EP0278379B1 - Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln - Google Patents

Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln Download PDF

Info

Publication number
EP0278379B1
EP0278379B1 EP88101535A EP88101535A EP0278379B1 EP 0278379 B1 EP0278379 B1 EP 0278379B1 EP 88101535 A EP88101535 A EP 88101535A EP 88101535 A EP88101535 A EP 88101535A EP 0278379 B1 EP0278379 B1 EP 0278379B1
Authority
EP
European Patent Office
Prior art keywords
liquid
milk
ion
substance
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88101535A
Other languages
English (en)
French (fr)
Other versions
EP0278379A1 (de
Inventor
Hans Dieter Kalscheuer
Roland Pässler
Rainer Schönegge
Walter Schmelz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe des Produits Nestle SA
Original Assignee
Societe des Produits Nestle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe des Produits Nestle SA filed Critical Societe des Produits Nestle SA
Priority to AT88101535T priority Critical patent/ATE70659T1/de
Publication of EP0278379A1 publication Critical patent/EP0278379A1/de
Application granted granted Critical
Publication of EP0278379B1 publication Critical patent/EP0278379B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids

Definitions

  • the invention relates to a method for removing radioactive metal isotopes from liquid food or feed with the features of the preamble of claim 1.
  • the invention further relates to an exchange column for carrying out such a method and to the use of iron (III) hexacyanoferrate (II) which is insoluble in water and dilute acids.
  • FR-PS 15 17 279 a generic method for removing radioactive metal isotopes from liquid food or feed is known.
  • ion exchange resins are used which, in contrast to compounds of the Berlin blue type, do not primarily act on cesium, but also exchange other ions, which occur in milk of completely different sizes, for example.
  • the invention has for its object to provide a method of the generic type, in which the food or feed remain unaffected in terms of the desired properties and the radioactive metals can be separated in a concentrated and thus easily deposited form.
  • the cesium cycle of an "in vivo" method is broken and the cesium isotopes can do this Circulation can be largely withdrawn.
  • the procedures can be applied centrally, so that control and precise dosing is guaranteed.
  • the cesium isotopes withdrawn from the cycle can be obtained in a concentrated form and thus deposited in accordance with regulations or used for other purposes.
  • the device shown in FIGS. 1a, 1b and 1c enables the discontinuous removal of radioactive metals from contaminated milk or milk products (so-called batch process).
  • the milk 12 is filled into a container 10.
  • the fill level of the milk (or the milk product) 12 in the container 10 is designated 10..
  • the milk 12 in the container 10 is to be disposed of.
  • the milk to be disposed of is transferred to an ultrafiltration device 18 via a line 14 and a pump 16.
  • Ultrafiltration devices are known as such and need not be described in more detail here.
  • Liquid, including the radioactive cesium is secreted by the semipermeable membrane in the ultrafiltration device 18.
  • the liquid that has passed through the semipermeable membrane, including the radioactive cesium, is called permeate and reaches a container 22 via line 20.
  • Permeate 24 in container 22 has a fill level of 22 ⁇ .
  • the milk 12 components (retentate) retained by the semipermeable membrane of the ultrafiltration device 18 are returned to the container 10 via the line 26, a control valve 28 and a return line 30.
  • the state shown in Fig. 1b is reached, i.e. A liquid containing radioactive cesium has been removed from the milk (or the milk product) 12 in the container 10 and transferred into the container 22. 1b (right), the radioactively contaminated permeate 24 is stirred in the container 22 by means of an agitator 32 to accelerate the process.
  • the temperature of the permeate 24 in the container 22 is between 20 and 60 ° C.
  • a substance binding and / or ion-exchanging the cesium atoms is introduced into the container 22, which is indicated in FIG. 1 b (right) by the arrows 34.
  • complex compounds such as iron cyano compounds of the Berlin blue type, or aluminum silicates, such as bentonites and zeolites. Combinations of the substances mentioned above are also possible.
  • the dosage for the complex salts is in the per mille range and for the aluminum silicates in the percentage range.
  • the liquid contaminated with radioactive cesium can also be removed as a permeate by reverse osmosis.
  • the permeate 24 in the container 22 is treated by the radioactive cesium absorbing or ion-exchanging substance, the cesium being bound to the substance.
  • the treated permeate 24 is subjected to ultrafiltration in the ultrafiltration device 18 in the reverse direction.
  • Isotope-free liquid penetrates the semipermeable membrane in the ultrafiltration device 18 and passes via line 36 back into the container 10, so that the fill level 10 ⁇ of the milk (or the milk product) 12 almost reaches the original level according to FIG. 1a.
  • the residues filtered off during the ultrafiltration are fed via the control valve 38 and the line 40 back into the container 22, in which the radioactive residue 24 ⁇ , ie the isotope-binding or ion-exchanging substances including the radioactive isotopes, remains.
