EP0255586B1 - Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer - Google Patents

Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer Download PDF

Info

Publication number
EP0255586B1
EP0255586B1 EP87108516A EP87108516A EP0255586B1 EP 0255586 B1 EP0255586 B1 EP 0255586B1 EP 87108516 A EP87108516 A EP 87108516A EP 87108516 A EP87108516 A EP 87108516A EP 0255586 B1 EP0255586 B1 EP 0255586B1
Authority
EP
European Patent Office
Prior art keywords
color
proportion
coloured
colour
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87108516A
Other languages
German (de)
English (en)
Other versions
EP0255586A3 (en
EP0255586A2 (fr
Inventor
Friedrich Dr. Dipl.-Phys. Dolezalek
Karl-Heinz Besson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fogra Deutsche Forschungsgesellschaft fur Druck- und Reproduktionstechnik Ev
Original Assignee
Fogra Deutsche Forschungsgesellschaft fur Druck- und Reproduktionstechnik Ev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fogra Deutsche Forschungsgesellschaft fur Druck- und Reproduktionstechnik Ev filed Critical Fogra Deutsche Forschungsgesellschaft fur Druck- und Reproduktionstechnik Ev
Priority to AT87108516T priority Critical patent/ATE73392T1/de
Publication of EP0255586A2 publication Critical patent/EP0255586A2/fr
Publication of EP0255586A3 publication Critical patent/EP0255586A3/de
Application granted granted Critical
Publication of EP0255586B1 publication Critical patent/EP0255586B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2233/00Arrangements for the operation of printing presses
    • B41P2233/50Marks on printed material
    • B41P2233/51Marks on printed material for colour quality control

