CN1919980B - 通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备 - Google Patents

通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备 Download PDF

Info

Publication number
CN1919980B
CN1919980B CN200510124960.XA CN200510124960A CN1919980B CN 1919980 B CN1919980 B CN 1919980B CN 200510124960 A CN200510124960 A CN 200510124960A CN 1919980 B CN1919980 B CN 1919980B
Authority
CN
China
Prior art keywords
fuel
crude gas
dust
pipeline
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510124960.XA
Other languages
English (en)
Other versions
CN1919980A (zh
Inventor
贝恩德·霍勒
诺伯特·菲舍尔
曼弗雷德·申格尼茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Future Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Future Energy GmbH filed Critical Future Energy GmbH
Publication of CN1919980A publication Critical patent/CN1919980A/zh
Application granted granted Critical
Publication of CN1919980B publication Critical patent/CN1919980B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

本发明涉及一种用含游离氧的氧化剂通过部分氧化使固体燃料如石煤、褐煤和石油焦炭在飞流中气化的方法,压力为环境压力至80巴,和温度为1200-1900度,该方法由工艺步骤:用于粉尘状燃料的气动计量、在具有冷却的反应区外围的反应器中进行的气化反应、骤冷、粗制气洗涤和部分冷凝构成,其中:将粉尘状燃料送入气动计量体系,粉尘状燃料的含水量<10质量%,优选<2质量%,和粒度<200μm,优选100μm,其中粉尘状燃料经由贮槽(1.1)到达至少一个压力排出装置(1.2)并且以环境压力至80巴的压力、用无冷凝物的气体进汽冲击而送入计量容器(1.3),在其底部引入惰性气体(1.8),以致形成密度为350-420kg/m3的涡流层,其通过运输管道(1.4)到达反应器(2)的燃烧器(2.2);使经由运输管道(1.4)送入反应器(2)的粉尘状燃料与含游离氧的氧化剂一起在具有冷却罩(2.4)的反应区(2.3)中进行部分氧化,燃料的灰分在此熔融,并且与热的气化气体一起经由排出装置(2.5)被转送入骤冷器(3)的骤冷区(3.1);骤冷在180-260℃的温度下进行;使骤冷过的水蒸气饱和的粗制气进行粗制气洗涤(4)或机械除尘分离,以纯化除去夹带的细小粉尘。