  • This radioactive residue 24 ⁇ is highly concentrated and can be stored according to regulations without polluting the environment.
  • Figure 2 illustrates a continuous process for decontaminating radioactive isotopes such as cesium, milk contaminated or milk products.
  • the milk to be cleaned (or the milk product) reaches an ultrafiltration device 54 via a line 50 and a pump 52 (in the figures, the flow directions of the substances or liquids are indicated by arrows).
  • Liquid, including the radioactive isotopes, is separated as permeate in the ultrafiltration device 54 and reaches a container 58 via a line 56, the fill level of which is designated 58 ⁇ .
  • An agitator 60 stirs the liquid in the container 58.
  • a substance absorbing and / or ion-exchanging the radioactive isotopes is introduced into the container 58 via a feed line 62.
  • This substance, including the radioactive isotopes bound to it, can be removed in a concentrated form by means of a discharge line 64 and can be disposed of in accordance with regulations.
  • Liquid ie the permeate from the ultrafiltration device 54 and the isotope-binding and / or ion-exchanging substance
  • a second ultrafiltration device 70 via a line 66 and a regulating member 68.
  • the permeate of the ultrafiltration device 70 passes through a line 72 to line 82, where it is brought together with the retentate from the ultrafiltration device 54 (line 78, control element 80).
  • the cleaned milk or milk product is continuously removed from the device by means of the line 82.
  • the retentate formed in the ultrafiltration device 70 passes back into the container 54 via the line 74 and the control valve 76.
  • This retentate contains the isotope-binding and / or ion-exchanging substance.
  • the fill level 58 ⁇ in the container 58 remains constant and the regulating elements or valves are set such that the throughput through line 56 (ie the permeate from the ultrafiltration device 54) is equal to the throughput through line 72 (i.e. the permeate from the ultrafiltration device 70).
  • the ultrafiltration resistance in the ultrafiltration device 54 is considerably larger than in the ultrafiltration device 70. Accordingly, the membrane area in the ultrafiltration device 54 is designed to be significantly larger than in the ultrafiltration device 70.
  • the device shown in FIG. 2 and the method described are suitable not only for the decontamination of milk or milk products but also for the decontamination of other liquids, such as beverages, drinking water or waste water.
  • the continuous process described with reference to FIG. 2 can be carried out repeatedly, either by recycling of the product removed via the line 82 into the line 50 or by connecting a plurality of devices according to FIG. 2 in series in order to improve the efficiency of the decontamination.
  • the method according to the invention in such a way that the milk to be treated (or the milk product) flows through thin tubes from a semi-permeable membrane, the isotope-absorbing and / or ion-exchanging substance flowing in countercurrent outside the tubes.
  • the decontamination agent ie the isotope-binding and / or ion-exchanging substance
  • FIG 3 shows a cartridge 100 in which the iron (III) hexacyanoferrate (II) described above is contained.
  • the insoluble iron (III) hexacyanoferrate (II) is freed from dust particles and sieving ensures that the grain size is larger than 100 ⁇ m, preferably 300 ⁇ m.
  • the iron (III) hexacyanoferrate (II) arranged in the cartridge 100 is pre-rinsed with water for about 10 minutes.
  • the food or feed to be decontaminated flows through the cartridge 100 and has to be prepared beforehand chemically and / or physically.
  • the pH of the liquid flowing through the cartridge 100 must be less than 8. A pH in the range from 3.5 to 7 is preferred. Milk or milk products decontaminated, these must be carefully untucked before entering the cartridge 100, ie coagulated protein substances etc. must be removed, since otherwise the cartridge would clog after a short time. The silt and solids are removed by prefilters (not shown).
  • the cartridge 100 shown in FIG. 3 has, in addition to a jacket 102, which may have a lead protection, two flanges 104, so that the cartridge can be connected on both sides to hose lines through which the food or feed to be decontaminated flows by means of the union nut 106 .
  • sieve / filter arrangements 108 are provided, through which the iron (III) hexacyanoferrate (II) is fixed in the jacket 102 of the cartridge 100.
  • FIG. 4 shows the sieve-filter arrangement 108 in detail.
  • Three layers of screens 112 are provided, as well as a filter layer 114 and a perforated disk 116.
  • the direction of flow of the food or feed to be disposed of through the cartridge 100 is reversible.
  • the reversal of the flow direction has the advantage that both the loosening of the iron (III) hexacyanoferrate (II) 110 in the cartridge 100 and a better utilization of the same take place.
  • a pH-neutral disinfectant can be sent through the cartridge 100 after predetermined periods of time.
  • the cartridge 100 As soon as the iron (III) hexacyanoferrate (II) arranged in the cartridge 100 has been loaded with radioactive cesium to a predetermined extent, the cartridge 100 as a whole is exchanged and replaced by a new one. Since the cartridge 100 can be secured by a protective jacket, it is possible to remove and deposit the contaminated goods without any risk for the operating personnel.