Definitions

  • printing process is intended to refer to all duplication processes which either produce a printed image on a printing material using an image-colored printing form (for example offset printing, gravure printing, letterpress printing) or as a so-called color proof copy process (also called proofing process) as a proof substitute in reproduction technology are used or the non-impact methods, such as inkjet printing, transfer thermography, electrophotography and screen printing.
  • image-colored printing form for example offset printing, gravure printing, letterpress printing
  • proofing process also called proofing process
  • non-impact methods such as inkjet printing, transfer thermography, electrophotography and screen printing.
  • control of the printing process is analogous applications for regulating or controlling the product color in paper production and textile dyeing, as described, for example, by Glatz, Eberle, Freier, Rohner in "Industrial quality control with high-resolution, color-recognizing spectral photometers using incident light and transmitted light", laser optoelectronics in technology, lectures of the 7th int. Kongresses, Ober 1985, pp. 239-242, through the article “Microcomputer system reduces dye requirements and improves color quality" der VDI-Nachzin 35 (1981) 7, p.18, by Horridge in "Experience of Automatic On-machine Color Measurement and Control” in Paper Technology 1983/01/02 vol. 24, No. 1, p. 27 and by Olbrich in "On-line color measurement in continuous dyeing", chemical fibers 1984/02, No. 2, 5,142.
  • FIG. 1 shows the division of the area of a typical printing sheet 51 that can be produced using the printing processes mentioned.
  • This is located outside of the final format 53, i.e. in the so-called Trimming, a pressure control bar 52, which contains test areas for preferably densitometric process control.
  • the subject located on the entire format surface of the printed sheet 51 here consists of eight pages of an illustrated printed document which includes both illustrations 54 and text 55. Particularly highlighted is a colored area 56, which is part of an illustration here. This color area - there can also be several such areas - is selected by the printer on the subject.
  • This is preferably a color tone whose reproduction faithful to the original can be seen as evidence of the correct reproduction of the remaining color tones, or a special color tone whose correct reproduction is decisive for the acceptance of the printed product (e.g. skin tone in a cosmetic Brochure).
  • the printer periodically checks the print result by visually and possibly also measuring using the test areas on the print control bar 52 by checking the actual copy 62 (FIG. 2) with respect to the color appearance of the color area 56 to be influenced with a reference copy 61 compares. If no target copy 61 is available, the comparison is carried out using target measured values which have been determined on the basis of previous experience. The differences "actual measured value minus desired measured value" are formed from the actual measured values and the target measured values determined on actual copy 62 and are interpreted as control deviation in the control-technical sense. In the case of density measurement, there are differences in density values and in the case of color measurement, colorimetric difference values.
  • the influencing required by control technology is carried out by means of a correction in the coloring of the relevant partial color by hand.
  • “Correction in coloring” is understood to mean a change in the area-related application quantity of the partial color, regardless of whether it is a change in the effective area coverage or in the layer thickness.
  • test areas used for the measurement - such as full tone control fields 24 - differ very greatly in terms of the area coverage of the respective partial color from the corresponding values of the color area 56 to be influenced with regard to their color appearance, such as a skin area in a swimwear brochure, make a big difference.
  • the known control and regulating methods merely ensure that the color appearance of the test areas, here full tone control fields 24, remain constant. This sequence does not automatically occur for the color area 56 to be influenced.
  • screen areas can react differently than solid areas if the relationship between the solid densities and the densities in the screen changes in the course of the printing process.
  • the purpose of the automatic control or the control carried out by the operator is to either use the coloring in an existing target copy based on the e.g. to reproduce density values measured on test areas as precisely as possible or to achieve a coloring that is characterized by a set of predetermined target density values.
  • the basis of the control or regulation in all of the duplication processes understood here under "printing process” is the presence of at least one actuator per partial color, for which there is a monotonous connection in the mathematical sense between the actuating path and the area-related application quantity of the partial color.
  • the zone screws and the rotation speed setting of the inking roller are available as actuators.
  • a change in the metering gap by adjusting a zone screw, which may also be motor-driven, or a change in the speed of rotation of the inking roller change the ink density and thus the area-related application quantity of the relevant partial ink on the printing substrate.
  • There is a monotone dependency between the ink layer thickness and the optical density which is described by the well-known Tollenaar equation.
  • a disadvantage of the previously known influencing methods is that the partial colors involved in the image construction are adjusted independently of one another. This can lead to the fact that the color appearance perceived by a viewer and in particular the color tone of a color area which is to be regarded as critical for the acceptance of the product initially changes greatly because the condition Men of this color shade required gradation of the order quantities of the partial colors is not taken into account during the control process. If the application units of the partial colors differ with regard to their control behavior, the control process can even temporarily lead to an increase in the color deviation, even though the individual density deviations of the partial colors have all been reduced.
  • a deficiency of the known density measuring devices for control or regulation is that the density values displayed by them or their control deviations do not allow any conclusions to be drawn about the actual color distances of a color area 56 in a color space which is perceived as being of the same sensitivity and, in particular, do not allow a distinction to be made between control deviations which only concern the brightness and those that also affect hue and saturation.
  • FIG. 3 shows the U * - V * diagram belonging to the color space according to CIE-UCS-1964, which is approximately equally spaced in terms of sensation, as an example. It is a right-angled Cartesian coordinate system with linear and scaled axes for the colorimetric coordinates U * and V *.
  • the coordinate W * is plotted on an axis perpendicular to it and describes the brightness. All colors of the same hue lie on the same beam originating in the U * - V * plane.
  • the color saturation increases with increasing distance from the origin.
  • the polar angle indicates the hue and the radius the saturation, the pole represents the neutral gray or white hue, it is also called the achromatic point.
  • the invention is based on a method according to the preamble of claim 1 or 2.
  • the preamble of claim 1 results from US-A-42 00 932 and the preamble of claim 2 from Offsetpraxis 1986, vol. 28 no. 10, P. 32.
  • the invention has for its object to design such a method so that, while avoiding the described shortcomings of the prior art, an improved, in particular faster influence on the color appearance of the color surface 56 is achieved during a printing process.
  • the inventive solution to the problem is first based on a special embodiment explained with densitometric detection of density differences.
  • a vectorial auxiliary construction is used, which is first described in more detail with reference to FIG. 4 before the actual example follows.
  • 4 shows a level of the CIE-UCS-1964 color space of equal brightness.
  • the axes U * and V * known from FIG. 3 were shifted in parallel, so that the (initially unknown) target color location of the color surface 56 to be influenced with regard to its color appearance is now at the origin 0.
  • the partial color directions 71 C * , M * and Y * are entered by arrows, which in this case correspond to those directions which point from the achromatic point to the color locations of the fully saturated partial colors.
  • This choice is obvious because, in this example, the color appearance of a neutral gray color surface 56, which is therefore in the achromatic point, is to be influenced.
  • the density differences of the partial colors are determined;
  • the partial color black is separated and is controlled or regulated according to the prior art described, for example, in US Pat. No. 4,200,932.
  • the density value difference of each colored partial color is understood as the absolute amount (length) of a partial color vector 72, the direction of which corresponds to the associated partial color direction 71.
  • the vectorial addition of the partial color vectors 72 shows from the origin 0 after the point P '; the vector O P is referred to as the sum vector 73.
  • the point P ' is the actual color location approximated by means of vectorial auxiliary construction. When measuring with a color measuring device, the actual actual color location is determined directly, it is designated here with P ".
  • a print product is produced on a four-color offset printing machine, the images of which are created by four-color overprinting with suitably graded coloring in the basic colors black, cyan, magenta and yellow.
  • additional control fields with 80% area coverage are attached to the four printing forms as test areas for the purpose of densitometric measurement.
  • the densitometer on the control fields of the target specimen is zeroed in all four colors, whereby the density values are stored as target measured values.
  • the absolute amount of the sum vector OP gives the approximate color difference of the actual copy from the target copy with 10.5 units without taking the brightness into account for a gray tone composed of cyan, magenta, yellow (here referred to as a shadow tone balance) with the area coverage C 72%, M 59%, Y 55% in screen positive film in sensory units ⁇ E CIE-UCS-1964.
  • the polar angle 342 ° denotes the approximate direction of the color shift that has occurred - here towards red-violet.
  • the color shift displayed is broken down into a portion of gray that is only effective in terms of brightness and a portion of color mainly relating to hue and saturation, which is selected here so that it only affects magenta and yellow.
  • the coefficients of the mouth Y vectors contained in the bracketed expression are selected such that the evaluation of the brackets carried out geometrically in accordance with FIG. 5 leads back to the origin 0, i.e. Results in zero.
  • the proportions can now be used according to different strategies for controlling the printing press. For example, you can decide not to control the density value differences corresponding to the gray component at first, but first to carry out the color corrections according to the state of the art, according to experience, which are associated with the density value differences 0.26 for magenta and -0.06 for yellow, for example according to US Pat. No. 4,200,932, by appropriate inking unit setting. After this relatively small intervention in the color flows of the magenta and yellow printing units, the original color appearance of the nominally gray color area 56 has been restored except for a noticeable but not disturbing brightness deviation.
  • the process to be controlled or regulated is a raster print and the color area 56 to be influenced is an almost neutral gray shade area, here referred to as shade balance, which is characterized by the superimposed printing of suitably graded area coverage cyan, magenta, yellow and possibly also black arises, and that for the densitometric measurement test areas printed with only one partial color are available, for example summarized in a print control strip.
  • target values are the density values of the test areas cyan, magenta, yellow with the densitometer set to the respective color; the density value of the test area black is also measured.
  • the degree of coverage of the film templates belonging to the test areas should be selected in the raster positive in the range from 40% to 80%, whereby the combination of cyan 75%, magenta 62% and yellow 60% belonging to a shade shade balance and other, similar gradations are therefore preferred are, because under normal printing conditions in offset printing with triple overprinting they produce an almost neutral gray, dark color tone, which is very sensitive to the smallest fluctuations in the color of one or more of the partial colors involved.
  • Such color areas 56 therefore have a signal function; in the event of fluctuations in the printing process, the color locus changes which can be measured by them are always greater than with all the other color areas 56, which are also composed of three colorful partial colors and have the same or greater brightness.
