EP0284762B1 - Apparatus for cooling synthesis gas in a quench cooler - Google Patents

Apparatus for cooling synthesis gas in a quench cooler Download PDF

Info

Publication number
EP0284762B1
EP0284762B1 EP88102397A EP88102397A EP0284762B1 EP 0284762 B1 EP0284762 B1 EP 0284762B1 EP 88102397 A EP88102397 A EP 88102397A EP 88102397 A EP88102397 A EP 88102397A EP 0284762 B1 EP0284762 B1 EP 0284762B1
Authority
EP
European Patent Office
Prior art keywords
inner casing
gas
water
spray nozzles
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88102397A
Other languages
German (de)
French (fr)
Other versions
EP0284762A2 (en
EP0284762A3 (en
Inventor
Arnold Dr. Tolle
Manfred Förster
Heinz Haacker
Helmut Wensing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Deutsche Babcock Werke Energie und Umwelttechnik AG
Original Assignee
MAN Gutehoffnungshutte GmbH
Deutsche Babcock Werke Energie und Umwelttechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH, Deutsche Babcock Werke Energie und Umwelttechnik AG filed Critical MAN Gutehoffnungshutte GmbH
Priority to AT88102397T priority Critical patent/ATE64148T1/en
Publication of EP0284762A2 publication Critical patent/EP0284762A2/en
Publication of EP0284762A3 publication Critical patent/EP0284762A3/en
Application granted granted Critical
Publication of EP0284762B1 publication Critical patent/EP0284762B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/02Slagging producer

Definitions

  • the invention relates to a device for cooling a synthesis gas generated in a gasification reactor with the aid of a quench cooler according to the preamble of claim 1.
  • a synthesis gas cooler is known in which the synthesis gas generated in a gasification reactor is only cooled indirectly via two concentrically arranged tube walls through which a cooling medium flows.
  • the outlet of the gasification reactor opens directly into the cooler.
  • the cooler receives a water sump in the lower part to quench the slag contained in the synthesis gas.
  • the cooled synthesis gas is discharged through a gas outlet nozzle arranged above the water sump.
  • the gasification reactor known from DE-C-2 940 933 has a widened outlet opening, which is followed by an inner jacket of a quench cooler provided with trickle cooling.
  • the application of a water film on the surface of the inner jacket is difficult, since there is a risk that the water to be applied evaporates on the hot surface and thus the water film tears open.
  • the gas generated in the gasification reactor is passed through the water sump in the known quench cooler, being cooled, saturated with water and freed from liquid slag and fly ash.
  • a disadvantage of such quench cooling is that the water from the water sump also absorbs the halogen components of the synthesis gas and is heated by the gas. The water must therefore one after separating the solids Processing and cooling are subjected.
  • the known quench cooler there is the risk that the gas entrains water droplets in which fine dust particles are suspended when it exits the water sump. These dust particles can stick to the wall of the cooler and in the subsequent pipes and lead to blockages.
  • the invention is based on the object of designing the generic quench cooler in such a way that clogging of the gasification reactor is avoided when water is injected into the quench cooler.
  • the intermediate section between the reactor outlet and the arrangement of the spray nozzles prevents the already cooled synthesis gas from coming into contact with the reactor outlet due to an internal backflow. This keeps the reactor outlet warm so that the reactor outlet is not blocked by solidification of the liquid slag outflow.
  • the water vapor content in the synthesis gas is adjusted by spraying water into the gas stream and not when it passes through the water sump. In normal operation, the surface temperature on the cooled inner jacket becomes approximately equal to the saturation temperature corresponding to the gasification operating pressure, so that undershoots on the inner jacket are reliably avoided.
  • a quench cooler which contains an outer pressure jacket 1, is flanged to the outlet of a pressure gasification reactor, not shown.
  • the gas inlet 2 of the quench cooler is lined fireproof and has the same diameter as the outlet of the gasification reactor.
  • An intermediate section 3 of enlarged diameter adjoins the gas inlet 2. The height of the intermediate section 3 corresponds to approximately half to a simple value of its diameter.
  • the gas inlet 2 and the intermediate section 3 are provided with refractory heat insulation.
  • the lower part of the inner jacket 5 receives a water sump 6, which is connected to an outlet nozzle 7 at the lower end of the pressure jacket 1.
  • the water sump 6 serves to quench the liquid slag contained in the synthesis gas.
  • the quenched slag is withdrawn from the outlet nozzle 7 together with the water from the water sump 6.
  • one or more gas outlet connections 8 are provided, which are passed through the inner jacket 5 and the pressure jacket 1.
  • guide surfaces 9 are arranged obliquely downwards in the form of a funnel and are led out of the course of the inner jacket 5.
  • the lower edges of the guide surfaces 9 project into the interior of the inner casing 5 and are supported on the inner casing 5 by means of pipes 10. In this way, the gas flowing through the inner jacket 5 is deflected to improve dust separation before it exits through the gas outlet connection 8.
  • the inner jacket 5 consists of a steel wall, which is provided on the back with an open, pressure-free relative to the process pressure evaporative cooling.
  • the pressure jacket 1 is provided in the lower part with a nozzle 11 which opens into the annular space 4.
  • Treated feed water is fed into the annular space 4 through the nozzle 11.
  • a chamber 12 is formed at the upper end of the annular space 4.
  • Downpipes 13 are arranged in the annular space 4 and are welded into a perforated plate 14. The downpipes 13 are passed through the inner jacket 5 with the lower ends below the level of the gas outlet connection 8 and connect the chamber 12 to the interior of the inner jacket 5, so that there is pressure compensation.
  • the lower ends of the downpipes 13 can end above the water sump 6 or can dip into the water sump 6.
  • the water volume within the annular space 4 is chosen so large that in the event of any malfunctions in the quench system over a certain time, which is sufficient to take countermeasures, the entire residual and storage heat accumulated can be dissipated through the open evaporation system. Via the downpipes 13, the water fed continuously through the nozzle 11 during operation and the accumulated saturated steam are passed into the water sump 6.
  • Spray nozzles 15 protrude into the interior of the inner jacket 5.
  • the spray nozzles 15 are installed in cooled lances 16, which are interchangeably passed through the pressure jacket 1 and the inner jacket 5.
  • the spray nozzles 15 can be aligned both axially and radially with respect to the lance 16 or can be inclined downwards.
  • the lances 16 can be horizontal or obliquely downwards directional installed in the quench cooler. A first row of such lances 16 is arranged immediately below the intermediate section 3. Additional lances can be provided below this upper row of lances 16.
  • the front edges of the lances 16 lie on a pitch circle, the diameter of which is larger than the diameter of the intermediate section 3. In this way, the lances 16 are protected against slag flowing off.
  • the intermediate section 3 serves to ensure that the cooled synthesis gas does not come into contact with the edge of the gas inlet 2 by an internal backflow and would cool it, so that freezing of the slag flowing away, which would lead to a blockage of the gas inlet 2, is avoided becomes.
  • the amount of water added via the spray nozzles 15 is dimensioned such that the water evaporates almost completely and the synthesis gas is cooled to about 300 to 600 degrees C. when it exits through the gas outlet connection 8. At this temperature, the water vapor contained in the synthesis gas does not yet condense out, so that no significant amounts of halogens can get into the water of the water sump 6. The water sump does not heat up, which makes handling of the sump contents easier when discharging the quenched slag.
  • the cooled gas is optionally fed to a further processing system after further cooling in a radiation or convection cooler via a gas scrubber.
  • the inner jacket 5 is designed as a gas-tight tube wall.
  • the tube wall also forms the intermediate section 3.
  • the tubes are laid in a spiral in the tube wall and water is applied to them via tubes 17.
  • the spray nozzles 15 are integrated into the tube wall of the inner jacket 5.
  • the annular space between the inner jacket 5 and the pressure jacket 1 can also be filled with thermal insulation 18. Cooling tubes 19 are guided through this heat insulation 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Defrosting Systems (AREA)