Description

  • Die Erfindung betrifft ein Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln mit den Merkmalen des Oberbegriffs des Patentanspruches 1.
  • Weiterhin betrifft die Erfindung eine Austauschersäule zur Durchführung eines solchen Verfahrens sowie die Verwendung von in Wasser und verdünnten Säuren unlöslichem Eisen(III)hexacyanoferrat(II).
  • Aus der FR-PS 15 17 279 ist ein gattungsgemäßes Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens-oder Futtermitteln bekannt. Dort werden Ionenaustauscherharze verwendet, die im Gegensatz zu Verbindungen vom Typ Berliner Blau nicht vorwiegend auf Cäsium wirken, sondern auch andere Ionen, die zum Beispiel in Milch in ganz anderen Größenordnungen vorkommen, austauschen.
  • Aus der DE-PS 26 07 292 ist ein Verfahren bekannt, bei dem es um die Regenerierung von im Kernreaktorbetrieb verbrauchten Ionenaustauscherharzen geht. Es soll dort eine vereinfachte Abfallbeseitigung einschließlich einer möglichen Wiedergewinnung von Konditionierungsstoffen erreicht werden. Es wird die Adsorption von radioaktiven Ionen in Salzsäureauszügen an nicht näher definierte Verbindungen wie Ferroferricyanide oder Silberverbindungen beschrieben.
  • In der DE-A-22 42 412 wird vorgeschlagen, radiaktive Flüssigkeiten durch Ionenaustauscher und Sekundärregenerierflüssigkeiten dieser Ionenaustauscher mittels wasserlöslicher Ferricyanide in Verbindung mit Bariumcarbonat durch Ausfällen zu dekontaminieren.
  • Beim in der FR-A-15 84 018 vorgeschlagenen Verfahren werden Flüssigkeiten mit sehr hohen Gehalten an radioaktiven Substanzen verarbeitet. Wegen des hohen Gehaltes an radioaktiven Substanzen werden diese durch geeignete Fällungsmittel niedergeschlagen und aus diesen Niederschlägen wieder rückgewonnen. Die genannten Fällungsmittel sind für Lebensoder Futtermittel nicht geeignet.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der gattungsgemässen Art zu schaffen, bei dem die Lebensoder Futtermittel hinsichtlich der gewünschten Eigenschaften unbeeinträchtigt bleiben und die radioaktiven Metalle in konzentrierter und somit einfach deponierbarer Form abgetrennt werden können.
  • Die erfindungsgemässe Lösung dieser Aufgabe ist im Patentanspruch 1 gekennzeichnet.
  • Vorteilhafte Ausgestaltungen sind in den Unteransprüchen 1 bis 4 beschrieben.
  • Eine beim erfindungsgemässen Verfahren anwendbare Austauschersäule sowie eine Ausgestaltung derselben sind in den Patentansprüchen 5 bzw. 6 beschrieben. Eine Verwendung von in Wasser und verdünnten Säuren unlöslichem Eisen(III) hexacyanoferrat(II) ist im Patentanspruch 7 beschrieben.
  • Die Vorteile des erfindungsgemässen Verfahrens liegen auf der Hand: Der Cäsium-Kreislauf eines "in-vivo"-Verfahrens wird durchbrochen und die Cäsium-Isotope können dem Kreislauf weitgehend entzogen werden. Die Verfahren lassen sich zentral anwenden, so daß eine Kontrolle und genaue Dosierung gewährleistet ist. Die dem Kreislauf entzogenen Cäsium-Isotope können in konzentrierter Form gewonnen und somit vorschriftsmäßig deponiert oder für andere Zwecke verwendet werden.
  • Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigt:
  • Fig. 1
    schematisch ein diskontinuierliches Verfahren zum Dekontaminieren von Milch oder Milchprodukten;
    Fig. 2
    schematisch ein kontinuierliches Verfahren zum Entsorgen von Milch oder Milchprodukten, und
    Fig. 3
    schematisch eine Eisen(III)hexacyanoferrat(II) enthaltende Patrone zum Dekontaminieren von mit radioaktivem Cäsium kontaminierten Lebens- oder Futtermitteln.
  • Die in den Fig. 1a, 1b und 1c gezeigte Vorrichtung ermöglicht die diskontinuierliche Entfernung von radioaktiven Metallen aus kontaminierter Milch oder Milchprodukten (sogenanntes Batch-Verfahren).
  • In einen Behälter 10 wird die Milch 12 eingefüllt. Die Füllhöhe der Milch (oder des Milchproduktes) 12 im Behälter 10 ist mit 10ʹ bezeichnet. Die Milch 12 im Behälter 10 soll entsorgt werden.
  • Gemäß Fig. 1 wird die zu entsorgende Milch über eine Leitung 14 und eine Pumpe 16 zu einer Ultrafiltrationsvorrichtung 18 überführt. Ultrafiltrationsvorrichtungen sind als solche bekannt und brauchen hier nicht näher beschrieben zu werden. Durch die semipermeable Membran in der Ultrafiltrationsvorrichtung 18 wird Flüssigkeit einschließlich des radioaktiven Cäsiums abgesondert. Die durch die semipermeable Membran durchgelassene Flüssigkeit einschließlich des radioaktiven Cäsiums wird Permeat genannt und gelangt über die Leitung 20 in einen Behälter 22. Das Permeat 24 im Behälter 22 hat den Füllstand 22ʹ.