  • the density value differences "actual measurement value minus the target measurement value" of the colored partial colors after previous multiplication with scale factors are interpreted as absolute values of partial color vectors 72, which here point from the origin of a color space that is equally spaced, approximately in the direction of the color location of the associated full tone . In the general case, they point from the target color location of the color area 56 to be influenced approximately to the target color location of the fully saturated partial color.
  • the color space is preferably the CIE-UCS-1964 or the CIE-LUV system.
  • the partial color directions 71 which are most favorable for the method according to the invention (in individual cases possibly slightly different from the directions of the fully saturated partial colors) and the most favorable scale factors can be determined according to the following method and its corresponding modifications:
  • a color area 56 designed as a shade balance is systematically varied Coloring of the colored partial colors subjected to the printing process.
  • the color locations of the balance, the full tones of the bright primary colors and those of their mixed colors of the first order are then measured with a color measuring device in some, typically different, specimens.
  • the values of a target copy with an almost ideal gray shade balance are interpreted as target measurement values and subtracted from the corresponding values of the actual copies; the result is entered in a level of the same color space of equal brightness.
  • FIG. 6 shows the result of such a test run in a diagram based on the pattern from FIG. 5, the target color location of the almost ideal gray target specimen being in the origin.
  • the target color words of the primary and mixed colors lying far outside the diagram are only marked as partial color directions 71 here. Instead of the direction M * , however, the partial color direction 71 M 'is used for the construction.
  • the end points A 'to F' of the sum vectors 73 are entered in this diagram on the basis of the density value differences cyan, magenta and yellow determined with a densitometer.
  • D is the mean of the color densities of the colored partial colors measured in the test area or areas.
  • the factor area coverage takes into account the fact that a measured change in the coloring of a partial color can only be effective to the extent that it is represented in the color area 56 in question.
  • the same fluctuations in production for example in a mid-tone balance color area with C 28 M 21 Y 19, have a factor of 2 to 3 less than in a shade tone balance with C 72 M 57 Y 55, which is about 2.5 times higher Has area coverage.
  • Correspond also applies to other multicolored color areas 56, including those that are further away from the gray axis, as long as they are not darker than the shade balance.
  • the deviation of the shadow tone balance color area can therefore be referred to in absolute terms as the upper limit for the corresponding values of all other color areas 56 as long as they are not darker than this balance color area.
  • the polar angle of the deviation also applies to most other colored areas 56.
  • An exception here are those colored areas 56 which predominantly only contain portions of two brightly colored partial colors or also the partial colors themselves.
  • their direction of displacement can also be determined from the difference in density values according to the vectorial auxiliary construction according to the invention, if one observes that one of the three scale factors must disappear here, since the area coverage in question is zero.
  • the application of 36 C 0.55; M 0.39; Y 0.00 calculated scale factors gives the point P 'after addition of the vectors, which satisfactorily approximates the deviation of the color area 56 No. 36.
  • D B is the density value black measured in single print on a black control field and ⁇ D B its change.
  • the solution of the object according to the invention for the general case with the clarity-limited restriction to the control or regulation of the color appearance of a shade tone balance color surface to be produced in the raster printing and to be influenced with regard to its color appearance using only densitometric measurements test areas printed with a partial color.
  • the application of this teaching to any color areas 56 to be influenced and any test areas is already mapped out by the proposed splitting of the scale factors in Table 1 into the area coverage on the film template or the printing form of the color area 56 to be influenced and the color density-dependent calibration factor f related to the test area .
  • the application to those rasterless printing processes, such as gravure after offset / gravure conversion, for which a rastered original is assumed, is also readily possible.
  • the area coverage is replaced by the following arithmetic size: D is the optical density (transmitted light or incident light) of the color surface 56 to be influenced on the film template and D max is the density of the template which leads to the maximum color application during the printing process.
  • D is the optical density (transmitted light or incident light) of the color surface 56 to be influenced on the film template
  • D max is the density of the template which leads to the maximum color application during the printing process.
  • the solution to the problem according to the invention is not linked to the partial colors cyan, magenta and yellow which have been particularly emphasized previously, rather any, at least three, non-identical, colorful partial colors can be used for image construction. If there are more than three part colors of different hues, there are as many different breakdowns into a gray part and a color part. However, these are reduced to a few as soon as the color portion is composed according to the invention from at most two brightly colored partial colors.
  • the method according to the invention can also be used to produce color proof copies (proof) or proofs (based on a sample as a target copy or according to target density values), on the setup process when preparing the production print based on a given proof as a target copy , a color proof copy or a previous edition print and finally for other, comparable working printing processes such as Use inkjet printing, transfer thermography, electrophotography and screen printing, provided that the image structure is made up of at least three colorful partial colors (with different hues) that can be influenced with regard to coloring.
  • the scale factors C 0.72'49 M 0.57'49 Y 0.55 ⁇ 49 result from this, as in Table 1.
  • the measured density value differences from the respective target measured value were entered after multiplication by the respective scale factor in the partial color directions C * , M 'and Y * of FIG. 8 from the origin and then combined vectorially, with the points A' to F 'resulting.
  • the points A to F were measured with a color measuring device directly in the shadow tone balance color area.
  • the vectorial auxiliary construction is sufficient to be able to sensibly carry out the division of the sum vector into a gray component and a color component composed of two partial colors.
  • a preferred composition of the color component results from the two partial color directions flanking the respective point whereby these are also thought to be extended by the origin. So point A 'goes through Y and minus M 'Point B' by minus C and 'point C' by M 'and minus C. 'etc.
  • the further control-related treatment of the control deviation has already been described.
  • a pressure control bar which contains at least one shadow tone balance control field 21 in each zone and additionally e.g. Solid patches for four to six colors (see example 3).
  • the densitometer measures the density values cyan, magenta and yellow in each shadow tone balance control field 21 of an actual specimen and compares them with those of a target specimen or with target measurement values from a previous production. From the determined density value differences the associated uncoated density value differences calculated, which would have resulted approximately with the monochrome printing.
  • the approach serves this:
  • the coefficient a 12 one measures magenta of the shadow tone balance control field 21 with the densitometer set to cyan in a single print to be made for this purpose, and divides the density value obtained by that which is measured after switching to magenta. This applies analogously to the other coefficients.
  • the system of equations is then solved according to Kramer's rule according to the uncoated density value differences.
  • the specimens on which the printing test of FIG. 6 is based were measured densitometrically directly in a shadow tone balance control field 21. Then the previously determined coefficient matrix ⁇ a nm 11 the density value differences AD c , LD M , ADy are calculated. After multiplication by the respective scale factors according to Table 1, these were plotted in FIG. 9 and put together vectorially.
  • the points A 'to F' obtained in this way correspond to the color metrics A to F measured up to mean square deviations of 16 "in the polar angle and 3 units ⁇ E CIE in the color distance.
  • measurements are made, for example, densitometrically on the print copies on a defined selection of test areas in the subject, and the mean values of the density values obtained in this way are calculated for the settings cyan, magenta, yellow and black of the densitometer. (See Fig. 10).
  • those image areas 81 are selected as test areas in which many colorful partial colors with an area coverage of between 40% and 80% (on the film or the printing form) are involved, such as tri-color mixed darker gray, brown and olive green tones. If the subject to be printed contains no such tones, the image areas should be selected so that the areas of coverage averaged over these image areas are in the specified range for each partial color.
  • the Density measurement at the specified image points can be carried out, for example, by means of an automatic densitometer which can be programmed to move in the X and Y directions, by manual measurement or by so-called "on-line measurement" at at least one position across the machine width.
  • the limitation of the measurement to specific image areas 81 can be achieved by a suitable choice of the measurement positions and / or by measurement that is timed and synchronized with the printing process.
  • the mean density values of cyan, magenta, yellow and black obtained from the target specimen may be viewed separately according to pressure zones 83 (measuring positions across the machine width) as target measured values.
  • the density value differences that occur during production are used after conversion for manual control or for automatic regulation using the method according to the invention.
  • the determination of the density values required for this, which would have resulted from the individual printing of the partial colors, is carried out analogously according to the same method that has already been specified for the measurement on the tri-color shadow tone balance control field 21.
  • the density value differences D 'between the measured actual measurement values and the target measurement values of a target specimen were, as before, converted into density value differences D for cyan, magenta, yellow and black using a linear system of equations, which would have resulted on monochrome prints.
  • the scale factors 0.71 x 106 for cyan, 0.57 x 106 for magenta and 0.55 x 106 for yellow resulted from equation (1); they apply to the color appearance of a Shadow tone balance color area.
  • test areas which consist of selected image areas
  • a colorimeter it is also possible to measure with a colorimeter.
  • the same criteria apply here for the selection of the image locations, however, one or more locations should also be selected on the overall format surface of the printed sheet 51, on which the partial color black is predominantly represented.
  • These can be dark gray grid areas, so-called technical grid funds in tables, text passages (black picture point 82 in FIG. 10) or similar areas. In the latter case, however, a minimum size of approx. 10 x 10 mm must be provided for the measuring field diaphragm of the color measuring device, since this is the only way to avoid small positioning errors having a serious effect on the measurement result.
  • the averaging is carried out separately via the colored and predominantly or exclusively black image areas, the latter only requiring the brightness coordinate.
  • the averaged coordinates U * , V * and W are available in the CIE-UCS-1964 system for the colored image areas 81 and WB for the predominantly black image areas 82.
  • the brightness deviation of the black image points determined in this way e.g. AWp, directly and according to the prior art, as described, for example, in US Pat. No. 4,200,932, is used to control or regulate the coloring of the partial color black.
  • control deviation of the colored image areas is represented in the manner according to the invention as the sum of a gray component which is only effective in terms of brightness and a color component which relates to at most two colorful partial colors.
  • the shares are then controlled or regulated separately.
  • the measured colorimetric difference values are AU * , ⁇ V * and ⁇ W * 1 for the colored image areas and ⁇ W * B for the black image areas.
  • the coefficient k depends on the reproduction photographic image structure. It is small if there has been no reduction in under-colors and no reduction in gray (also called achromatic build-up or complementary color reduction); k is close to 1 in the case of complete replacement of the image components of colorful partial colors that add up to gray by the partial color black.