Abstract

An arrangement for cooling a synthetic gas, generated in a gasification reactor, by means of a quenching cooler. The cooler is positioned below the outlet from the reactor and comprises a refrigerated inner jacket (5) surrounded by a pressurization jacket (1) and accommodating a water sump (6). There is an intermediate section (3) between the inner jacket and the outlet from the gasification reactor that is shorter in diameter than the inner jacket and longer in diameter than the outlet from the reactor. Spray nozzles (15) extend into the inner jacket. One or more gas-outlet connections (8) extend through the inner jacket in a plane above the sump.

Description

Die Erfindung betrifft eine Vorrichtung zum Kühlen eines in einem Vergasungsreaktor erzeugten Synthesegases mit Hilfe eines Quenchkühlers nach dem Oberbegriff des Anspruches 1.The invention relates to a device for cooling a synthesis gas generated in a gasification reactor with the aid of a quench cooler according to the preamble of claim 1.

Bei einer bekannten Vorrichtung zur Kühlung von Synthesegas (DE-A-2 650 512) mündet der feuerfest ausgekleidete Austritt des Vergasungsreaktors direkt in den Quenchkühler. Dabei besteht die Gefahr, daß durch eine interne Rückströmung innerhalb des Quenchkühlers bereits abgekühltes Synthesegas mit der Austrittskante des Reaktoraustrittes in Berührung kommt. Dadurch kann die Austrittskante soweit abgekühlt werden, daß die abfließende, in dem Synthesegas enthaltene Schlacke einfriert und den Reaktorausgang verstopft. Das in dem Quenchkühler abgekühlte Synthesegas wird zur weiteren Abkühlung einem Wärmetauscher zugeführt.In a known device for cooling synthesis gas (DE-A-2 650 512), the refractory-lined outlet of the gasification reactor opens directly into the quench cooler. There is a risk that already cooled synthesis gas comes into contact with the exit edge of the reactor outlet due to an internal backflow within the quench cooler. As a result, the trailing edge can be cooled to such an extent that the slag flowing off and contained in the synthesis gas freezes and clogs the reactor outlet. The syngas cooled in the quench cooler is fed to a heat exchanger for further cooling.