  • Die von der semipermeablen Membran der Ultrafiltrationsvorrichtung 18 zurückgehaltenen Bestandteile der Milch 12 (Retentat) werden über die Leitung 26, ein Regelventil 28 und eine Rückführleitung 30 zum Behälter 10 zurückgeführt.
  • Nach Durchführung der vorstehend beschriebenen Ultrafiltration wird der in Fig. 1b gezeigte Zustand erreicht, d.h. aus der Milch (oder dem Milchprodukt) 12 im Behälter 10 ist eine radioaktives Cäsium enthaltende Flüssigkeit entfernt und in den Behälter 22 überführt worden. Gemäß Fig. 1b (rechts) wird das radioaktiv kontaminierte Permeat 24 im Behälter 22 mittels eines Rührwerkes 32 zur Beschleunigung des Verfahrens durchgerührt. Die Tempeatur des Permeats 24 im Behälter 22 liegt zwischen 20 und 60°C. Zur Absonderung des radioaktiven Cäsiums aus dem Permeat 24 im Behälter 22 wird eine die Cäsiumatome bindende und/oder ionenaustauschende Substanz in den Behälter 22 eingegeben, was in Fig. 1b (rechts) durch die Pfeile 34 angedeutet ist.
  • Als absorbierendes bzw. ionenaustauschendes Material kommen folgende Stoffe in Betracht: Komplexverbindungen, wie Eisencyanoverbindungen vom Typ Berliner Blau, oder Aluminiumsilikate, wie Bentonite und Zeolithe. Auch Kombinationen der vorstehend genannten Substanzen sind möglich. Die Dosierung liegt bei den Komplexsalzen im Promillebereich und bei den Aluminiumsilikaten im Prozentbereich.
  • Statt durch Ultrafiltration kann die mit radioaktivem Cäsium kontaminierte Flüssigkeit auch durch eine Umkehrosmose als Permeat abgetrennt werden.
  • In der in Fig. 1b gezeigten Verfahrensstufe wird das Permeat 24 im Behälter 22 durch die radioaktives Cäsium absorbierende oder ionenaustauschende Substanz behandelt, wobei das Cäsium an die Substanz gebunden wird.
  • Gemäß Fig. 1c wird in der folgenden Verfahrensstufe das behandelte Permeat 24 in umgekehrter Richtung einer Ultrafiltration in der Ultrafiltrationsvorrichtung 18 unterzogen. Dabei durchdringt isotopenfreie Flüssigkeit die semipermeable Membran in der Ultrafiltrationsvorrichtung 18 und gelangt über die Leitung 36 zurück in den Behälter 10, so daß der Füllstand 10ʹ der Milch (oder des Milchproduktes) 12 fast den ursprünglichen Pegel gemäß Fig. 1a erreicht. Die bei der Ultrafiltration abgefilterten Rückstände (das Retentat) werden über das Regelventil 38 und die Leitung 40 zurück in den Behälter 22 geführt, in dem der radioaktive Rest 24ʹ, also die Isotope bindenden oder ionenaustauschenden Substanzen einschließlich der radioaktiven Isotope, verbleibt. Dieser radioaktive Rest 24ʹ ist hochkonzentriert und kann vorschriftsmäßig gelagert werden, ohne die Umwelt zu belasten.
  • Fig. 2 illustriert ein kontinuierliches Verfahren zum Dekontaminieren von mit radioaktiven Isotopen, wie Cäsium, kontaminierter Milch oder Milchprodukten.
  • Die zu reinigende Milch (bzw. das Milchprodukt) gelangt über eine Leitung 50 und eine Pumpe 52 in eine Ultrafiltrationsvorrichtung 54 (in den Figuren sind die Strömungsrichtungen der Stoffe oder Flüssigkeiten durch Pfeile angeben). In der Ultrafiltrationsvorrichtung 54 wird Flüssigkeit einschließlich der radioaktiven Isotope als Permeat abgeschieden und gelangt über eine Leitung 56 in einen Behälter 58, dessen Füllstand mit 58ʹ bezeichnet ist. Ein Rührwerk 60 rührt die Flüssigkeit im Behälter 58.
  • Über eine Zuleitung 62 wird eine die radioaktiven Isotope absorbierende und/oder ionenaustauschende Substanz in den Behälter 58 gegeben. Mittels einer Ableitung 64 kann diese Substanz einschließlich der an sie gebundenen radioaktiven Isotope in konzentrierter Form abgeführt und einer vorschriftsmäßigen Deponierung zugeführt werden.
  • Über eine Leitung 66 und ein Regelorgan 68 wird aus dem Behälter 58 Flüssigkeit (also das Permeat aus der Ultrafiltrationsvorrichtung 54 sowie die Isotope bindende und/oder ionenaustauschende Substanz) zu einer zweiten Ultrafiltrationsvorrichtung 70 geführt. Das Permeat der Ultrafiltrationsvorrichtung 70 gelangt über eine Leitung 72 zur Leitung 82, wo es mit dem Retentat aus der Ultrafiltrationsvorrichtung 54 (Leitung 78, Regelorgan 80) zusammengeführt wird. Mittels der Leitung 82 wird die gereinigte Milch oder das Milchprodukt aus der Vorrichtung kontinuierlich entnommen.
  • Das in der Ultrafiltrationsvorrichtung 70 gebildete Retentat gelangt über die Leitung 74 und das Regelventil 76 zurück in den Behälter 54. Dieses Retentat enthält die Isotope bindende und/oder ionenaustauschende Substanz.