  • the applicable value can be determined by printing tests with the relevant reproduction types.
  • the control deviation from the starting point O is determined by the sum vector OP expressed. According to the invention, this can be expressed as the sum of two portions to be treated differently in terms of control technology: where g is a number yet to be determined, the expression in parentheses denotes a linear combination of the unit vectors which gives the zero vector 1 C , 1 M and 1 Y with positive factors ⁇ and v.
  • brackets in equation (17) denotes the gray component that is only effective in terms of brightness; the color portion made up of at most two colors remains. Which two colors are used to represent (and control) the color component and which factor g is selected can be decided according to one of the criteria listed above. A preferred choice is the one in which the fourth criterion mentioned there is met.
  • the change in brightness calculated from the two components thus determined should correspond to the change ⁇ W * which remained for the colored image areas after subtracting the black component k * ⁇ W * B.
  • the calculation of the change in brightness for the portions requires a one-time printing test in which the coloring of the partial colors cyan, magenta and yellow is done individually by the increments b C to be determined colorimetrically 1 C , b M 1 M or b Y 1 Y is increased, which results in decreases in brightness by ⁇ W * C , ⁇ W * M or ⁇ W * Y.
  • the calculation of the change in brightness can now be done according to the formula respectively. From the same printing test, it can be seen which change in the manipulated variable for coloring a partial color corresponds to the associated unit vector in the ⁇ U * - ⁇ V * diagram. This results in reversal of the changes in the manipulated variable, which lead to the separate elimination of the control deviation divided into two parts.
  • control to be carried out separately or regulation of the partial color black.
  • control to be carried out separately or regulation of the partial color black.
  • the above-described actual-target comparison of the mean values of several image points and the regulation based thereon can be carried out not only once per copy page, but also at several image points, preferably according to FIG. 10, distributed across the machine width.
  • the colorimetric averaging for the colored partial colors can be carried out on single-color control fields cyan, magenta, yellow or on balance control fields and for black on black-colored control fields.
  • test areas on which the measurement takes place e.g. monochrome control fields or multicolored control fields as a balance
  • a "color surface 56 to be influenced the color appearance of which is assessed as decisive for the usability of the manufactured product or as a guarantee for the correct color rendering.
  • the color surface 56 to be influenced must have a colorimetric coordinate of color and Saturation and its degree of area coverage are at least approximately known for the colored partial colors. It is not necessary that it actually exists on the subject to be printed.
  • a print can thus be controlled in such a way that the color appearance of a shade tone (not contained in the subject) is This ensures that all color areas 56 (with no less brightness) that are not too far from the gray axis in terms of colorimetry remain approximately constant.
  • Color areas 56 is that their parameters can be conveniently taken from a color atlas, while the colorimetric coordinates and area coverage of color areas 56 of the subject are generally not sufficiently well known. 13 shows the signal processing path of such a densitometer according to the invention; the mechanical, optical and other electronic components are not shown. The light of light source 1 reflected by the test surface of the target or actual copy is detected in sensor 2.
  • the signal which is initially in analog form, is brought into digital form in an analog / digital converter 3, preferably in 16 bit Technology, and converted into actual measured values in unit 4.
  • Averaging also takes place here if the corresponding input instruction a from unit 5 is present.
  • the density measured values b located in the target measured value memory in unit 5 are either entered by the user or stored by a target copy; in unit 6 they are subtracted from the actual measured values. If the measurements were not carried out on single-color image areas or control fields, the matrix calculation of the individual color densities from the total color densities is carried out in unit 7.
  • the calculation of the sum vector 73 6 P takes place in unit 8 if the inputs c: "target values of the saturated, colorful partial colors” and “target color location and area coverage of the color area to be controlled” from unit 5 are present.
  • the undisassembled sum vector 73 o P and preferably also the partial color vectors, for example G, M , 7 are displayed graphically (preferably in color) on the screen in an output unit 11 or on an XY recorder, for example in the manner of FIGS. 3 and 5.
  • the numerical or verbal output of the density value differences of the partial colors e.g. cyan, magenta, yellow, black
  • the absolute amount of the sum vector 73 e.g.
  • the limit indicator 9 can also be warned by the limit indicator 9 as soon as the amount of the sum vector 73 o p exceeds a defined size or the polar angle is in a region to be regarded as critical, for example green tinge when printing skin tones.
  • the operator can also find out about the size and direction of the deviation for this color area 56.
  • the calculation is made of the gray component, which is only effective in terms of brightness, and the color component, which relates to at most two colorful partial colors, if there is input information d from unit 5 about the partial colors of the color component or one of the selection criteria mentioned.
  • the output of the control recommendation in density value units, or already converted to the respective manipulated variable is carried out by the unit 12 by outputting the values for the colorful partial colors and black separately for "color cast” and "brightness". This can be done in alphanumeric or graphic form on the output unit 11.
  • the operator carries out the control corrections recommended to him in the order that appears to be favorable. If only densitometric control corrections are output, he must convert the values into the corresponding manipulated variable for the coloring based on experience. The success of the correction carried out is checked densitometrically on a further actual copy, resulting in new tax recommendations etc.
  • the device is shown in FIG. 14 according to the pattern of FIG. 13 in the form of a signal flow diagram.
  • the mechanical, optical and other electronic components are not shown.
  • the signal path up to and including the analog / digital converter 3 is as described in Example 1.
  • the signals measured either "on-line” in the production machine or "off-line” on a drawn actual copy are converted in unit 4 into actual measured values for the density; if there is a corresponding instruction c from unit 5, mean values of the density values of several test areas, e.g. Image sections, or successive "on-line” measured actual copies.
  • the associated density measured values or their mean values are preferably calculated in each ink zone and, after evaluation, finally converted into control commands.
  • units 6 and 7 The description of units 6 and 7 is as in example 1.
  • unit 8 the approximated colorimetric deviations are calculated according to the inputs c from unit 5, it being possible to enter the color area to be influenced here.
  • the sum vector 73 o P and its partial color vectors 72 are shown in numerical and / or graphic form in an output unit 11, possibly for each color zone and different color areas 56 to be influenced.
  • a limit indicator 9 is provided, which warns when predetermined limits for the amount or direction of the deviation are exceeded.
  • the total deviation according to the invention is broken down into two parts in accordance with the criteria input d from unit 5.
  • control recommendations for the actuators of the paint application are calculated in unit 12a, with input e from unit 5 if necessary, different control factors for the gray component and the color component as well as for the partial color black, possibly different for each printing zone 83, can be entered.
  • the conversion factor between control deviation and correcting variable correction is called the control factor here.
  • control commands are sent to the servomotors 13 of the inking unit.
  • the success of the actuating process is checked densitometrically on an actual copy taken later, which may result in a further control process, etc.
  • Example 2 While the device described so far under Example 2 makes it possible to regulate the color appearance of the color area 56 to be influenced by means of densitometric measurement on test areas, it can also be derived immediately from this description how a device which works analogously and which uses the color measurement can be constructed.
  • the colorimetric measurement can advantageously be carried out on multicolored control fields and in particular on balance control fields, or can also be carried out directly on one or more colorful image areas serving as test areas and separately on black image areas, via which the mean is then to be used.
  • the basic structure of the signal map of FIG. 14 is retained, the few changes are noted in FIG. 15.
  • the colorimetric coordinates are calculated from the measured signals in unit 4, the colorimetric difference values are formed in unit 6.
  • the unit 8 calculates the data for the alphanumeric and / or graphic output on the output unit 11 if the color words of the fully saturated partial colors and the target color location of the color area to be influenced have previously been entered via the input c from unit 5. Also in unit 8, the correction of the brightness value determined at the colored image areas takes place with the change that was determined at the black image areas. Accordingly, not only the amount and direction of the sum vector 73 0-P appear on the output unit 11, but also the changes in the brightness of the colored image areas and the image areas serving to control the partial color black. The already described division of the sum vector 73 o P into parts takes place in unit 10, the operator specifying the criteria for the selection of the two partial colors of the color part and for the change in brightness via input d from unit 5. The further control engineering process proceeds as described in FIG. 14.
  • a film sheet (or several film sheets), which consists of a series of templates for control fields, which, after assembly as intended and subsequent copying onto the associated printing forms of the partial colors, produce a so-called print control bar consisting of control field images of different partial colors during the printing process.
  • This is preferably designed so that in each pressure zone 83, i.e. every 30 to 40 mm, a shadow tone balance control field 21 is present, which has graded areas of coverage on the original according to a reproduction photographic gray condition that applies to normal printing conditions. Examples are C 72, M 57, Y 55 and C 75, M 62, Y 60 for positive copies in offset printing on art paper.
  • solid color fields of the partial colors as well as their overprinting and grid fields for the partial color black in three-quarter tone should be available.
  • 16a and 16B show two preferred embodiments of the device, from which the selection and arrangement of the control fields can be seen.
  • the pressure checklists generated with the devices together are shown according to the above definition.
  • each pressure zone 83 here assumed to be 30 mm, there is a control field 21 of 5 ⁇ 5 mm 2 size designed as a shadow tone balance and in every second zone a further control field 22 designed as a midtone balance.
  • a control field 21 of 5 ⁇ 5 mm 2 size designed as a shadow tone balance
  • a further control field 22 designed as a midtone balance.
  • 21 there is a grid 23 for black with 80% area coverage in every second zone. The latter makes the coloring of black controllable, the measurement of the coloring of the colored partial colors takes place in the control fields 21 and 22.
  • a control field 21 and 22 are present in each pressure zone 83, here also assumed to be 30 mm.
  • solid tone fields 24, copy control fields 25 and line grid pairs 26 are provided for all partial colors; they repeat approximately every 9 zones.
  • FIGS. 16a and 16b and the selection of the control fields can of course be modified, supplemented or changed in their repetition period, as long as a grid control field composed of the brightly colored primary partial colors is measurable and in every second or third zone, a raster or solid field 24 black is also measurable.
  • the devices described above are suitable not only for raster printing, but also for those printing processes which work with rastered originals.
  • the devices according to Example 3 can also be used for completely rasterless processes if 21, 22, 23, 24 are formed as halftone fields, with the proviso that instead of the area coverage size, the computational size given in equation (12) is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Printing Methods (AREA)
  • Color, Gradation (AREA)