Description

通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备
本发明涉及一种相应于权利要求1上位概念的气化方法以及一种实施该方法的设备。提供的方法由以下步骤构成:燃料计量,气化反应器,骤冷和洗气,这样通过在高温和加压下用含游离氧的气化剂部分氧化粉尘状、含灰燃料而制备含CO和H2的气体。 
为了使工作时间长,必须有效地防止气化反应器的压力罩受到粗制气的影响,并且避免达到1200-1900℃的高气化温度。这通过用一个挂在压力罩中的冷却管罩来界定反应区或气化区而实现。冲洗管罩和压力罩之间的环隙。 
将粉尘状的燃料通过反应器顶部的燃烧器输入,在此使用遵照自流输送原理的气动体系。粗制气与反应器底部流化的废料一起离开气化区,接着通过用水喷淋直至饱和状态而冷却,之后清除夹带的细小粉尘。接着将洗过的粗制气送入进一步的处理阶段。 
在气体生产技术中,对固态、液态和气态燃料进行自热飞流气化(Flugstromvergasung)是多年来公知的。但是,对燃料与含氧气化剂的比例的选择要出于对合成气质量的考虑而使较高级碳化物被完全裂解为合成气组分如CO和H2,并且使无机成分以熔融流体废料形式排出,参见J.Carl,P.Fritz,NOELLKONVERSIONSVERFAHREN,能源与环境技术EF-出版有限公司,1996,第33和73页。 
根据引入技术中的不同体系,可将气化气体和熔融流体废料分离或者一起从气化设备的反应区排出,如DE 197131A1所述。对于气化体系的反应区结构的内部边界,既可以设置耐火衬里,也可以引入冷却体系,参见DE 4446803A1。 
EP 0677567B1和WO 96/17904描述了一种方法,其中通过耐火衬壁来界定气化区。该方法有一个缺点,即气化时产生的流体废料会使耐火墙体脱落,这导致很快损耗并且导致修理费用高昂。随着灰分含量增长,该损耗过程也增加。由此,这种气化体系的运行时间有限,直到更新衬里。另外,要限制气化温度和燃料的灰分含量。将燃料以煤-水浆料(Kohle-Wasser-Slurry)形式供给会产生显著的效率损失,参见C.Higman和M.van der Burgt,“Gasification(气化)”,ELSEVIER出版社,美国,2003。还描述了一种骤冷体系或冷却体系,其中热的气化气体和流体废料一起通过从反应区底部开始的导管排出,并且导向水浴。气化气体和废料一起排出可能导致导管堵塞,并且由此限制了其可利用性。 
DE 3534015A1描述了一种方法,其中将气化介质细煤和含氧氧化剂经过多个燃烧器这样引入反应区,使得火焰相互偏离。同时,在废料冷却体系中,载有细小粉尘的气化气体向上流动,而废料向下流动。在一般情况下,在气化区上方设置一设备,用以利用余热进行间接冷却。然而,由于夹带的粉尘,存在堵塞管道体系或者腐蚀的危险。由于分离气化气体和废料,存在使废料发生所不希望的冷却的危险,因而同样也存在堵塞的危险。 
CN 20042002007.1描述了一种“固体粉状燃料气化器”,其中将煤粉尘以气动方式输入,而将气化气体和流化的废料通过中心管道引入水浴中以进一步冷却。在所述中心管道中进行中心引离容易阻止堵塞,所述堵塞扰乱了整个运转,并且使整个设备可应用性降低。 
从这些现有技术出发,本发明的任务是找到一种气化方法和设备,其以可靠的运行方式适用于不同的燃料灰分含量,并且显示出高的可应用性。 
在作为飞流反应器形成的气化区中在从环境压力至80巴的压力下用含氧的氧化剂使固体含灰燃料进行气化的气化方法,该方法中反应区外围(Kontur)由冷却系统限定,在此保持冷却系统中的压力总是高于反应区中的压力,该方法以以下特征为特征: 
本发明涉及用含游离氧的氧化剂通过部分氧化使固体燃料如石煤、褐煤和石油焦炭在飞流中气化的方法,压力为环境压力至80巴,温度为1200-1900度,该方法由工艺步骤:用于粉尘状燃料的气动计量量、在具有冷却的反应器区外围的反应器中进行的气化反应、骤冷、粗制气洗涤和部分冷凝构成,其中: 
-将粉尘状燃料送入气动计量体系,粉尘状燃料的含水量<10质量%,优选<2质量%,和粒度<200μm,优选100μm,其中粉尘状燃料经由贮槽(1.1)到达至少一个压力排出装置(1.2)并且以环境压力至80巴的压力、用无冷凝物的气体进汽冲击而送入计量容器(1.3),在其底部引入惰性气体(1.8),以致形成密度为350-420kg/m3的涡流层,其通过运输管道(1.4)到达反应器(2) 的燃烧器(2.2), 