Aus der GB-A-2 093 175 ist ein Synthesegaskühler bekannt, bei dem das in einem Vergasungsreaktor erzeugte Synthesegas ausschließlich indirekt über zwei konzentrisch angeordnete und von einem Kühlmedium durchströmte Rohrwände gekühlt wird. Auch bei diesem Synthesegaskühler mündet der Austritt des Vergasungsreaktors unmittelbar in den Kühler hinein. Der Kühler nimmt im unteren Teil einen Wassersumpf zur Abschreckung der in dem Synthesegas enthaltenen Schlacke auf. Das gekühlte Synthesegas wird durch einen oberhalb des Wassersumpfes angeordneten Gasaustrittsstutzen abgeführt.From GB-A-2 093 175 a synthesis gas cooler is known in which the synthesis gas generated in a gasification reactor is only cooled indirectly via two concentrically arranged tube walls through which a cooling medium flows. In this synthesis gas cooler, too, the outlet of the gasification reactor opens directly into the cooler. The cooler receives a water sump in the lower part to quench the slag contained in the synthesis gas. The cooled synthesis gas is discharged through a gas outlet nozzle arranged above the water sump.

Der aus der DE-C-2 940 933 bekannte Vergasungsreaktor weist eine verbreiterte Austrittsöffnung auf, an die sich ein mit einer Rieselkühlung versehener Innenmantel eines Quenchkühlers anschließt. Das Aufbringen eines Wasserfilmes auf die Oberfläche des Innenmantels ist schwierig, da die Gefahr besteht, daß das aufzubringende Wasser an der heißen Oberfläche verdampft und somit der Wasserfilm aufreißt. Das in dem Vergasungsreaktor erzeugte Gas wird bei dem bekannten Quenchkühler durch den Wassersumpf hindurchgeführt, wobei es gekühlt, mit Wasser gesättigt und von flüssiger Schlacke und Flugasche befreit wird. Ungünstig bei einer solchen Quenchkühlung ist, daß das Wasser des Wassersumpfes auch die Halogen-Bestandteile des Synthesegases aufnimmt und durch das Gas erwärmt wird. Das Wasser muß daher nach dem Abtrennen der Feststoffe einer Aufbereitung und Kühlung unterworfen werden. Weiterhin besteht bei dem bekannten Quenchkühler die Gefahr, daß das Gas bei dem Austritt aus dem Wassersumpf Wassertropfen mitreißt, in denen feine Staubteilchen suspendiert sind. Diese Staubteilchen können an der Wand des Kühlers und in den nachfolgenden Rohrleitungen anbacken und zu Verstopfungen führen.The gasification reactor known from DE-C-2 940 933 has a widened outlet opening, which is followed by an inner jacket of a quench cooler provided with trickle cooling. The application of a water film on the surface of the inner jacket is difficult, since there is a risk that the water to be applied evaporates on the hot surface and thus the water film tears open. The gas generated in the gasification reactor is passed through the water sump in the known quench cooler, being cooled, saturated with water and freed from liquid slag and fly ash. A disadvantage of such quench cooling is that the water from the water sump also absorbs the halogen components of the synthesis gas and is heated by the gas. The water must therefore one after separating the solids Processing and cooling are subjected. Furthermore, in the known quench cooler, there is the risk that the gas entrains water droplets in which fine dust particles are suspended when it exits the water sump. These dust particles can stick to the wall of the cooler and in the subsequent pipes and lead to blockages.

Der Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen Quenchkühler derart zu gestalten, daß bei einem Einspritzen von Wasser in den Quenchkühler ein Verstopfen des Vergasungsreaktors vermieden wird.The invention is based on the object of designing the generic quench cooler in such a way that clogging of the gasification reactor is avoided when water is injected into the quench cooler.

Diese Aufgabe wird bei einer gattungsgemäßen Vorrichtung erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved according to the invention in a generic device by the characterizing features of claim 1. Advantageous embodiments of the invention are specified in the subclaims.

Durch den Zwischenabschnitt zwischen dem Reaktorausgang und die Anordnung der Sprühdüsen wird das bereits gekühlte Synthesegas daran gehindert, aufgrund einer internen Rückströmung mit dem Reaktorausgang in Berührung zu kommen. Dadurch wird der Reaktorausgang warm gehalten, so daß ein Verstopfen des Reaktorausganges durch Erstarren des flüssigen Schlackeabflusses verhindert wird. Darüber hinaus wird bei dieser Vorrichtung der Wasserdampfgehalt im Synthesegas durch Einsprühen von Wasser in den Gasstrom und nicht beim Durchtritt durch den Wassersumpf eingestellt. Die Oberflächentemperatur an dem gekühlten Innenmantel wird im Normalbetrieb etwa gleich der dem Vergasungsbetriebsdruck entsprechenden Sättigungstemperatur, so daß Taupunktunterschreitungen an dem Innenmantel sicher vermieden werden.The intermediate section between the reactor outlet and the arrangement of the spray nozzles prevents the already cooled synthesis gas from coming into contact with the reactor outlet due to an internal backflow. This keeps the reactor outlet warm so that the reactor outlet is not blocked by solidification of the liquid slag outflow. In addition, in this device the water vapor content in the synthesis gas is adjusted by spraying water into the gas stream and not when it passes through the water sump. In normal operation, the surface temperature on the cooled inner jacket becomes approximately equal to the saturation temperature corresponding to the gasification operating pressure, so that undershoots on the inner jacket are reliably avoided.

Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:

  • Fig. 1 den Längsschnitt durch eine Ausführungsform der Erfindung,
  • Fig. 2 und 3 im Längsschnitt andere Ausführungsformen der Erfindung und
  • Fig. 4 die Einzelheit Z nach Fig. 1
Several embodiments of the invention are shown in the drawing and are explained in more detail below. Show it:
  • 1 shows the longitudinal section through an embodiment of the invention,
  • 2 and 3 in longitudinal section other embodiments of the invention and
  • 4 shows the detail Z according to FIG. 1

An den Ausgang eines nicht dargestellten Druckvergasungsreaktors ist ein Quenchkühler angeflanscht, der einen äußeren Druckmantel 1 enthält. Der Gaseintritt 2 des Quenchkühlers ist feuerfest ausgekleidet und weist denselben Durchmesser auf wie der Ausgang des Vergasungsreaktors. An den Gaseintritt 2 schließt sich ein Zwischenabschnitt 3 von vergrößertem Durchmesser an. Die Höhe des Zwischenabschnittes 3 entspricht etwa dem halben bis einfachen Wert seines Durchmessers. Der Gaseintritt 2 und der Zwischenabschnitt 3 sind mit einer feuerfesten Wärmeisolierung versehen.A quench cooler, which contains an outer pressure jacket 1, is flanged to the outlet of a pressure gasification reactor, not shown. The gas inlet 2 of the quench cooler is lined fireproof and has the same diameter as the outlet of the gasification reactor. An intermediate section 3 of enlarged diameter adjoins the gas inlet 2. The height of the intermediate section 3 corresponds to approximately half to a simple value of its diameter. The gas inlet 2 and the intermediate section 3 are provided with refractory heat insulation.

Unterhalb des Gaseintrittes 2 ist mit Abstand von dem Druckmantel 1 unter Bildung eines Ringraumes 4 ein Innenmantel 5 angeordnet, der mit dem Druckmantel 1 dicht verbunden ist. Der untere Teil des Innenmantels 5 nimmt einen Wassersumpf 6 auf, der mit einem Austrittsstutzen 7 am unteren Ende des Druckmantels 1 in Verbindung steht. Der Wassersumpf 6 dient dazu, die in dem Synthesegas enthaltene flüssige Schlacke abzuschrecken. Die abgeschreckte Schlacke wird zusammen mit dem Wasser des Wassersumpfes 6 aus dem Austrittsstutzen 7 abgezogen.An inner jacket 5, which is tightly connected to the pressure jacket 1, is arranged below the gas inlet 2 at a distance from the pressure jacket 1 to form an annular space 4. The lower part of the inner jacket 5 receives a water sump 6, which is connected to an outlet nozzle 7 at the lower end of the pressure jacket 1. The water sump 6 serves to quench the liquid slag contained in the synthesis gas. The quenched slag is withdrawn from the outlet nozzle 7 together with the water from the water sump 6.

Oberhalb des Wassersumpfes 6 sind ein oder mehrere Gasaustrittsstutzen 8 vorgesehen, die durch den Innenmantel 5 und den Druckmantel 1 hindurchgeführt sind. Vor der Eintrittsebene der Gasaustrittsstutzen 8 sind schräg nach unten gerichtete Leitflächen 9 in Form eines Trichters angeordnet, die aus dem Verlauf des Innenmantels 5 herausgeführt sind. Die Unterkanten der Leitflächen 9 springen in den Innenraum des Innenmantels 5 vor und sind über Rohre 10 an dem Innenmantel 5 abgestützt. Das den Innenmantel 5 durchströmende Gas wird auf diese Weise zur Verbesserung der Staubabscheidung umgelenkt, bevor es durch die Gasaustrittsstutzen 8 austritt.Above the water sump 6, one or more gas outlet connections 8 are provided, which are passed through the inner jacket 5 and the pressure jacket 1. In front of the inlet plane of the gas outlet connection 8, guide surfaces 9 are arranged obliquely downwards in the form of a funnel and are led out of the course of the inner jacket 5. The lower edges of the guide surfaces 9 project into the interior of the inner casing 5 and are supported on the inner casing 5 by means of pipes 10. In this way, the gas flowing through the inner jacket 5 is deflected to improve dust separation before it exits through the gas outlet connection 8.