Claims (18)

1. Procédé pour agir sur l'aspect coloré d'une surface encrée (56) constituée d'au moins trois couleurs chromatiques de base, dans un processus d'impression, en fonction de mesures densitométriques dans au moins une surface de test, des différences de densité entre les mesures densitométriques réelles et des mesures prédéterminées de consigne étant détectées et utilisées pour agir sur la coloration des couleurs de base, caractérisé en ce que l'action sur la coloration des couleurs chromatiques de base est produite prioritairement sur au maximum deux couleurs chromatiques de base en fonction de la fraction colorée d'un vecteur de somme (73) qui est déterminé sur la base des différences de densité des couleurs chromatiques de base et par rapport à la surface encrée (56) sur l'aspect coloré de laquelle il s'agi d'agir dans un espace colorimétrique dont la perception de la gradation est régulière, ledit vecteur de somme étant décompose en une fraction neutre n'agissant que sur la luminosité et en une fraction colorée concernant au maximum deux couleurs chromatiques de base.
2. Procédé pour agir sur l'aspect coloré d'une surface encrée (56) se composant d'au moins trois couleurs chromatiques de base, dans un processus d'impression, en fonction de mesures colorimétriques dans au moins une surface de test, les différences entre les mesures colorimétriques réelles et des mesures prédéterminées de consigne étant décelées, représentées dans un espace colorimétrique perception de la gradation est régulière et utilisées pour agir sur la coloration des couleurs de base, caractérisé en ce que l'action sur la coloration des couleurs chromatiques de base est produite prioritairement sur au maximum deux couleurs chromatiques de base en fonction de la fraction colorée d'un vecteur de somme (73) qui est déterminé sur la base des différences colorimétriques dans l'espace colorimétrique et qui est décomposé en une fraction neutre qui agit uniquement sur la luminosité et en une fraction colorée concernant au maximum deux couleurs chromatiques de base.
3. Procédé selon la revendication 1, caractérisé en ce que le vecteur de somme (73) est formé par addition de vecteurs (72) affectés aux couleurs chromatiques de base et dont la grandeur absolue et la direction se déterminent à l'aide d'au moins un cycle de marche expérimentale de telle manière que le vecteur de somme (73) corresponde dans un plan de même luminosité aussi précisément que possible au vecteur qui est orienté du lieu de la surface colorée appartenant aux mesures de consigne au lieu de la surface colorée (56) appartenant aux mesures réelles.
4. Procédé selon la revendication 3, caractérisé en ce que la grandeur absolue des vecteurs (72) des couleurs de base se définit sous forme de produit
a) du taux de couverture superficielle de la couleur particulière de base dans la surface colorée (56) sur laquelle il convient d'agir et
b) d'un facteur d'étalonnage (f) dont la grandeur approximative est
Figure imgb0030
formule dans laquelle D est la moyenne des densités des couleurs chromatiques de base qui ont été mesurées dans les surfaces de test.
5. Procédé selon la revendication 3, caractérisé en ce que la direction de chacun des vecteurs (72) des couleurs de base correspond approximativement à la direction qui est orientée du lieu de la surface colorée (56) appartenant aux mesures de consigne au lieu de la couleur de base correspondante totalement saturée.
6. Procédé selon la revendication 1 ou 2, caractérisé en ce que la décomposition du vecteur de somme (73) en fraction neutre et fraction colorée s'effectue de manière que la somme des grandeurs absolues des composantes de la fraction colorée appartenant aux deux couleurs chromatiques de base soit minimale.
7. Procédé selon la revendication 1 ou 2, caractérisé en ce que la décomposition du vecteur de somme (73) en fraction neutre et fraction colorée s'effectue de manière que la somme des grandeurs absolues des composantes de la fraction colorée des couleurs de base et de la fraction neutre soit minimale.
8. Procédé selon la revendication 1 ou 2, caractérisé en ce que la décomposition du vecteur de somme (73) en fraction neutre et fraction colorée s'effectue de manière que la différence de luminosité affectée à la fraction neutre soit minimale.
9. Procédé selon la revendication 1 ou 2, caractérisé en ce que la que la décomposition du vecteur de somme (73) en fraction neutre et fraction colorée s'effectue de manière que la fraction colorée soit exprimée par les deux vecteurs (72) de couleur de base dont les directions positive et négative inscrivent le vecteur de somme (73) par leurs flancs.
10. Procédé selon la revendication 1 ou 2, caractérisé en ce que les surfaces de test sont formées de zones de contrôle dont chacune ne contient qu'une unique couleur de base.
11. Procédé selon la revendication 1, caractérisé en ce que les surfaces de test sont formées de zones de contrôle dont chacune contient plusieurs couleurs chromatiques de base.
12. Procédé selon la revendication 1 ou 2, caractérisé en ce que les surfaces de test prévues sont des zones de contrôle qui contiennent les trois couleurs chromatiques de base ainsi que des zones de contrôle qui contiennent principalement du noir.
13. Procédé selon la revendication 11 ou 12, caractérisé en ce que les zones de contrôle sont constituées de zones de contrôle d'équilibrage dans lesquelles les taux de couverture superficiels des couleurs chromatiques de base forment une gradation telle qu'elle donne un aspect coloré gris neutre.
14. Procédé selon la revendication 1 ou 2, caractérisé en ce que la surface de test est formée d'une partie du sujet à imprimer.
15. Procédé selon la revendication 14, caractérisé en ce que les mesures sont effectuées dans plusieurs surfaces de test et la moyenne des mesures ainsi obtenues est effectuée.
16. Procédé selon la revendication 15, suivant lequel l'action sur la coloration s'effectue par zones sur le format, caractérisé en ce que la moyenne des mesures obtenues dans les surfaces de test se trouvant dans une zone d'impression (83) est effectuée.
17. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comprenant
a) au moins un appareil de mesure densitométrique pour l'obtention de mesures densitométriques,
b) un dispositif (6) de détermination des différences de densité entre les mesures densitométriques réelles et des mesures de consigne prédéterminées,