使经由运输管道(1.4)送入反应器(2)的粉尘状燃料与含游离氧的氧化剂一起在具有冷却罩(2.4)的反应区(2.3)中进行部分氧化,燃料的灰分在此熔融,并且与热的气化气体一起经由排出装置(2.5)被转送入骤冷器(3)的骤冷区(3.1), 
-骤冷在180-260℃的温度下进行, 
-使骤冷过的水蒸汽饱和的粗制气进行粗制气洗涤(4)或机械除尘分离,以纯化除去夹带的细小粉尘。 
在所述方法中,在25-45巴的压力下将气体引入粉尘状燃料。 
在所述方法中,引入惰性气体氮作为无冷凝物的气体。 
在所述方法中,将粗制气洗涤(4)设计成一段或多段的文丘里洗涤。 
在所述方法中,向文丘里洗涤供给新鲜水或循环的冷凝物,所述冷凝物是在冷却气体时产生的。 
在所述方法中,为了分离细小的粉尘和夹带的盐雾,使水洗过的粗制气随后通过间接冷却进行部分冷凝(5),其中将粗制气冷却0-15℃的小温差。 
在所述方法中,将在部分冷凝(5)时排出的小水滴通过离析从粗制气中分离出来。 
在所述方法中,直接用水冷却燃料灰分,在骤冷区(3.5)的底部收集其颗粒,并且经由流出口(3.6)排出。 
在所述方法中,将燃料作为燃料-水浆料送入反应器(2)。 
在所述方法中,将燃料经由一个或多个燃烧器送入气化反应器(2)。 
在所述方法中,将粒化的废料经由骤冷区(3.5)的一个或多个流出口(3.6)排出。 
在所述方法中,骤冷过的粗制气经由一个或多个气体出口(3.4)离开骤冷区(3.5)。 
在所述方法中,同时使一种或多种煤进行气化。 
在所述方法中,测量、监控并调节运输管道(1.4)中粉尘状燃料流的体积。 
实施前述方法的设备,其特征在于依次连接的一个用于粉尘状燃料的气动计量体系(1)、一个具有冷却的反应区外围的气化反应器(2)、一个骤冷器(3)、一个粗制气洗涤器(4)和一个部分冷凝器(5),其中经由管道(1.5)将粉尘 状燃料输入贮槽(1.1),其出口通向至少一个压力排出装置(1.2),有一个用于惰性气体的管道(1.6)和一个用于卸压气体的管道(1.6)通向其中,在此压力排出装置(1.2)的出口通向计量容器(1.3),在其底部安装了一个用于惰性气体的管道(1.8),在其上部有至少一个载有流化的燃料的运输管道(1.4)通向反应器(2), 
-反应器(2),用于用含游离氧的氧化剂使送入的粉尘状燃料(1)气化,是由一个用于流化的燃料的运输管道(1.4)和一个用于氧化剂的管道(2.1)构成,所述管道经由燃烧器(2.2)通向反应区(2.3),所述反应区由冷却罩(2.4)和朝向骤冷器(3)的排出装置(2.5)构成,冷却罩(2.4)由不透气焊接的、水冷却的管道构成, 
-没有配件的骤冷器(3),其中在一个或多个喷嘴环中安装了喷嘴(3.2和3.3),经由这些喷嘴喷入所需的骤冷水,其中喷嘴(3.2和3.3)末端与内部的磨损罩(3.7)齐平,磨损罩(3.7)由金属制成,被安装用于保护反应器的压力罩;水浴(3.5),流出口(3.6)和出口(3.4), 
-在骤冷器(3)的出口(3.4)处安装的粉尘分离器。 
在所述设备中,粉尘分离器是具有附属的部分冷凝设备的粗制气洗涤器(4),或是机械纯化段,如离心分离器或膜过滤器。 
在所述设备中,将两个压力排出装置(1.2)彼此平行安装。 
在所述设备中,三个运输管道(1.4)将流化的粉尘状燃料运输到反应器(2)的燃烧器(2.2)。 
在所述设备中,使用压力测量设备和/或体积流量测量设备(1.9)来监控、测量和调节运输管道(1.4)中的粉尘状燃料流。 
在所述设备中,对于粗制气洗涤(4),安装一个单段或多段的文丘里洗涤器。 
在所述设备中,粗制气洗涤引起粗制气转化,或者随后接到脱硫设备上。 
将燃料例如石煤或褐煤干燥,和粉碎至粒度<200μm,优选<100μm,并装入压力排出装置(Druckschleuse)的生产贮槽,在此通过引入非冷凝性的气体如N2或CO2而使粉尘状燃料达到所希望的气化压力。该压力为环境压力至80巴,优选25-45巴。在此,能够同时使用不同的燃料。通过布置,能够将多个这种压力排出装置轮流注满,并通过压力进汽冲击。处于压力下的粉尘接着到达计量容器中,在此,在底部同样通过引入非冷凝性的气体而产生十分致密的 涡流层,有一个或多个输送管道浸入其中,并且连通到气化反应器的燃烧器中。在此,可使用一个或多个燃烧器。通过施加一个压差,流化的粉尘通过所述管道从计量容器流到燃烧器。