EP0255068A1 - In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen - Google Patents

In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen Download PDF

Info

Publication number
EP0255068A1
EP0255068A1 EP87110779A EP87110779A EP0255068A1 EP 0255068 A1 EP0255068 A1 EP 0255068A1 EP 87110779 A EP87110779 A EP 87110779A EP 87110779 A EP87110779 A EP 87110779A EP 0255068 A1 EP0255068 A1 EP 0255068A1
Authority
EP
European Patent Office
Prior art keywords
spr1
spiral
resonators
filters
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87110779A
Other languages
English (en)
French (fr)
Other versions
EP0255068B1 (de
Inventor
Heinz Ing. Grad. Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87110779T priority Critical patent/ATE84639T1/de
Publication of EP0255068A1 publication Critical patent/EP0255068A1/de
Application granted granted Critical
Publication of EP0255068B1 publication Critical patent/EP0255068B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/005Helical resonators; Spiral resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Definitions

  • the invention relates to a type of comb line or. Interdigital line filter designed filter according to the preamble of claim 1.
  • Helix filters also require a relatively large production outlay and many individual parts.
  • the filters with air dielectric built with metal rods are voluminous, those with ceramic dielectric are relatively heavy, which is particularly undesirable in portable devices.
  • the invention has for its object to provide implementation options of filters in the manner of comb line or interdigital line filters which have high-quality electrical properties and which can be produced as inexpensively as possible in a small size.
  • FIG. 1 the state of the art is shown again for rapid understanding, as is given, for example, in the above-mentioned literature reference "Fujitsu Scientific Technical Journal, Vol. 4, No. 3, pages 29 to 52".
  • a comb line filter is shown, which with the so-called ten interdigital filters are known to have the same effect.
  • the inner conductors are arranged in the manner of a comb and open out on the same housing surface, while in the interdigital filter the inner conductors alternately open out on opposite housing surfaces.
  • Fig. 1a and Fig. 1b four resonators R1 to R4 are provided. They have approximately the length ⁇ / 4.
  • the resonators R1 to R4 are arranged in the housing G and on their faces the capacitances CV1 to CV an can be seen, which can either actually be switched or which also symbolically represent the stray capacitances of the inner conductors R1 to R4.
  • the resonators R1 to R4 have the diameter d.
  • At the first resonator R1 opens an input line E, which is usually designed as a coaxial line.
  • the inner conductor of this coaxial line is firmly connected to the resonator R 1, the outer conductor is firmly connected to the housing G.
  • the output line A can be seen on the resonator R4, the inner conductor of which is connected to the resonator R4, while the outer conductor is also connected to the housing G.
  • the reference numerals K1, K2 and K3 that the coupling between the resonators acts as a line coupling, as is the case with interdigital filters.
  • this type of filter implementation has the disadvantage that it takes up a relatively large amount of space and may also be relatively difficult.
  • spiral resonators SpR1 to SpR4 are now used, which are designed as flat, flat spirals and which are also housed in the housing G. Between these spirals there is a line coupling K1 K2 and K3. The input line E and the output line A can also be seen.
  • the elevation of Fig. 2b shows that there Tuning screws A1 to A4 are provided, which in the special embodiment are perpendicular to the planes of the spirals and their longitudinal axis goes approximately through the center of the spirals.
  • Input E and output A are shown as tapped coils in order to symbolically represent the transformer effect of the tapping.
  • planar spiral resonators however, is that the entire resonator set of a filter can be manufactured precisely and inexpensively using punching, form-etching or casting technology, as well as on laminated circuit boards, which is basically not possible, for example, with filters with helical resonators.
  • All design methods for line filters e.g. Fujitsu Scientific Technical Journal, Vol. 4 No. 3, pp. 29 to 52
  • the coupling distance K1-K3 between the spirals depends on the chosen spiral shape and the winding sense and experimental must be determined.
  • a slight shortening of the spiral length compared to an extended resonator is also necessary because of the additional capacitance C w occurring between the spiral windings.
  • FIG. 2 shows an undivided filter lying between input E and output A with an etched or punched or spark-eroded compact resonator set SpR1-SpR4, installed in a housing G and surrounded by a dielectric D1, which is here, for example, air. Frequency tuning is possible with the screws A1-A4.