caractérisé par les composants supplémentaires suivants :
c) un dispositif (8) de détermination du vecteur de somme (73) sur la base des différences de densité des couleurs chromatiques de base,
d) un dispositif de décomposition du vecteur de somme en fraction neutre et fraction colorée,
e) un dispositif de détermination des couleurs de base devant être utilisées prioritairement pour agir sur la coloration.
18. Dispositif pour la mise en oeuvre du procédé selon la revendication 2, comprenant
a) au moins un appareil de mesure colorimétrique pour la détermination de mesures colorimétriques,
b) un dispositif (6) de détermination des différences entre les mesures colorimétriques réelles et des mesures de consigne prédéterminées,

caractérisé par les autres composants suivants :
c) un dispositif (8) de détermination du vecteur de somme (73) à partir des différences déterminées,
d) un dispositif (10) de décomposition du vecteur de somme (73) en fraction neutre et fraction colorée,
e) un dispositif de détermination des couleurs de base qu'il s'agit d'utiliser prioritairement pour agir sur la coloration.
EP87108516A 1986-08-05 1987-06-12 Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer Expired - Lifetime EP0255586B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87108516T ATE73392T1 (de) 1986-08-05 1987-06-12 Verfahren und vorrichtung zur beeinflussung der farblichen erscheinung einer farbflaeche bei einem druckvorgang.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3626423 1986-08-05
DE19863626423 DE3626423A1 (de) 1986-08-05 1986-08-05 Verfahren und vorrichtung zur beeinflussung der farblichen erscheinung einer farbflaeche bei einem druckvorgang

Publications (3)

Publication Number Publication Date
EP0255586A2 EP0255586A2 (fr) 1988-02-10
EP0255586A3 EP0255586A3 (en) 1988-12-07
EP0255586B1 true EP0255586B1 (fr) 1992-03-11

Family

ID=6306693

Family Applications (2)

Application Number Title Priority Date Filing Date
EP87108516A Expired - Lifetime EP0255586B1 (fr) 1986-08-05 1987-06-12 Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer
EP87111135A Expired - Lifetime EP0255924B1 (fr) 1986-08-05 1987-07-31 Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP87111135A Expired - Lifetime EP0255924B1 (fr) 1986-08-05 1987-07-31 Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer

Country Status (4)

Country Link
US (1) US4901254A (fr)
EP (2) EP0255586B1 (fr)
AT (2) ATE73392T1 (fr)
DE (3) DE3626423A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643721A1 (de) * 1986-12-20 1988-06-30 Heidelberger Druckmasch Ag Druckkontrollstreifen
EP0282446B1 (fr) * 1987-02-23 1991-04-17 GRETAG Aktiengesellschaft Procédé de réglage continu de l'encrage en impression en creux ou flexographique et machine correspondante
FR2624142B1 (fr) * 1987-12-07 1990-11-23 Superba Sa Procede d'impregnation d'un fil textile en continu, et installation pour la mise en oeuvre de ce procede
DE3812099C2 (de) * 1988-04-12 1995-01-26 Heidelberger Druckmasch Ag Verfahren zur Farbsteuerung einer Offsetdruckmaschine
DE3829341A1 (de) * 1988-08-30 1990-03-08 Roland Man Druckmasch Datenerfassung fuer farbregelanlagen
DE3830731A1 (de) * 1988-09-09 1990-03-22 Heidelberger Druckmasch Ag Vorrichtung zur farbmessung
DE3903981C2 (de) * 1989-02-10 1998-04-09 Heidelberger Druckmasch Ag Verfahren zur Regelung der Farbfüllung bei einer Druckmaschine
DE59003421D1 (de) * 1989-07-14 1993-12-16 Gretag Ag Verfahren zur Bestimmung der Farbmasszahldifferenzen zwischen zwei mit hilfe einer Druckmaschine gedruckten Rasterfeldern sowie Verfahren zur Farbsteuerung oder Farbregelung des Druckes einer Druckmaschine.
US5218555A (en) * 1989-11-27 1993-06-08 Toyo Boseki Kabushiki Kaisha Method for judging a color difference using rules fuzzy inference and apparatus therefor
DE3942254A1 (de) * 1989-12-21 1991-07-04 Krzyminski Harald Druckkontrollstreifen
EP0449407B1 (fr) * 1990-02-05 1997-04-09 Scitex Corporation Ltd. Appareils et méthodes pour le traitement de données, telles que les images en couleurs
DE4005558A1 (de) * 1990-02-22 1991-09-19 Roland Man Druckmasch Verfahren zur prozessdiagnose einer rotationsdruckmaschine anhand von remissionen von vollton- und rastertonfeldern
ES2152223T5 (es) 1991-01-15 2005-05-01 Creo Il.Ltd. Aparato y tecnicas para impresion informatizada.
DE4104537C2 (de) * 1991-02-14 1999-05-12 Roland Man Druckmasch Verfahren zur Steuerung einer Farbführung einer Offset-Druckmaschine
DE69217276T2 (de) * 1991-06-20 1997-12-04 Matsushita Electric Ind Co Ltd Einrichtungen zur Beurteilung der Qualität eines Bildes
US5149960B1 (en) * 1991-07-03 1994-08-30 Donnelly R R & Sons Method of converting scanner signals into colorimetric signals
US5317425A (en) * 1992-02-10 1994-05-31 Eastman Kodak Company Technique for use in conjunction with an imaging system for providing an appearance match between two images and for calibrating the system thereto
EP0563498B1 (fr) * 1992-03-30 1996-06-19 Ciba-Geigy Ag Procédé d'impression en plusieurs couleurs, particulièrement procédé d'impression de trame en plusieurs couleurs
US5224421A (en) * 1992-04-28 1993-07-06 Heidelberg Harris, Inc. Method for color adjustment and control in a printing press
DE4240077C2 (de) * 1992-11-28 1997-01-16 Heidelberger Druckmasch Ag Verfahren zur zonalen Steuerung/Regelung der Farbführung in einer Druckmaschine
DE4335229C2 (de) * 1993-10-15 1998-07-16 Heidelberger Druckmasch Ag Verfahren zum Erzeugen von auf einer Offsetdruckmaschine hergestellten Farbmustern
DE4335350A1 (de) * 1993-10-16 1995-04-20 Heidelberger Druckmasch Ag Verfahren und Vorrichtung zur Ermittlung von Passerabweichungen bei mehrfarbigen, in einer Druckmaschine erstellten Druckprodukten
DE4402828C2 (de) * 1994-01-31 2001-07-12 Wifag Maschf Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
DE4402784C2 (de) * 1994-01-31 2001-05-31 Wifag Maschf Messfeldgruppe und Verfahren zur Qualitätsdatenerfassung unter Verwendung der Messfeldgruppe
DE19511076C1 (de) * 1995-03-25 1996-05-23 Roland Man Druckmasch Verfahren zum Feststellen von Farbverschmutzungen beim Herstellen mehrfarbiger Druckexemplare auf Druckmaschinen
DE19515499C2 (de) * 1995-04-27 1997-03-06 Heidelberger Druckmasch Ag Verfahren zur simultanen Mehrfarbregelung beim Drucken
US5740076A (en) * 1995-11-30 1998-04-14 Candela, Ltd. System for describing a color gamut in a graphical data processing system
IT1284432B1 (it) * 1996-03-22 1998-05-21 De La Rue Giori Sa Procedimento di controllo automatico della qualita' di stampa di un'immagine policroma
EP1080892B2 (fr) * 1999-09-06 2009-06-24 Komori Corporation Procédé et dispositif de gestion de couleurs dans une machine à imprimer
EP1156667A3 (fr) * 2000-05-17 2004-05-06 Komori Corporation Procédé et dispositif de gestion de couleurs dans une machine à imprimer
JP4194289B2 (ja) * 2001-04-06 2008-12-10 キヤノン株式会社 画像処理方法
JP3880831B2 (ja) * 2001-10-10 2007-02-14 大日本スクリーン製造株式会社 インキプリセット方法
JP2003118085A (ja) * 2001-10-10 2003-04-23 Dainippon Screen Mfg Co Ltd 印刷装置
US6792863B2 (en) * 2001-10-15 2004-09-21 Dainippon Screen Mfg Co., Ltd. Printing apparatus for automatically controlling ink supply device
US7177476B2 (en) * 2002-02-28 2007-02-13 Eastman Kodak Company Method of decoding data encoded in a monochrome medium
DE102004009271A1 (de) * 2004-02-26 2005-09-15 Man Roland Druckmaschinen Ag Verfahren zur Farbregelung an Druckmaschinen
JP5022682B2 (ja) * 2006-11-30 2012-09-12 リョービ株式会社 カラー印刷機の印刷画像品質管理方法及び印刷画像品質管理装置
US8526717B2 (en) * 2007-05-15 2013-09-03 Vision Interface Technologies, LLC Rich color transition curve tracking method
US9536322B1 (en) 2007-05-15 2017-01-03 Peter Harmon Smith Implementation of multi-camera tracking applications using rich color transition curve target sequences
JP2010023498A (ja) * 2008-06-18 2010-02-04 Canon Inc インクジェット記録装置および記録画像の乾燥条件決定方法
DE102013109920A1 (de) * 2013-09-10 2015-03-12 Manroland Web Systems Gmbh Verfahren zum Bedrucken eines Bedruckstoffs
JP6181025B2 (ja) * 2014-09-26 2017-08-16 富士フイルム株式会社 印刷物の測定位置決定方法及び装置並びに測定方法
WO2016047378A1 (fr) * 2014-09-26 2016-03-31 富士フイルム株式会社 Procédé de présentation de position de mesure, procédé de production de guide de présentation de position de mesure, procédé de mesure de matière imprimée, procédé de détermination de position de mesure de matière imprimée, et dispositif de détermination de position de mesure de matière imprimée
JP6285837B2 (ja) * 2014-09-26 2018-02-28 富士フイルム株式会社 測定位置提示方法及び測定位置提示ガイドの製造方法並びに印刷物の測定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196431A2 (fr) * 1985-03-21 1986-10-08 Felix Brunner Procédé, dispositif de réglage et moyens auxiliaires pour l'obtention d'un résultat d'impression uniforme au moyen d'une machine d'impression offset polychrome fonctionnant suivant le procédé de similigravure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256131A (en) * 1976-07-14 1981-03-17 Sentrol Systems Ltd. Feedback color control system
CH646788A5 (de) * 1978-11-28 1984-12-14 Hell Rudolf Dr Ing Gmbh Verfahren und schaltungsanordnung zum erkennen von farben.
DE3007421A1 (de) * 1980-02-27 1981-09-03 Windmöller & Hölscher, 4540 Lengerich Verfahren zur herstellung eines vorlagengetreuen farbengemisches, insbesondere einer farbe eines mehrfarbendruckes
US4310248A (en) * 1980-04-24 1982-01-12 Meredith Nolan J Color control system
JPS59206839A (ja) * 1983-05-10 1984-11-22 Toppan Printing Co Ltd 網点面積率入力装置
US4706206A (en) * 1983-09-20 1987-11-10 Kollmorgen Technologies Corporation Color printing control using halftone control areas
US4649502A (en) * 1983-11-04 1987-03-10 Gretag Aktiengesellschaft Process and apparatus for evaluating printing quality and for regulating the ink feed controls in an offset printing machine
DE3371693D1 (en) * 1983-12-14 1987-06-25 Hell Rudolf Dr Ing Gmbh Method of and circuit arrangement for the recognition of chrominances and colours
US4688178A (en) * 1985-09-06 1987-08-18 Burlington Industries, Inc. Method and apparatus for inventory control to optimize usage of colored fabric
GB0227842D0 (en) * 2002-11-29 2003-01-08 Rolls Royce Plc Sealing Arrangement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196431A2 (fr) * 1985-03-21 1986-10-08 Felix Brunner Procédé, dispositif de réglage et moyens auxiliaires pour l'obtention d'un résultat d'impression uniforme au moyen d'une machine d'impression offset polychrome fonctionnant suivant le procédé de similigravure