用测量设备和监控设备来测量、调节和监控流动的粉尘状燃料的量。此外,也可能将粉尘状燃料与水或油混合,并且将其作为浆料送入气化反应器的燃烧器。同时将含有游离氧的氧化剂送入燃烧器,并且粉尘状燃料通过部分氧化被转化为粗制合成气。在1200-1900℃的温度下发生气化。反应器配备有冷却罩,其由不透气焊接的且水冷却的管道构成。热的粗制合成气与由燃料灰形成的流体废料一起离开气化反应器并到达骤冷区,在此通过喷淋水来冷却气体直至露点,即达到水蒸汽饱和。该饱和温度与压力相关,为180-260℃。同时,废料转变为颗粒状态。将骤冷区建成敞开的空间,而没有任何配件,以避免废料或粗制气夹带的粉尘发生沉积。将骤冷水通过喷嘴引入骤冷区,喷嘴直接位于所述罩上。粒化的废料和多余的水一起经过一个废料排出装置从骤冷区排出并卸压。在此,可布置一个或多个废料输出管线。水蒸汽饱和的粗制气以温度为180-260℃,从侧面离开骤冷区,接着除去夹带的粉尘。可设计一个或多个气体出口。由此,粗制气首先到达在工艺压力下运行的粗制气洗涤,其适当地设计成文丘里洗涤。在此,除去夹带的粉尘,直至其颗粒大小约为20μm。该纯度还不够以进行接下来的催化工艺,例如粗制气转化。在此还要考虑,粗制气中夹带有额外的盐雾,其在气化过程中从粉尘状燃料中除去并且和粗制气一起排出。为了既要除去<20μm的细小粉尘又要除去盐雾,将洗涤后的粗制气送入冷凝段,在此将粗制气间接冷却大约5-10℃。在此,水从水蒸汽饱和的粗制气中冷凝出来,其吸收所述细小的粉尘颗粒和盐颗粒。在一个紧接着的分离器中将含粉尘颗粒和盐颗粒的冷凝水分离出来。之后,可将这样纯化过的粗制气直接送入例如粗制气转化装置或脱硫装置。 
本发明涉及用于用含游离氧的氧化剂通过在环境压力至80巴的压力和1200-1900℃的温度下部分氧化使含水量<10质量%且粒度<200μm的固体燃料如石煤、褐煤和石油焦炭在飞流反应器中气化的设备,其特征在于: 
依次连接的一个用于含水量<10质量%且粒度<200的粉尘状燃料的气动计量体系(1)、一个具有冷却的反应区外围的气化反应器(2)、一个骤冷器(3)、一个粗制气洗涤器(4)和一个部分冷凝器(5),其中经由管道(1.5)将粉尘状燃料输入贮槽(1.1),其出口通向至少一个压力排出装置(1.2),有一个用于惰性气体的管道(1.6)和一个用于卸压气体的管道(1.6)通向其中,在此压力排出装置(1.2)的出口通向计量容器(1.3),在其底部安装了一个用于惰 性气体的管道(1.8),在其上部有至少一个载有流化的燃料的运输管道(1.4)通向反应器(2), 
-反应器(2),用于用含游离氧的氧化剂使送入的粉尘状燃料(1)在1200-1900℃的温度下和在环境压力至80巴的压力下气化,是由一个用于流化的燃料的运输管道(1.4)和一个用于氧化剂的管道(2.1)构成,所述管道经由燃烧器(2.2)通向反应区(2.3),所述反应区由冷却罩(2.4)和朝向骤冷器(3)的排出装置(2.5)构成,冷却罩(2.4)由不透气焊接的、水冷却的管道构成, 
-没有配件的骤冷器(3),以避免粗制气夹带的粉尘发生沉积,其中在一个或多个喷嘴环中安装了喷嘴(3.2和3.3),经由这些喷嘴喷入所需的骤冷水,其中喷嘴(3.2和3.3)末端与内部的磨损罩(3.7)齐平,磨损罩(3.7)由金属制成,被安装用于保护反应器的压力罩;水浴(3.5),流出口(3.6)和出口(3.4), 
-在骤冷器(3)的出口(3.4)处安装的粉尘分离器, 
-接于未分主分离器或粗制气洗涤器下游的冷凝段,所述冷凝段用于通过将粗制气间接冷却5-10℃除去<20μm的细小粉尘和盐雾。 
在所述设备中,将两个压力排出装置(1.2)彼此平行安装。 
在所述设备中,三个运输管道(1.4)将流化的粉尘状燃料运输到反应器(2)的燃烧器(2.2)。 
在所述设备中,使用压力测量设备和/或体积流量测量设备(1.9)来监控、测量和调节运输管道(1.4)中的粉尘状燃料流。 
在所述设备中,对于粗制气洗涤(4),安装一个单段或多段的文丘里洗涤器。 
在所述设备中,粗制气洗涤引起粗制气转化,或者随后接到脱硫设备上。 
下面参照3幅附图和实施例更详细地说明本发明。附图表示的是: 
图1:本发明提供方法的方框图。 
图2:粉尘状燃料的计量体系。 
图3:具有骤冷器的气化反应器。 
石煤的量为320t/h,其组成为: 
C 71.5质量% 
H 4.2质量% 
09.1质量% 
N 0.7质量% 