  • Während des kontinuierlichen Prozesses bleibt der Füllstand 58ʹ im Behälter 58 konstant und die Regelorgane bzw. -ventile werden derart eingestellt, daß der Durchsatz durch die Leitung 56 (also das Permeat aus der Ultrafiltrationsvorrichtung 54) gleich dem Durchsatz durch die Leitung 72 (also dem Permeat aus der Ultrafiltrationsvorrichtung 70) ist.
  • In der Regel, insbesondere bei der Dekontamination von eiweißhaltigen Produkten, ist der Ultrafiltrationswiderstand in der Ultrafiltrationsvorrichtung 54 erheblich größer als in der Ultrafilterungsvorrichtung 70. Dementsprechend wird die Membranfläche in der Ultrafiltrationsvorrichtung 54 wesentlich größer ausgelegt als in der Ultrafiltrationsvorrichtung 70.
  • Die in Fig. 2 gezeigte Vorrichtung und das beschriebene Verfahren eignen sich nicht nur zur Dekontamination von Milch oder Milchprodukten sondern auch zur Dekontamination von anderen Flüssigkeiten, wie Getränken, Trinkwasser oder Abwasser.
  • Das anhand der Fig. 2 beschriebene kontinuierliche Verfahren kann wiederholt durchgeführt werden, entweder durch Rückführung des über die Leitung 82 entnommenen Produktes in die Leitung 50 oder durch Hintereinanderschaltung mehrerer Vorrichtungen gemäß Fig. 2, um den Wirkungsgrad der Dekontamination zu verbessern.
  • Werden durch den Ionenaustauscher, wie z.B. Bentonit, nicht nur radioaktive Cäsium-Isotope ausgetauscht, sondern auch andere Ionen, so muß gegebenenfalls dieser Verlust durch gezielte Mineralstoffzugabe in die Leitung 78 (Fig. 2) bzw. 36 (Fig. 1c) ausgeglichen werden.
  • Es ist auch möglich, das erfindungsgemäße Verfahren derart durchzuführen, daß die zu behandelnde Milch (oder das Milchprodukt) durch dünne Röhren aus einer semipermeablen Membran strömt, wobei außerhalb der Röhren die Isotope absorbierende und/oder ionenaustauschende Substanz im Gegenstrom fließt. Bei einer solchen Vorrichtung wird ein direkter Kontakt zwischen dem zu entsorgenden Gut und dem Dekontaminierungsmittel (also der Isotope bindenden und/oder ionenaustauschenden Substanz) vermieden.
  • Fig. 3 zeigt eine Patrone 100, in der das oben beschriebene Eisen(III)hexacyanoferrat(II) enthalten ist. Vor dem Einfüllen in den Mantel 102 der Patrone 100 wird das unlösliche Eisen(III)hexacyanoferrat(II) von Staubteilen befreit und durch Sieben sichergestellt, daß die Korngröße größer ist als 100 µm, vorzugsweise 300 µm.
  • Bevor das zu dekontaminierende Lebens- oder Futtermittel durch die Patrone 100 strömt, wird das in der Patrone 100 angeordnete Eisen(III)hexacyanoferrat(II) für ca. 10 Minuten mit Wasser vorgespült.
  • Das zu dekontaminierende Lebens- oder Futtermittel durchströmt die Patrone 100 und muß zuvor chemisch und/oder physikalisch vorbereitet werden. Der pH-Wert der die Patrone 100 durchströmenden Flüssigkeit muß kleiner als 8 sein. Bevorzugt wird ein pH-Wert im Bereich von 3,5 bis 7. Werden Milch oder Milchprodukte dekontaminiert, so müssen diese vor Eintritt in die Patrone 100 sorgfältig entschlickt werden, d.h. koaggulierte Eiweißstoffe etc. müssen entfernt werden, da sich ansonsten die Patrone nach kurzer Zeit zusetzen würde. Die Schlick- und Feststoffe werden durch Vorfiltern (nicht gezeigt) entfernt.
  • Die in Fig. 3 gezeigte Patrone 100 weist neben einem Mantel 102, welcher einen Bleischutz aufweisen kann, zwei Flansche 104 auf, so daß mittels der Überwurfmutter 106 die Patrone beidseitig an Schlauchleitungen angeschlossen werden kann, durch welche das zu dekontaminierende Lebens- oder Futtermittel strömt. Am Eingang und am Ausgang der Patrone 100 sind jeweils Sieb/Filter-Anordnungen 108 vorgesehen, durch welche das Eisen(III)hexacyanoferrat(II) im Mantel 102 der Patrone 100 fixiert wird.
  • Fig. 4 zeigt die Sieb-Filter-Anordnung 108 im Detail. Es sind drei Lagen Siebe 112 vorgesehen sowie eine Filter-Lage 114 und eine Lochscheibe 116.
  • Die Strömungsrichtung des zu entsorgenden Lebens- oder Futtermittels durch die Patrone 100 ist umkehrbar. Die Umkehrung der Strömungsrichtung hat den Vorteil, daß sowohl eine Auflockerung des Eisen (III) hexacyanoferrats (II) 110 in der Patrone 100 als auch eine bessere Ausnutzung derselben erfolgt.
  • Um mikrobiologische Verunreinigungen zu vermeiden, kann nach vorgegebenen Zeitspannen ein pH-neutrales Desinfektionsmittel durch die Patrone 100 geschickt werden.
  • Sobald das in der Patrone 100 angeordnete Eisen(III)hexacyanoferrat(II) über ein vorgegebenes Maß mit radioaktivem Cäsium beladen ist, wird die Patrone 100 insgesamt ausgetauscht und durch eine neue ersetzt. Da die Patrone 100 durch einen Schutzmantel gesichert werden kann, ist es möglich, das kontaminierte Gut ohne jegliche Gefahr für das Bedienungspersonal abzutransportieren und zu deponieren.