Nach Fig. 1 besteht der Innenmantel 5 aus einer Stahlwand, die auf der Rückseite mit einer offenen, relativ zum Prozeßdruck drucklosen Verdampfungskühlung versehen ist. Zu diesem Zweck ist der Druckmantel 1 im unteren Teil mit einem Stutzen 11 versehen, der in den Ringraum 4 einmündet. Durch den Stutzen 11 wird aufbereitetes Speisewasser in den Ringraum 4 eingespeist. Am oberen Ende des Ringraumes 4 ist eine Kammer 12 gebildet. In dem Ringraum 4 sind Fallrohre 13 angeordnet, die in ein Lochblech 14 eingeschweißt sind. Die Fallrohre 13 sind mit den unteren Enden unterhalb der Ebene der Gasaustrittsstutzen 8 durch den Innenmantel 5 hindurchgeführt und verbinden die Kammer 12 mit dem Innenraum des Innenmantels 5, so daß ein Druckausgleich besteht. Die unteren Enden der Fallrohre 13 können oberhalb des Wassersumpfes 6 enden, oder in den Wassersumpf 6 eintauchen. Das Wasservolumen innerhalb des Ringraumes 4 ist so groß gewählt, daß bei eventuellen Störfällen am Quenchsystem über eine gewisse Zeit, die ausreicht um Gegenmaßnahmen zu treffen, die gesamte anfallende Rest- und Speicherwärme durch das offene Ausdampfsystem abgeführt werden kann. Über die Fallrohre 13 wird das im Betrieb kontinuierlich über den Stutzen 11 eingespeiste Wasser sowie der anfallende Sattdampf in den Wassersumpf 6 geleitet.According to Fig. 1, the inner jacket 5 consists of a steel wall, which is provided on the back with an open, pressure-free relative to the process pressure evaporative cooling. For this purpose, the pressure jacket 1 is provided in the lower part with a nozzle 11 which opens into the annular space 4. Treated feed water is fed into the annular space 4 through the nozzle 11. At the upper end of the annular space 4, a chamber 12 is formed. Downpipes 13 are arranged in the annular space 4 and are welded into a perforated plate 14. The downpipes 13 are passed through the inner jacket 5 with the lower ends below the level of the gas outlet connection 8 and connect the chamber 12 to the interior of the inner jacket 5, so that there is pressure compensation. The lower ends of the downpipes 13 can end above the water sump 6 or can dip into the water sump 6. The water volume within the annular space 4 is chosen so large that in the event of any malfunctions in the quench system over a certain time, which is sufficient to take countermeasures, the entire residual and storage heat accumulated can be dissipated through the open evaporation system. Via the downpipes 13, the water fed continuously through the nozzle 11 during operation and the accumulated saturated steam are passed into the water sump 6.

In den Innenraum des Innenmantels 5 ragen Sprühdüsen 15 hinein. Die Sprühdüsen 15 sind in gekühlte Lanzen 16 eingebaut, die auswechselbar durch den Druckmantel 1 und den Innenmantel 5 hindurchgeführt sind. Wie in Fig. 4 zu erkennen ist, können die Sprühdüsen 15 sowohl axial als auch radial zur Lanze 16 ausgerichtet oder schräg nach unten geneigt sein. Die Lanzen 16 können horizontal oder schräg nach unten gerichtet in dem Quenchkühler eingebaut sein. Eine erste Reihe solcher Lanzen 16 ist unmittelbar unterhalb des Zwischenabschnittes 3 angeordnet. Weitere Lanzen können unterhalb dieser oberen Reihe von Lanzen 16 vorgesehen werden.Spray nozzles 15 protrude into the interior of the inner jacket 5. The spray nozzles 15 are installed in cooled lances 16, which are interchangeably passed through the pressure jacket 1 and the inner jacket 5. As can be seen in FIG. 4, the spray nozzles 15 can be aligned both axially and radially with respect to the lance 16 or can be inclined downwards. The lances 16 can be horizontal or obliquely downwards directional installed in the quench cooler. A first row of such lances 16 is arranged immediately below the intermediate section 3. Additional lances can be provided below this upper row of lances 16.

Die Vorderkanten der Lanzen 16 liegen auf einem Teilkreis, dessen Durchmesser größer ist als der Durchmesser des Zwischenabschnittes 3. Auf diese Weise werden die Lanzen 16 vor abfließender Schlacke geschützt. Im übrigen dient der Zwischenabschnitt 3 dazu, daß das abgekühlte Synthesegas durch eine interne Rückströmung nicht mit der Kante des Gaseintrittes 2 in Berührung kommt und diese abkühlen würde, so daß ein Einfrieren der abfließenden Schlacke, das zu einem Verstopfen des Gaseintrittes 2 führen würde, vermieden wird.The front edges of the lances 16 lie on a pitch circle, the diameter of which is larger than the diameter of the intermediate section 3. In this way, the lances 16 are protected against slag flowing off. In addition, the intermediate section 3 serves to ensure that the cooled synthesis gas does not come into contact with the edge of the gas inlet 2 by an internal backflow and would cool it, so that freezing of the slag flowing away, which would lead to a blockage of the gas inlet 2, is avoided becomes.