S 1.5质量% 
Cl 0.03质量% 
灰含量为11.5质量%和湿度为7.8质量%,所述石煤应在40巴的压力下进行气化。煤的热值为25600kJ/Kg。在1450℃下进行气化。气化所需的氧气量为215000m3i.H./h。首先将煤送入与现有技术相应的干燥和磨碎设备,在此将水含量降低到<2质量%。磨碎后由煤制得的粉尘状燃料的粒化范围为0-200μm,干燥和磨碎过的粉尘状燃料量为300t/h。按照图1,磨碎过的粉尘状燃料被送入计量体系1.2,如图2所示。之后,粉尘状燃料经由运输管道1.5到达储备槽1.1,然后被交替地送入压力排出装置1.2。用惰性气体例如氮气进行缓冲,氮气经由管道1.6引入。缓冲之后,将处于压力下的粉尘状燃料送入计量容器1.3。压力排出装置1.2经过管道1.7卸压,并且可重新装满粉尘状燃料。安装了三个压力排出装置,将其交替装满并卸压。对于300t/h的粉尘状燃料量的气化,按照图3安装三个气化反应器,每个都具有一个计量体系。通过经由管道1.8引入其量为40000m3i.H./h的用作运输气体的干燥惰性气体(例如同样是氮气),在计量容器1.3底部形成致密的涡流层,有一个或多个粉尘运输管道1.4伸入其中。 
在该实施例中,各自设计三个输送管道1.4。在体系1.9中监控、测量和调节在运输管道1.4中流动的粉尘状燃料的量,并将其送入气化反应器2的燃烧器(按图1或图3)。装载物的密度为250-420kg/m3。在图3中更详细地说明了气化反应器2。经由运输管道1.4流入气化反应器的300t/h的粉尘状燃料与经由管道2.1流入的215000m3i.H./h的氧气量一起在气化区2.3中在1450℃下进行部分氧化反应,在此生成596000m3i.H./h的粗制气的组成如下: 
H2  20.8体积% 
CO  71.0体积% 
CO2 5.6体积% 
N2  2.3体积% 
NH3 0.003体积% 
HCN 0.002体积% 
H2S 0.5体积% 
COS 0.07体积%。 
气化区2.3用冷却罩2.4来限定,冷却罩由不透气焊接的、水冷却的管道体系构成。粗制气和流体废料一起经由出口2.5流入骤冷器3(图1)。图3显示了与气化反应器2(图1)紧密结合的骤冷器3。它由一个没有配件而设置成自由空间的骤冷区3.1构成,经由一个或多个喷嘴系列3.2和3.3向其中喷水,以冷却热的粗制气。为了节省新鲜水,另外多数使用冷凝物,其是冷却粗制气时在下游连接的设备部件中产生的。骤冷水的量为约500m3/h。在217℃下饱和的粗制气在骤冷区的出口3.4处的水蒸汽含量为57体积%。废料聚积在骤冷容器底部内的水浴3.5中,并且经由流出口3.6定期排出。为了保护压力罩不受侵蚀和腐蚀,设置了磨损罩3.7。 
经由出口3.4(按图3所示)离开骤冷区3.1的粗制气接着到达粗制气洗涤4(按图1所示),其被设计成可调节的文丘里洗涤,并且使用约100m3/h的洗涤水进汽冲击。通常从洗涤水中除去吸收的固体物质,并且再次加入文丘里洗涤。为了除去<20μm的细小粉尘以及在文丘里洗涤中没有分离出的盐雾,对水洗过的粗制气进行部分冷凝5(按图1所示),在此将粗制气从217℃间接冷却至211℃。用冷却时冷凝的水蒸汽吸收最细小的粉尘颗粒和盐颗粒,由此将其从粗制气中除去。用于去除粉尘的粗制气洗涤4以及部分冷凝5可用一个湿式或干式操作的分离段来替代,其方式是将离开骤冷区3.1的粗制气加入一个机械的纯化段,例如离心分离器或烛形过滤器。之后,去除了固体物质的纯化粗制气具有以下组成: 
H2  9.5体积% 
CO  31.2体积% 
CO2 2.6体积% 
N2  1.1体积% 
NH3 0.001体积% 
HCN 0.001体积% 
纯化的湿的粗制气的量为1320000Nm3/h。可使其直接引入粗制气转化或其他另外的处理阶段。 
所用标记的列表: 
1.用于粉尘状燃料的气动计量体系 
1.1贮槽 
1.2压力排出装置 
1.3计量容器 
1.4运输管道 
1.5用于粉尘状燃料的运输管道 
1.6将惰性气体送入1.2的管道 
1.7卸压管道 
1.8将惰性气体送入1.3的管道 
1.9监控体系 
2.反应器 
2.1用于氧的管道 
2.2燃烧器 
2.3气化区 
2.4冷却罩 
2.5出口 
3.骤冷器 
3.1骤冷区 
3.2进入3的喷嘴 
3.3进入3的喷嘴 
3.4离开3.1的出口 
3.5水浴 
3.6流出口 
3.7磨损罩 
4.粗制气洗涤 
5.部分冷凝 