Claims (7)

  1. Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln
    a) wie zum Beispiel radioaktivem Cäsium,
    b) unter Verwendung von die Metallisotope bindenden oder ionenaustauschenden Substanzen, wobei man
    c) die flüssigen Lebens- oder Futtermittel, falls erforderlich, in einen Zustand mit einem pH-Wert kleiner als 8 bringt,
    d) gegebenenfalls Schlick- und Feststoffe durch insbesondere Vorfiltern oder Zentrifugieren aus der Flüssigkeit abtrennt,
    e) die flüssigen Lebens- oder Futtermittel durch eine Austauschersäule fliessen lässt, in der als Metalle bindende oder ionenaustauschende Substanz Ferroferricyanide enthalten ist,
    f) welches von Staubanteilen befreit ist und eine Korngrösse von mindestens 100 µm aufweist, dadurch gekennzeichnet, dass
    g) es sich bei dem flüssigen Lebens- oder Futtermittel um Milch oder flüssige Milchprodukte handelt,
    h) aus der Milch bzw. dem Milchprodukt ein Teil der Elektorlyt enthaltenden Flüssigkeit mittels Zentrifugierung oder Ultrafiltration abgetrennt und mit der Metallisotope bindenden oder ionenaustauschenden Substanz behandelt wird,
    i) die radioaktiv beladene Substanz abgetrennt wird, und
    j) gegebenenfalls die von den radioaktiven Isotopen befreite Flüssigkeit in die Milch bzw. das Milchprodukt zurückgeführt wird, wobei die Metalle bindende oder ionenaustauschende Substanz unlösliches Fe₄(III) [Fe(II) (CN)₆]₃ (Berliner Blau) ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Korngrösse grösser als 300 µm ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass man die Durchflussrichtung der Flüssigkeit durch die Austauschersäule periodisch umkehrt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man periodisch nach vorgegebenen Durchfluss-Zeiten ein pH-neutrales Desinfektionsmittel durch die Austauschersäule strömen lässt.
  5. Austauschersäule zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4 in Form eines Einwegbehälters oder einer -patrone, mit
    A) einer zylindrischen Hülse (102) aus Kunststoff, Glas oder dergleichen, die an beiden Enden mit folgenden Einrichtungen versehen ist:
    B) Sieb/Filter-Anordnungen (108),
    C) Anschlüsse für eine Flüssigkeitszu- bzw. -abführung, und
    D) entfernbare Verschliessmittel, dadurch gekennzeichnet, dass
    E) die Hülse eine Füllung von feinteiligem, festem Eisen(III)-hexacyanoferrat(II) enthält.
  6. Austauschersäule nach Anspruch 5, dadurch gekennzeichnet, dass
    F) die zylindrische Hülse (102) und die Verschliessmittel aussen mit einer Bleifolie belegt sind.
  7. Verwendung von in Wasser und verdünnten Säuren unlöslichem Eisen(III)hexacyanoferrat(II) mit
    G) einer Teilchengrösse von 100 bis 1000 µm, vorzugsweise 100 bis 500 µm,
    H) einem Eisengehalt von 28 bis 34%, vorzugsweise 31% (bezogen auf Lufttrockene Substanz),
    I) einer Extinktion im Wasser bei 686 nm von weniger als 0,01 und weniger als 0,01% mit wassereluierbarem Eisen als aktive Füllung für eine Austauschersäule nach einem der Ansprüche 5 oder 6.
EP88101535A 1987-02-10 1988-02-03 Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln Expired - Lifetime EP0278379B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88101535T ATE70659T1 (de) 1987-02-10 1988-02-03 Verfahren zum entfernen von radioaktiven metallisotopen aus fluessigen lebens- oder futtermitteln.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873704046 DE3704046A1 (de) 1987-02-10 1987-02-10 Verfahren zum entfernen von radioaktiven metallen aus fluessigkeiten, lebens- und futtermitteln
DE3704046 1987-02-10