Durch die Kühlung des Innenmantels 5 nimmt dieser eine Oberflächentemperatur an, die oberhalb des Taupunktes des Synthesegases liegt. Die über die Sprühdüsen 15 aufgegebene Wassermenge ist so bemessen, daß das Wasser nahezu vollständig verdampft und das Synthesegas beim Austritt durch die Gasaustrittsstutzen 8 auf etwa 300 bis 600 Grad C abgekühlt ist. Bei dieser Temperatur kondensiert der in dem Synthesegas enthaltene Wasserdampf noch nicht aus, so daß keine nennenswerten Mengen an Halogenen in das Wasser des Wassersumpfes 6 gelangen können. Eine Aufheizung des Wassersumpfes unterbleibt, wodurch die Handhabung des Sumpfinhaltes beim Austragen der abgeschreckten Schlacke erleichtert wird. Das abgekühlte Gas wird gegebenenfalls nach einer weiteren Abkühlung in einem Strahlungs- oder Konvektionskühler über einen Gaswäscher einer Weiterverarbeitungsanlage zugeführt.As a result of the cooling of the inner jacket 5, this takes on a surface temperature which is above the dew point of the synthesis gas. The amount of water added via the spray nozzles 15 is dimensioned such that the water evaporates almost completely and the synthesis gas is cooled to about 300 to 600 degrees C. when it exits through the gas outlet connection 8. At this temperature, the water vapor contained in the synthesis gas does not yet condense out, so that no significant amounts of halogens can get into the water of the water sump 6. The water sump does not heat up, which makes handling of the sump contents easier when discharging the quenched slag. The cooled gas is optionally fed to a further processing system after further cooling in a radiation or convection cooler via a gas scrubber.

Nach Fig. 2 ist der Innenmantel 5 als gasdichte Rohrwand ausgebildet. Die Rohrwand bildet auch den Zwischenabschnitt 3. Die Rohre sind in der Rohrwand spiralförmig verlegt und werden über Rohre 17 mit Wasser beaufschlagt. Bei dieser Anordnung sind die Sprühdüsen 15 in die Rohrwand des Innenmantels 5 integriert.2, the inner jacket 5 is designed as a gas-tight tube wall. The tube wall also forms the intermediate section 3. The tubes are laid in a spiral in the tube wall and water is applied to them via tubes 17. In this arrangement, the spray nozzles 15 are integrated into the tube wall of the inner jacket 5.

Wie in Fig. 3 dargestellt ist, kann der Ringraum zwischen dem Innenmantel 5 und dem Druckmantel 1 auch mit einer Wärmeisolierung 18 ausgefüllt sein. Durch diese Wärmeisolierung 18 sind Kühlrohre 19 geführt.As shown in FIG. 3, the annular space between the inner jacket 5 and the pressure jacket 1 can also be filled with thermal insulation 18. Cooling tubes 19 are guided through this heat insulation 18.

Claims (12)

1. Device for the cooling of a synthetic gas, which has been produced in a gasification reactor, with the aid of a quench cooler which is arranged underneath the exit of the gasification reactor and comprises a cooled inner casing (5), which is surrounded at a spacing by a pressure casing (1) and receives a water sump (6), wherein spray nozzles (15) project unto the interior space of the inner casing (5) and one or more gas exit nipples (8) are led through the inner casing (5) in a plane above the water sump (6), characterised thereby, that an intermediate portion (3), the diameter of which is less than that of the inner casing (5) and greater than that of the exit of the gasification reactor, is arranged between the inner casing (5) and the exit of the gasification reactor and that the front edges of the spray nozzles (15) are arranged on a pitch circle which is greater than the diameter of the intermediate portion (3).
2. Device according to claim 1, characterised thereby, that guide surfaces (9), which come out of the course of the inner casing (5) and the lower edges of which project into the interior space of the inner casing (5), are arranged in front of the plane of entry of the gas exit nipples (8).
3. Device according to claim 1 or 2, characterised thereby, that an evaporation cooling, which is free of differential pressure and open towards the interior space of the inner casing (5), is arranged between the inner casing (5) and the pressure casing (1).
4. Device according to claim 3, characterised thereby, that the annular space (4) between the pressure casing (1) and the inner casing (5) is filled with water and displays a chamber (12) at the upper end and that down pipes (13), which are led through the inner casing (5) underneath the gas exit nipples (8) and connect the chamber (12) with the interior space of the inner casing (5), are arranged in the annular space (4).
5. Device according to claim 4, characterised thereby, that the down pipes (13) end above the water sump (6).
6. Device according to claim 4, characterised thereby, that the down pipes (13) dip into the water sump (16).
7. Device according to claim 1, characterised thereby, that the inner casing (5) consists of a gas-tight tube wall flowed through by water.
8. Device according to claim 1, characterised thereby, that the annular space (4) between the inner casing (5) and the pressure casing (1) is filled out by a heat insulation (18), through which cooling pipes (19) are led.
9. Device according to claim 1, characterised thereby, that the spray nozzles (15) are arranged in exchangeable cooled lances (16).
10. Device according to claim 1, characterised thereby, that the spray nozzles (15) are integrated into the inner casing (5).
11. Device according to claim 9, characterised thereby, that the lances (16) are directed obliquely downwards.
12. Device according to claim 1, characterised thereby, that the spray nozzles (15) or the lances (16) are arranged in several planes one above the other.
EP88102397A 1987-04-03 1988-02-19 Apparatus for cooling synthesis gas in a quench cooler Expired - Lifetime EP0284762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102397T ATE64148T1 (en) 1987-04-03 1988-02-19 DEVICE FOR COOLING A SYNTHESIS GAS IN A QUENCH REFRIGERATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3711314 1987-04-03
DE19873711314 DE3711314A1 (en) 1987-04-03 1987-04-03 DEVICE FOR COOLING A SYNTHESIS GAS IN A QUENCH COOLER