  • FIG. 3 shows the simplified equivalent circuit with four resonant circuits.
  • 4a, 4b and 5 show further advantageous embodiments.
  • parts having the same effect are also designated with the same reference notes as in the previous figures, so that there is no longer any need to go into them in detail.
  • 4a, 4b and 5 are shown in elevation, in side view and in Fig. 4a also the top view spiral resonator filter with a coupling Ü1 or Ü2.
  • the associated electrical equivalent circuit diagram is drawn in FIG. 6.
  • the overcoupling U1 leads from the input E to a connection point S1
  • the overcoupling Ü2 which is shown as an example and which is not realized in the exemplary embodiment - leads from a connection point S2 to the output A.
  • overcoupling Ü2 does not lead directly to output A
  • such measures can produce damping poles in the filter characteristic.
  • two sets of resonators SpR1 to SpR4 are connected in parallel.
  • the two sets of resonators have the same geometry and the parallel connection of the individual conductor parts reduces the losses and thus increases the quality of the resonators.
  • the individual resonators are again labeled 1 to 4, the associated inductors with L1 to L4 and the associated capacitances C1 to C4.
  • the coupling-in capacitance is denoted by C K1 and the coupling-out capacitance by C K2 .
  • C K1 The coupling-in capacitance
  • C K2 the coupling-out capacitance
  • inductors in the longitudinal branch of the circuit which are also identified by L K1 and L K2 .
  • a capacitive overcoupling C ü which is connected from the input to the resonant circuit 2, illustrates the effect of the overcoupling Ü1.
  • the complete set of resonators to avoid mechanical vibrations was additionally installed in the housing G on a low-loss, for example, Teflon carrier plate T.
  • Teflon carrier plate T In the support plate T are also holes for the tuning elements A1 to A4 and the coupling bases S1 and S2 incorporated.
  • the resonator set was implemented as an example on a double-laminated, low-loss printed circuit board L.
  • this solution is expected to have a lower quality than that of a pure air dielectric.
  • the equivalent circuit diagram for the implementations according to FIGS. 4 and 5 is shown in FIG. 6. You can see some other advantageous details. From the characteristic function belonging to FIG. 6 you can see a finite pole, which is realized by the coupling C ü (Fig. 6) or Ü1.
  • the conductor length of the spiral including the effect of a shortening factor is ⁇ / 4.
  • the corresponding frequency is related to the center of the pass band.
  • the characteristic impedance Z is expediently chosen to be 50 ... 150. With a rectangular cross section of the conductor, Z is known to depend on the conductor width and thickness and on its distance from the metal housing and can be calculated using known methods such as in the strip-line technique.
  • the resonator qualities depend essentially on the nature and conductivity of the surface and the filter volume.
  • Two resonator arrangements of the same geometry (according to FIG. 5) which are approximately parallel at a distance from the conductor width bring quality improvements of up to 30%.
  • the geometry of the resonators need not be limited to spirals with a continuous course. If necessary, the resonators can also be realized in a rectangular shape as shown in FIG. 7 or with a different line cross section - adapted to the current occupancy of the resonator. Likewise, a 90 ° rotation of the spirals SpR1 to SpR5, as shown in Fig. 8 or Fig. 9, is possible.
  • the spiral center points M as in FIGS. 9 and 10 can also be selected as the common base point of the spirals.
  • a carrier plate 6 is used for receiving the ground connections M and the resonators SpR1 to SpR4.
  • FIG. 11 shows the measured curve of the operating attenuation a B and the reflection attenuation a r as a function of the frequency f of a filter according to FIG. 4 implemented at 900 MHz.
  • the pass band lies approximately between 935 MHz and 970 MHz.
  • a damping pole of the operating damping a b occurs, so that it can be seen that the operating damping curve can be increased at any time.
  • the filters described above especially in the frequency range of traffic radio, require a relatively small volume with good electrical properties.
  • the resonators designed as spiral resonators have a shortening of the electri length, which is particularly advantageous in mobile systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Bei Funkübertragungswesen, insbesondere bei Verkehrsfunkübertragungswegen, sind Mikrowellenfilter erforderlich, die bei einem möglichst kleinen Volumen möglichst gute elektrische Werte haben. Angegeben werden hierzu nach Art von Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildete Filter, bei denen die Resonatorinnenleiter als ebene Spirale (SpR1...SpR4) ausgebildet sind.