Publications (2)

Publication Number Publication Date
EP0278379A1 EP0278379A1 (de) 1988-08-17
EP0278379B1 true EP0278379B1 (de) 1991-12-18

Family

ID=6320646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88101535A Expired - Lifetime EP0278379B1 (de) 1987-02-10 1988-02-03 Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln

Country Status (5)

Country Link
EP (1) EP0278379B1 (de)
AT (1) ATE70659T1 (de)
DE (1) DE3704046A1 (de)
ES (1) ES2028142T3 (de)
GR (1) GR3003655T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912702C2 (de) * 1989-01-31 1994-10-20 Roiner Franz Verfahren zur Dekontaminierung von mit Metallionen und/oder radioaktiven Stoffen befallenen Substanzen
WO1991003815A1 (de) * 1989-09-02 1991-03-21 Noell Gmbh Verfahren und anlage zur entfernung von radioaktivem caesium aus suspensionen, lösungen und ähnlichen flüssigkeiten sowie hierfür geeignetes ionenaustauscher-granulat
US5707592A (en) * 1991-07-18 1998-01-13 Someus; Edward Method and apparatus for treatment of waste materials including nuclear contaminated materials
EP0575612B1 (de) * 1991-12-24 1997-09-10 Sovmestnoe Sovetsko-Kanadskoe Predpriyatie " Compomet Cantec" Methode zur darstellung von sorbenten
NL9401686A (nl) * 1994-10-13 1996-05-01 Drs Jacobus Maria Verzijl Werkwijze en inrichting voor het verwijderen van (radioactief) cesium uit vloeistoffen.
FI111765B (fi) 1996-06-26 2003-09-15 Fortum Nuclear Services Oy Menetelmä cesiumin erottamiseksi ydinjäteliuoksista sekä menetelmä heksasyanoferraattien valmistamiseksi
DE102009019474A1 (de) 2008-05-04 2009-11-05 Fugmann, Winfried, Dr. Mittel und Verfahren zur Modulation der Radioaktivität eines lebenden Körpers
CN111569670B (zh) * 2020-04-24 2022-05-20 江苏大学 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL237783A (de) * 1958-04-03
BE678719A (de) * 1966-03-30 1966-09-30
FR1563936A (de) * 1968-02-28 1969-04-18
FR1584018A (de) * 1968-07-09 1969-12-12
DE2242412A1 (de) * 1972-08-29 1974-03-07 Belgonucleaire Sa Verfahren zum dekontaminieren von radioaktiven fluessigkeiten
DE2607292C2 (de) * 1976-02-23 1985-08-29 Kraftwerk Union AG, 4330 Mülheim Verfahren zur Befreiung von im Kernreaktorbetrieb verbrauchten Ionenaustauscherharzen von radioaktiven Korrosionsprodukten
JPS59231493A (ja) * 1983-06-15 1984-12-26 住友金属鉱山株式会社 低レベル放射性廃液の処理方法