Claims (7)

1.用于用含游离氧的氧化剂通过在环境压力至80巴的压力和1200-1900℃的温度下部分氧化使含水量<10质量%且粒度<200μm的固体燃料在飞流反应器中气化的设备,其特征在于:
依次连接的一个用于含水量<10质量%且粒度<200μm的粉尘状燃料的气动计量体系(1)、一个具有冷却的反应区外围的气化反应器(2)、一个骤冷器(3)、一个粗制气洗涤器(4)和一个部分冷凝器(5),其中经由管道(1.5)将粉尘状燃料输入贮槽(1.1),其出口通向至少一个压力排出装置(1.2),有一个用于惰性气体的管道(1.6)和一个用于卸压气体的管道(1.7)通向其中,在此压力排出装置(1.2)的出口通向计量容器(1.3),在其底部安装了一个用于惰性气体的管道(1.8),在其上部有至少一个载有流化的燃料的运输管道(1.4)通向反应器(2),
-反应器(2),用于用含游离氧的氧化剂使送入的粉尘状燃料在1200-1900℃的温度下和在环境压力至80巴的压力下气化,是由一个用于流化的燃料的运输管道(1.4)和一个用于氧化剂的管道(2.1)构成,所述管道经由燃烧器(2.2)通向反应区(2.3),所述反应区由冷却罩(2.4)和朝向骤冷器(3)的排出装置(2.5)构成,冷却罩(2.4)由不透气焊接的、水冷却的管道构成,
-没有配件的骤冷器(3),以避免粗制气夹带的粉尘发生沉积,其中在一个或多个喷嘴环中安装了喷嘴(3.2和3.3),经由这些喷嘴喷入所需的骤冷水,其中喷嘴(3.2和3.3)末端与内部的磨损罩(3.7)齐平,磨损罩(3.7)由金属制成,被安装用于保护反应器的压力罩;水浴(3.5),流出口(3.6)和出口(3.4),
-在骤冷器(3)的出口(3.4)处安装的粉尘分离器,
-接于粗制气洗涤器下游的冷凝段,所述冷凝段用于通过将粗制气间接冷却5-10℃除去<20μm的细小粉尘和盐雾。
2.权利要求1的设备,其特征在于,所述固体燃料为石煤、褐煤和石油焦炭。
3.权利要求1的设备,其特征在于,将两个压力排出装置(1.2)彼此平行安装。
4.权利要求1的设备,其特征在于,三个运输管道(1.4)将流化的粉尘状燃料运输到反应器(2)的燃烧器(2.2)。
5.权利要求1的设备,其特征在于,使用压力测量设备和/或体积流量测量设备(1.9)来监控、测量和调节运输管道(1.4)中的粉尘状燃料流。
6.权利要求1的设备,其特征在于,对于粗制气洗涤(4),安装一个单段或多段的文丘里洗涤器。
7.权利要求1的设备,其特征在于,粗制气洗涤引起粗制气转化,或者随后接到脱硫设备上。
CN200510124960.XA 2005-08-24 2005-09-16 通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备 Expired - Fee Related CN1919980B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005040245.3 2005-08-24
DE102005040245 2005-08-24