Publications (3)

Publication Number Publication Date
EP0284762A2 EP0284762A2 (en) 1988-10-05
EP0284762A3 EP0284762A3 (en) 1989-02-08
EP0284762B1 true EP0284762B1 (en) 1991-06-05

Family

ID=6324823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102397A Expired - Lifetime EP0284762B1 (en) 1987-04-03 1988-02-19 Apparatus for cooling synthesis gas in a quench cooler

Country Status (8)

Country Link
US (1) US4848982A (en)
EP (1) EP0284762B1 (en)
JP (1) JPS63260986A (en)
CN (1) CN1014071B (en)
AT (1) ATE64148T1 (en)
DE (2) DE3711314A1 (en)
FI (1) FI88807C (en)
ZA (1) ZA881409B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714376C1 (en) * 1997-04-08 1999-01-21 Gutehoffnungshuette Man Synthesis gas generator with combustion and quench chamber
CN101809125B (en) * 2007-09-07 2013-08-21 Ccg能源科技有限责任公司 Method and device for treating charged hot gas

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3938223A1 (en) * 1989-11-17 1991-05-23 Krupp Koppers Gmbh METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION RAW GAS
DE4017219A1 (en) * 1990-05-29 1991-12-05 Babcock Werke Ag DEVICE FOR GASIFYING CARBONATED MATERIALS
US5248483A (en) * 1991-03-28 1993-09-28 Phillips Petroleum Company Apparatus and methods for producing ceramic products
DE4230124A1 (en) * 1992-09-09 1994-03-10 Babcock Energie Umwelt Device for cooling hot gases
ES2078078T3 (en) * 1993-03-16 1995-12-01 Krupp Koppers Gmbh PROCEDURE FOR GASIFICATION UNDER THE PRESSURE OF FINALLY DIVIDED FUELS.
EP0616023B1 (en) * 1993-03-16 1996-01-17 Krupp Koppers GmbH Gasification apparatus for gasification under pressure of fine particulate fuels
DE19654806C2 (en) * 1996-12-31 2001-06-13 Axiva Gmbh Optimization of the cooling water system of a polyolefin plant
DE19930051C2 (en) * 1999-06-30 2001-06-13 Daimler Chrysler Ag Device and method for carrying out a water quench
KR101347031B1 (en) * 2005-05-02 2014-01-03 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method and system for producing synthesis gas
CN1919980B (en) * 2005-08-24 2012-07-04 未来能源有限公司 Gasification method and device for producing synthesis gases by partial oxidation of fuels containing ash at elevated pressure and with quench-cooling of the crude gas
DE102005043212A1 (en) * 2005-09-09 2007-03-15 Future Energy Gmbh Solid fuel, e.g. anthracite or gasification, for e.g. fluidized bed reactor, involves taking water-washed raw gas for deposition of particulate matters of partial condensation, where raw gas is indirectly cooled at preset temperature
DE102006031816B4 (en) * 2006-07-07 2008-04-30 Siemens Fuel Gasification Technology Gmbh Method and device for cooling hot gases and liquefied slag in entrained flow gasification
US7740671B2 (en) 2006-12-18 2010-06-22 Pratt & Whitney Rocketdyne, Inc. Dump cooled gasifier
DE102007006990B4 (en) * 2007-02-07 2016-03-10 Air Liquide Global E&C Solutions Germany Gmbh Process and apparatus for the conversion of raw gases in the partial oxidation of gaseous and liquid hydrocarbons
ES2384130T3 (en) * 2007-09-04 2012-06-29 Shell Internationale Research Maatschappij B.V. Spray nozzle manifold and process for cooling a hot gas using such an arrangement
WO2009030674A2 (en) * 2007-09-04 2009-03-12 Shell Internationale Research Maatschappij B.V. Quenching vessel
EP2321388B1 (en) 2008-09-01 2015-09-30 Shell Internationale Research Maatschappij B.V. Self cleaning arrangement
FI122618B (en) * 2010-06-18 2012-04-30 Gasek Oy Method and apparatus for gasification of solid fuel
JP2013543523A (en) 2010-09-16 2013-12-05 シーシージー・エナジー・テクノロジー・カンパニー・リミテッド Apparatus and method for treating a hot gas stream containing slag
DE102010045482A1 (en) 2010-09-16 2012-03-22 Choren Industries Gmbh Slag treatment device for coal gasifier plant, has dip tube with inner and outer pipes between which annular gap is formed and connected with annular coolant chamber, and coolant feed pipe connected at lower portion of dip tube
JP6394988B2 (en) * 2015-08-21 2018-09-26 Jfeエンジニアリング株式会社 Exhaust gas temperature reduction tower and exhaust gas temperature reduction method
DE102015216783A1 (en) * 2015-09-02 2017-03-02 Siemens Aktiengesellschaft Non-blocking water overflow from the water jacket of a quencher into the quench space