Also Published As

Publication number Publication date
DE3785510D1 (de) 1993-05-27
US4901254A (en) 1990-02-13
DE3777277D1 (de) 1992-04-16
ATE73392T1 (de) 1992-03-15
EP0255586A3 (en) 1988-12-07
ATE88414T1 (de) 1993-05-15
EP0255586A2 (fr) 1988-02-10
EP0255924A3 (en) 1990-05-02
DE3626423A1 (de) 1988-02-11
EP0255924A2 (fr) 1988-02-17
EP0255924B1 (fr) 1993-04-21

Similar Documents

Publication Publication Date Title
EP0255586B1 (fr) Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer
DE4431270C2 (de) Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
EP0196431B1 (fr) Procédé, dispositif de réglage et moyens auxiliaires pour l'obtention d'un résultat d'impression uniforme au moyen d'une machine d'impression offset polychrome fonctionnant suivant le procédé de similigravure
EP0143744B1 (fr) Procédé et dispositif d'analyse de qualité d'impression et/ou de réglage d'encre dans une rotative offset et rotative offset équipée d'un tel dispositif
EP0408507B1 (fr) Méthode de détermination des écarts de couleur entre deux surfaces tramées imprimées avec une machine d'impression ainsi que méthode de commande ou réglage de l'impression couleurs d'une machine à imprimer
DE3903981C2 (de) Verfahren zur Regelung der Farbfüllung bei einer Druckmaschine
EP0324718A1 (fr) Procédé et dispositif pour régler l'encre dans une machine à imprimer
EP0914945B1 (fr) Procédé pour régler l'encrage dans une machine d'impression
DE19515499C2 (de) Verfahren zur simultanen Mehrfarbregelung beim Drucken
DE4343905C2 (de) Verfahren zur Steuerung der Farbführung bei einer Druckmaschine
DE3925011B4 (de) Verfahren und Anordnung zur Überwachung einer Druckqualität mehrfarbiger Druckvorlagen einer Offset-Druckmaschine
EP0585740A1 (fr) Méthode pour la commande du processus d'impression dans une presse d'imprimerie à cliché trame en particulier une machine à imprimer offset à feuilles
EP0505323B1 (fr) Procédé pour le réglage des grandeurs des points de trame pour une presse rotative à imprimer offset
EP0676285B1 (fr) Gestion des couleurs dans une machine rotative offset pour feuilles
DE4240077C2 (de) Verfahren zur zonalen Steuerung/Regelung der Farbführung in einer Druckmaschine
DE3543444A1 (de) Verfahren und regelvorrichtung zur erzielung eines gleichfoermigen druckresultats an einer autotypisch arbeitenden mehrfarbendruckmaschine
EP0916491B1 (fr) Procédé pour déterminer des gradients colorimétriques
DE19830487B4 (de) Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild
EP0649743B1 (fr) Procédé pour contrÔler l'apport de couleur dans une presse fonctionnant suivant le procédé de similigravure
EP0668164A1 (fr) Acquisition des données de qualité dans une machine rotative offset pour feuilles
EP0734862A1 (fr) Procédé pour détecter des impuretés de couleur
EP0282446A1 (fr) Procédé de réglage continu de l'encrage en impression en creux ou flexographique et machine correspondante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890510

17Q First examination report despatched

Effective date: 19900727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920311

Ref country code: BE

Effective date: 19920311

Ref country code: GB

Effective date: 19920311

Ref country code: FR

Effective date: 19920311

Ref country code: NL

Effective date: 19920311

Ref country code: SE

Effective date: 19920311

REF Corresponds to:

Ref document number: 73392

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3777277

Country of ref document: DE

Date of ref document: 19920416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920630

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950828

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301