Publications (2)

Publication Number Publication Date
CN1919980A CN1919980A (zh) 2007-02-28
CN1919980B true CN1919980B (zh) 2012-07-04

Family

ID=37770769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510124960.XA Expired - Fee Related CN1919980B (zh) 2005-08-24 2005-09-16 通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备

Country Status (4)

Country Link
US (1) US7842108B2 (zh)
CN (1) CN1919980B (zh)
AU (1) AU2006201147B2 (zh)
CA (1) CA2536715C (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904405B1 (fr) * 2006-07-31 2008-10-31 Inst Francais Du Petrole Procede de preparation d'une charge contenant de la biomasse en vue d'une gazeification ulterieure
TWI461522B (zh) * 2008-03-05 2014-11-21 Thyssenkrupp Uhde Gmbh 用於煤的氣化反應器之連續燃料供應系統
DE102008034734A1 (de) * 2008-07-24 2010-01-28 Uhde Gmbh Verfahren und Reaktoren zur Vergasung von staubförmigen, festen oder flüssigen Brennstoffen, wie Kohle, Petrokoks, Öl, Teer od. dgl.
US8343243B2 (en) 2009-03-31 2013-01-01 General Electric Company Method and apparatus for blending lignite and coke slurries
DE102009055976A1 (de) * 2009-11-27 2011-06-01 Choren Industries Gmbh Vorrichtung und Verfahren zur Erzeugung eines Synthesegases aus Biomasse durch Flugstrom-Vergasung
DE102013215120A1 (de) * 2013-08-01 2015-02-05 Siemens Aktiengesellschaft Staubabscheidung aus dem Rohgas einer Flugstromvergasung
DE102013215804A1 (de) 2013-08-09 2015-03-05 Siemens Aktiengesellschaft Behandlung von Rohsynthesegas
CN204125431U (zh) 2013-08-09 2015-01-28 西门子公司 用于处理原始合成气的装置
DE102013217450A1 (de) 2013-09-02 2015-03-05 Siemens Aktiengesellschaft Kombiniertes Quench- und Waschsystem mit Leitrohr für einen Flugstromvergasungsreaktor
DE102013218830A1 (de) 2013-09-19 2015-03-19 Siemens Aktiengesellschaft Geteiltes Zentralrohr eines kombinierten Quench- und Waschsystems für einen Flugstromvergasungsreaktor
DE102014201890A1 (de) 2014-02-03 2015-08-06 Siemens Aktiengesellschaft Kühlung und Waschung eines Rohgases aus der Flugstromvergasung
CN105154140B (zh) * 2015-10-10 2018-03-02 中国科学院山西煤炭化学研究所 一种耦合高温变换的多段气流床煤气化的方法及设备
JP6700773B2 (ja) * 2015-12-18 2020-05-27 三菱日立パワーシステムズ株式会社 チャー排出装置、これを有するチャー回収装置及びチャー排出方法、ガス化複合発電設備
US10197014B2 (en) * 2016-08-30 2019-02-05 Thermochem Recovery International, Inc. Feed zone delivery system having carbonaceous feedstock density reduction and gas mixing
US10197015B2 (en) * 2016-08-30 2019-02-05 Thermochem Recovery International, Inc. Feedstock delivery system having carbonaceous feedstock splitter and gas mixing
CN113755215B (zh) * 2021-09-09 2023-11-03 中安联合煤化有限责任公司 一种气化炉可控式防积渣调控方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004993A (en) * 1977-09-19 1979-04-11 Freiberg Brennstoffinst Process and apparatus for supplying pulverulent fuel for the pressure gasification
WO1996017904A1 (en) * 1994-12-08 1996-06-13 Texaco Development Corporation Method for deslagging a partial oxidation reactor
US5968212A (en) * 1996-10-19 1999-10-19 Noell-Krc Energie-Und Umwelttechnik Gmbh Apparatus for gasification of combustion and waste materials containing carbon and ash

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE197131C (zh)
GB2164951A (en) 1984-09-26 1986-04-03 Shell Int Research Method and apparatus for producing synthesis gas
DE3711314A1 (de) * 1987-04-03 1988-10-13 Babcock Werke Ag Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
US4781731A (en) * 1987-12-31 1988-11-01 Texaco Inc. Integrated method of charge fuel pretreatment and tail gas sulfur removal in a partial oxidation process
US5324336A (en) 1991-09-19 1994-06-28 Texaco Inc. Partial oxidation of low rank coal
DE4446803C2 (de) 1994-12-24 1998-05-28 Krc Umwelttechnik Gmbh Verfahren und Vorrichtung zur thermischen und stofflichen Verwertung von Rest- und Abfallstoffen
US20010027737A1 (en) * 1998-08-21 2001-10-11 Stan E. Abrams Gasifier system and method
US6987792B2 (en) * 2001-08-22 2006-01-17 Solena Group, Inc. Plasma pyrolysis, gasification and vitrification of organic material
CN2700718Y (zh) 2004-06-02 2005-05-18 西北化工研究院 干粉固体燃料气化炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004993A (en) * 1977-09-19 1979-04-11 Freiberg Brennstoffinst Process and apparatus for supplying pulverulent fuel for the pressure gasification
WO1996017904A1 (en) * 1994-12-08 1996-06-13 Texaco Development Corporation Method for deslagging a partial oxidation reactor
CN1168688A (zh) * 1994-12-08 1997-12-24 德士古发展公司 一种部分氧化反应器除渣的方法
US5968212A (en) * 1996-10-19 1999-10-19 Noell-Krc Energie-Und Umwelttechnik Gmbh Apparatus for gasification of combustion and waste materials containing carbon and ash