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217014B (en) * 1957-12-13 1966-05-18 Texaco Development Corp Device for the production of carbon dioxide and hydrogen
US3223398A (en) * 1963-02-20 1965-12-14 Kaiser Ind Corp Lance for use in a basic oxygen conversion process
DE1501387A1 (en) * 1965-01-13 1969-05-29 Knapsack Ag Tubular injection cooler for quenching hot, aggressive gases
DE2650512B2 (en) * 1976-11-04 1980-03-20 Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen Device for cleaning synthesis gas produced by chemical coal gasification
US4218423A (en) * 1978-11-06 1980-08-19 Texaco Inc. Quench ring and dip tube assembly for a reactor vessel
US4377132A (en) * 1981-02-12 1983-03-22 Texaco Development Corp. Synthesis gas cooler and waste heat boiler
CH661054A5 (en) * 1981-10-23 1987-06-30 Sulzer Ag GAS COOLER TO SYNTHESIS GAS GENERATOR.
DE3205346C2 (en) * 1982-02-15 1983-12-15 L. & C. Steinmüller GmbH, 5270 Gummersbach Two-stage carburetor
DE3248096C2 (en) * 1982-12-24 1985-01-31 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Standing device for cooling gases under high pressure with a high proportion of dust

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714376C1 (en) * 1997-04-08 1999-01-21 Gutehoffnungshuette Man Synthesis gas generator with combustion and quench chamber
CN101809125B (en) * 2007-09-07 2013-08-21 Ccg能源科技有限责任公司 Method and device for treating charged hot gas
US8770555B2 (en) 2007-09-07 2014-07-08 Ccg Energy Technology Company Ltd. Method and device for treating charged hot gas

Also Published As

Publication number Publication date
FI881329A0 (en) 1988-03-21
FI88807B (en) 1993-03-31
DE3863104D1 (en) 1991-07-11
US4848982A (en) 1989-07-18
DE3711314A1 (en) 1988-10-13
CN88101732A (en) 1988-10-19
ZA881409B (en) 1988-09-15
FI881329A (en) 1988-10-04
JPS63260986A (en) 1988-10-27
ATE64148T1 (en) 1991-06-15
EP0284762A2 (en) 1988-10-05
EP0284762A3 (en) 1989-02-08
CN1014071B (en) 1991-09-25
FI88807C (en) 1993-07-12

Similar Documents

Publication Publication Date Title
EP0284762B1 (en) Apparatus for cooling synthesis gas in a quench cooler
DE2412561C3 (en) Device for direct quenching of the hot gaseous product of hydrocarbon pyrolysis
DE1758357A1 (en) Device for quenching and / or washing hot gases
EP0297420B1 (en) Installation for the pyrolysis of waste
DE2455496C2 (en) Device for dry cooling of coke
DE19806810A1 (en) Catalytic tube reactor useful for production of maleic and phthalic acid anhydrides, acrolein and acrylic acid
EP0616022B1 (en) Process for pressure gasification of fine particulate fuels
DE4229895C2 (en) Device for cooling a hot gas, in particular a hot useful gas generated in a combustion or gasification chamber by burning carbon-containing fuel
DE3137576A1 (en) DEVICE IN STANDING DESIGN FOR COOLING PROCESS GAS FROM A GASIFICATION PROCESS
EP0597092B1 (en) Apparatus for obtaining granulated product
DE3427088A1 (en) DEVICE FOR COOLING A HOT PRODUCT GAS
DE3129812C2 (en) Method and device for furnace gas cooling
EP3032209B1 (en) Quench cooling system
EP0088221B1 (en) Apparatus for cooling a gas produced in a gasifier
DE2526815C2 (en)
EP0433579B1 (en) Process and apparatus for cooling rough gas from partial oxidation
DE2935991C2 (en) Process and device for gas cooling and slag granulation at the reactor outlet
EP0630397B1 (en) Process for cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
DE4302175C2 (en) Radiation cooler of a gas generator
DE3434866C2 (en) Immersion cooler for cooling and washing of flowing, dust-laden, hot gases
CH642607A5 (en) DEVICE FOR ENRICHING MINERAL ACIDS, ESPECIALLY SULFURIC ACID.
DE19637650C1 (en) Recovery of liquid phthalic anhydride from reaction gas mixture
DE1596326C (en) Device for cooling and cleaning gases
DE3120238A1 (en) Reactor for flight stream gasification
DE2451250A1 (en) DEVICE FOR CARRYING OUT CHEMICAL REACTIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890120

17Q First examination report despatched

Effective date: 19900313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH

Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

Owner name: DEUTSCHE BABCOCK ENERGIE- UND UMWELTTECHNIK AKTIEN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 64148

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3863104

Country of ref document: DE

Date of ref document: 19910711

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950117

Year of fee payment: 8

Ref country code: FR

Payment date: 19950117

Year of fee payment: 8

Ref country code: CH

Payment date: 19950117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950118

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 88102397.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960219

Ref country code: AT

Effective date: 19960219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960229

Ref country code: CH

Effective date: 19960229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050219