratt & Whitney Rocketdyne Inc. | Dump cooled gasifier |
WO2009033543A1 (en) * | 2007-09-07 | 2009-03-19 | Choren Industries Gmbh | Method and device for treating charged hot gas |
CN101809125A (en) * | 2007-09-07 | 2010-08-18 | 科林工业有限公司 | Method and device for treating charged hot gas |
EP2598615A1 (en) * | 2010-06-18 | 2013-06-05 | Gasek OY | Method and apparatus for gasifying solid fuel |
EP2598615A4 (en) * | 2010-06-18 | 2014-03-19 | Gasek Oy | Method and apparatus for gasifying solid fuel |
DE102010045482A1 (en) | 2010-09-16 | 2012-03-22 | Choren Industries Gmbh | Slag treatment device for coal gasifier plant, has dip tube with inner and outer pipes between which annular gap is formed and connected with annular coolant chamber, and coolant feed pipe connected at lower portion of dip tube |
WO2012034700A2 (en) | 2010-09-16 | 2012-03-22 | Choren Industries Gmbh | Device and method for treating a hot gas flow containing slag |
US8945286B2 (en) | 2010-09-16 | 2015-02-03 | Ccg Energy Technology Company Ltd. | Device and method for treating a hot gas flow containing slag |
Also Published As
Publication number | Publication date |
---|---|
FI881329A0 (en) | 1988-03-21 |
DE3863104D1 (en) | 1991-07-11 |
FI88807B (en) | 1993-03-31 |
FI88807C (en) | 1993-07-12 |
US4848982A (en) | 1989-07-18 |
CN88101732A (en) | 1988-10-19 |
FI881329A (en) | 1988-10-04 |
EP0284762A3 (en) | 1989-02-08 |
ZA881409B (en) | 1988-09-15 |
DE3711314A1 (en) | 1988-10-13 |
CN1014071B (en) | 1991-09-25 |
ATE64148T1 (en) | 1991-06-15 |
EP0284762B1 (en) | 1991-06-05 |
JPS63260986A (en) | 1988-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0284762B1 (en) | Apparatus for cooling synthesis gas in a quench cooler | |
DE2412561C3 (en) | Device for direct quenching of the hot gaseous product of hydrocarbon pyrolysis | |
DE3147864C2 (en) | Waste heat boiler for cooling synthesis gas | |
DE1758357A1 (en) | Device for quenching and / or washing hot gases | |
EP0297420B1 (en) | Installation for the pyrolysis of waste | |
DE3112256A1 (en) | METHOD FOR USING THE EXHAUST HEAT AND FOR RECOVERING WATER GAS WHEN COOLING THE GLOWING COOK EJECTED FROM A CHAMBER STOVE | |
EP0567674A1 (en) | Heat exchange for cooling synthesis gas produced in a coal gasification plant | |
DE4229895C2 (en) | Device for cooling a hot gas, in particular a hot useful gas generated in a combustion or gasification chamber by burning carbon-containing fuel | |
DE3137576A1 (en) | DEVICE IN STANDING DESIGN FOR COOLING PROCESS GAS FROM A GASIFICATION PROCESS | |
DD237544A5 (en) | DEVICE FOR COOLING A HOT PRODUCT GAS | |
DE3628866C2 (en) | ||
DE3205346A1 (en) | TWO-STAGE CARBURETTOR | |
EP0088221A2 (en) | Apparatus for cooling a gas produced in a gasifier | |
DE4332686C1 (en) | Process and apparatus for purifying the exhaust air of plants for solidifying melts | |
DE2526815C2 (en) | ||
DE1583676B1 (en) | Method and device for the production of aluminum powder | |
DE2931773A1 (en) | SYSTEM FOR REDUCING THE SULFUR DIOXIDE CONTENT | |
EP0218125B1 (en) | Apparatus for eliminating water vapour, solvents and/or obnoxious substances from a gas stream | |
DE2935991C2 (en) | Process and device for gas cooling and slag granulation at the reactor outlet | |
CH640878A5 (en) | METHOD FOR MELTING PECH. | |
CH642607A5 (en) | DEVICE FOR ENRICHING MINERAL ACIDS, ESPECIALLY SULFURIC ACID. | |
EP0433579B1 (en) | Process and apparatus for cooling rough gas from partial oxidation | |
EP0630397B1 (en) | Process for cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel | |
DE4302175C2 (en) | Radiation cooler of a gas generator | |
DE3434866C2 (en) | Immersion cooler for cooling and washing of flowing, dust-laden, hot gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19890120 |
|
17Q | First examination report despatched |
Effective date: 19900313 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 64148 Country of ref document: AT Date of ref document: 19910615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3863104 Country of ref document: DE Date of ref document: 19910711 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950117 Year of fee payment: 8 Ref country code: FR Payment date: 19950117 Year of fee payment: 8 Ref country code: CH Payment date: 19950117 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19950118 Year of fee payment: 8 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88102397.2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950228 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960219 Ref country code: AT Effective date: 19960219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960229 Ref country code: CH Effective date: 19960229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19961101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050219 |