Also Published As

Publication number Publication date
US20070044381A1 (en) 2007-03-01
CA2536715A1 (en) 2007-02-24
CA2536715C (en) 2013-08-13
US7842108B2 (en) 2010-11-30
CN1919980A (zh) 2007-02-28
AU2006201147A1 (en) 2007-03-15
AU2006201147B2 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
CN1919980B (zh) 通过在加压下部分氧化含灰的燃料并且骤冷粗制气而生产合成气的气化方法和设备
CN1923975B (zh) 生产合成气的气化方法和设备
CA2535725C (en) Method and device for producing synthesis gases by partial oxidation of slurries prepared from fuels containing ash and full quenching of the crude gas
CN1944593B (zh) 用于高功率飞流气化器的方法和设备
CN101432401B (zh) 气化系统及其应用
AU2008300900B2 (en) Gasification reactor and method for entrained-flow gasification
AU2006201144A1 (en) Method and device for producing synthesis gases by partial oxidation of slurries made from fuels containing ash with partial quenching and waste heat recovery
JPS6059956B2 (ja) 固体燃料、殊に石炭を部分酸化によつてガス化する方法及び装置
SU961564A3 (ru) Способ получени горючих газов из угл и устройство дл его осуществлени
US4323366A (en) Apparatus for the gasification of coal
US8303673B2 (en) Method and device for a high-capacity entrained flow gasifier
JP4085239B2 (ja) ガス化方法、及びガス化装置
CN204311033U (zh) 多级的原始气体洗涤系统
EP0148542B1 (en) Synthesis gas from slurries of solid, carbonaceous fuels
AU2006203439B2 (en) Method and device for high-capacity entrained flow gasifier
ZA200607267B (en) Gasification method and device for producing synthesis gases by partial oxidation of fuels containing ash at elevated pressure and with quench-cooling of the crude gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SIEMENS AG

Free format text: FORMER OWNER: SIEMENS FUEL GASIFICATION TECHNOLOGY GMBH CO. KG

Effective date: 20120828

Free format text: FORMER OWNER: SHENGENIZ MANFRED

Effective date: 20120828

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: SCHINGNITZ MANFRED

Free format text: FORMER NAME: FUTURE ENERGY GMBH

Owner name: SIEMENS FUEL GASIFICATION TECHNOLOGY GMBH CO. KG

Free format text: FORMER NAME: SCHINGNITZ MANFRED

CP01 Change in the name or title of a patent holder

Address after: Germany Freiberg

Patentee after: SIEMENS Fuel Gasification Technology GmbH & Co.AG

Patentee after: Manfred Schingnitz

Address before: Germany Freiberg

Patentee before: Siemens Fuel Gasification Technology Co.,Ltd.

Patentee before: Manfred Schingnitz

Address after: Germany Freiberg

Patentee after: Siemens Fuel Gasification Technology Co.,Ltd.

Patentee after: Manfred Schingnitz

Address before: Germany Freiberg

Patentee before: Future Energy GmbH, 09599 Freiberg, DE

Patentee before: Manfred Schingnitz

TR01 Transfer of patent right

Effective date of registration: 20120828

Address after: Munich, Germany

Patentee after: SIEMENS AG

Address before: Germany Freiberg

Patentee before: SIEMENS Fuel Gasification Technology GmbH & Co.AG

Effective date of registration: 20120828

Address after: Germany Freiberg

Patentee after: SIEMENS Fuel Gasification Technology GmbH & Co.AG

Address before: Germany Freiberg

Patentee before: SIEMENS Fuel Gasification Technology GmbH & Co.AG

Patentee before: Manfred Schingnitz

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20210916

CF01 Termination of patent right due to non-payment of annual fee