Also Published As

Publication number Publication date
GR3003655T3 (de) 1993-03-16
ATE70659T1 (de) 1992-01-15
EP0278379A1 (de) 1988-08-17
DE3704046C2 (de) 1989-01-05
DE3704046A1 (de) 1988-08-18
ES2028142T3 (es) 1992-07-01

Similar Documents

Publication Publication Date Title
EP2094611B2 (de) Verfahren und vorrichtung zur anreicherung von wasser mit magnesium-ionen
DE3446573C2 (de)
DE2823070C2 (de)
EP0246241A1 (de) Verfahren zum nachklären und stabilisieren von polyphenole und/oder eiweissstoffe enthaltenden flüssigkeiten, vor allem von getränken und insbesondere von bier.
EP0278379B1 (de) Verfahren zum Entfernen von radioaktiven Metallisotopen aus flüssigen Lebens- oder Futtermitteln
EP0930272B1 (de) Verfahren zur Teilentsalzung von Wasser
WO2002094351A2 (de) Vorrichtung und verfahren zum inkubieren und wiederabtrennen von magnetteilchen in und von flüssige biologische dispersionen
DE3003755A1 (de) Verfahren und vorrichtung zum abscheiden von feststoffteilchen aus einer fluessigkeit
DE2138221C3 (de) Verfahren und Vorrichtung zum kontinuierlichen Entmineralisieren von in Form einer Flüssigkeit vorhandenen Nahrungsmitteln
WO2004049352A1 (de) Verfahren zum behandeln von radioaktivem abwasser
DE3744699A1 (de) Verfahren zum entfernen von radioaktiven metallisotopen aus fluessigen lebens- oder futtermitteln
EP0252166A1 (de) Verfahren zur kontinuierlichen oder quasi-kontinuierlichen Abtrennung von Cäsium-Ionen aus wässrigen Lösungen durch Ionenaustausch an Ammonium-molybdatophosphat
DE2052974C2 (de) Verfahren zum Reinigen von Wasser und Vorrichtung zu seiner Durchführung
DE4021046A1 (de) Verfahren und anlage zur entfernung von radioaktivem caesium aus suspensionen, loesungen und aehnlichen fluessigkeiten
DE3543661A1 (de) Verfahren zur aufbereitung von wasser vor einer umkehr-osmoseanlage
EP0125463B1 (de) Verfahren zur internen Regeneration von Ionenaustauscherharzen in Mischbettfiltern und Mischbettfilter zur Durchführung des Verfahrens
WO1990009026A1 (de) Verfahren zur dekontaminierung von mit metallionen und/oder radioaktiven stoffen befallenen substanzen
DE2903705A1 (de) Verfahren zur abtrennung von jod- radionukliden aus waessrigen loesungen
EP3584800B1 (de) Verfahren zum vorreinigen von radionuklide enthaltenden lösungen
EP0062804B1 (de) Verfahren zur Entfernung von Molybdän aus wässrigen Salzlösungen
DE3411877C2 (de)
EP0314124A2 (de) Verfahren und Vorrichtung zum Wiederaufbereiten von Fixierflüssigkeiten
WO1988005204A2 (fr) Procede pour decontaminer des liquides charges radioactivement
DE2842729A1 (de) Vorrichtung und verfahren zum regenerieren verbrauchter ionenaustauscherharze
DE3427652A1 (de) Farbstoffreinigungs- und tintenherstellungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19901001

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 70659

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2028142

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003655

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88101535.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19961230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970327

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980126

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980210

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980223

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980226

Year of fee payment: 11

Ref country code: ES

Payment date: 19980226

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980417

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990203

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990204

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: SOC. DES PRODUITS NESTLE S.A.

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

EUG Se: european patent has lapsed

Ref document number: 88101535.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050203