Description

  • Die Erfindung betrifft ein in der Art von Kammleitungs-­bzw. Interdigitalleitungsfiltern ausgebildetes Filter gemäß dem Oberbegriff des Patentanspruches 1.
  • Filter der vorgenannten Art sind aus der Literaturstelle "Band-Pass and Band-Stop Microwave Filter using λ/4 Circular Cylindrical Real Resonators", Fujitsu Scientific Technical Journal, Vol. 4, No. 3, S. 29 bis 52, (Autoren Dy Juhio Ito, Takeshi Meguro) bekannt.
  • Beim beweglichen Funk, Richtfunk und Satellitenfunk werden u.a. Sende-Empfangsweichen und ZF-Bandpässe mit hoher Selektivität und geringen Verlusten benötigt.
  • Neben der Forderung nach hoher Resonatorgüte werden speziell beim beweglichen Funk, wie z.B. beim Autotelefon, kleines Volumen, geringes Gewicht und kostengünstige Herstellungsverfahren für die Massenproduktion verlangt.
  • Bisher wurden solche Filter mit Helix-Resonatoren gemäß der Literaturstelle B.K. Dube "The Design of Filters Using Helical Resonators in VHF-Band, J. Instn. Electro­nics Telecom. Engrs., Vol. 22, No. 2, 1976, S. 77 bis 79". oder mit Resonatoren in Form von Metallstäben z.B. als Kamm- oder Interdigitalfiltern gemäß der einleitend ge­nannten Literaturstelle aufgebaut, wobei als Dielektrikum neben Luft auch Keramik, z.B. nach der US-PS 4 431 977, verwendet wird, was die Metallstablänge und das Volumen um den Faktor √ε verkleinert, wenn ε die Dielektrizitäts­konstante der Keramik ist. Außerdem sind Filter bekannt, bei denen auf Keramiksubstrat planare Spiralspulen mit diskreten Kondensatoren zu Serienkreisen ergänzt und zu einem Bandpaß zusammengeschaltet werden. In dieser Technik werden weder hohe Resonatorgüten noch eine kostengünstige Herstellung erreicht.
  • Ebenso erfordern Helixfilter relativ großen Fertigungs­aufwand und viele Einzelteile. Die mit Metallstäben auf­gebauten Filter mit Luftdielektrikum sind voluminös, die mit Keramikdielektrikum relativ schwer, was besonders bei tragbaren Geräten nicht erwünscht ist.
  • Der Erfindung liegt die Aufgabe zugrunde, Realisierungs­möglichkeiten von Filtern nach Art von Kammleitungs- bzw. Interdigitalleitungsfiltern anzugeben, die hochwertige elektrische Eigenschaften aufweisen und die bei kleiner Baugröße möglichst kostengünstig herstellbar sind.
  • Diese Aufgabe wird für Filter nach dem Oberbegriff des Patentanspruches 1 erfindungsgemäß nach dem kennzeichnen­den Teil des Patentanspruches 1 gelöst.
  • Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Anhand von Ausführungsbeispielen wird nachstehend die Erfindung noch näher erläutert.
  • Es zeigen in der Zeichnung
    • Fig. 1a die Draufsicht auf ein bekanntes Filter das als Kammleitungsfilter ausgebildet ist,
    • Fig. 1b das Filter nach Fig. 1a im Aufriß,
    • Fig. 2a ein Spiralresonatorfilter mit vier planaren Resonatoren,
    • Fig. 2b den Aufriß und den Seitenriß eines Filters nach Fig. 2a,
    • Fig. 3 ein vereinfachtes Ersatzschaltbild eines Filters nach Fig. 2 mit vier Schwingkreisen,
    • Fig. 4a die Draufsicht und den Seitenriß eines Spiral­resonatorfilters mit vier planaren Resonatoren auf einem Trägermaterial T mit einer Überkopp­lung Ü,
    • Fig. 4b den Aufriß eines Filters nach Fig. 4a,
    • Fig. 5 den Aufriß und den Seitenriß eines Spiralreso­natorfilters mit vier planaren Resonatoren auf einer doppelt-kaschierten Leiterplatte L,
    • Fig. 6 ein vereinfachtes elektrisches Ersatzschaltbild der Filter nach den Fig. 4a, 4b und 5,
    • Fig. 7 eine fünfkreisige Spiralresonatoranordnung in rechteckiger Ausführung der Spiralen,
    • Fig. 8 den Aufriß und die Seitenansicht eines fünfkrei­sigen Spiralresonatorfilters, dessen Resonatoren gegenüber den Fig. 2 bis 7 um 90° gedreht sind,
    • Fig. 9 ein fünfkreisiges Spiralresonatorfilter mit 90° gedrehten Einzelresonatoren und einer Innen-Mas­sung M der Spiralen,
    • Fig. 10 eine vierkreisige Spiralresonatoranordnung mit planaren Einzelresonatoren und einer Innenmas­sung der einzelnen Resonatoren,
    • Fig. 11 die Betriebsdämpfung aB und die Reflexions­dämpfung ar eines Vierkreisfilters nach Fig. 4a, b als Funktion der Frequenz f.
  • Im Ausführungsbeispiel von Fig. 1 ist zum raschen Ver­ständnis nochmals der Stand der Technik dargestellt, wie er beispielsweise in der eingangs genannten Literatur­stelle "Fujitsu Scientific Technical Journal, Vol. 4, Nr. 3, Seite 29 bis 52" angegeben ist. Als Beispiel ist dar­gestellt ein Kammleitungsfilter, das mit den sogenann­ ten Interdigitalfiltern bekanntlich an sich wirkungsgleich ist. Beim Kammleitungsfilter sind die Innenleiter nach Art eines Kammes angeordnet und münden auf der gleichen Gehäusefläche ein, während beim Interdigitalfilter die Innenleiter abwechselnd auf gegenüberliegende Gehäuseflächen einmünden. Im Beispiel von Fig. 1a und Fig. 1b sind vier Resonatoren R₁ bis R₄ vorgesehen. Sie haben etwa die Länge λ/4. Die Resonatoren R₁ bis R₄ sind im Gehäüse G angeord­net und an ihren Stirnseiten sind die Kapazitäten CV₁ bis CV₄ zu erkennen, die entweder tatsächlich geschaltet sein können oder die auch symbolisch die Streukapazitäten der Innenleiter R₁ bis R₄ darstellen. Die Resonatoren R₁ bis R₄ haben den Durchmesser d. An den ersten Resonator R₁ mündet eine Eingangsleitung E, die in der Regel als Ko­axialleitung ausgebildet ist. Der Innenleiter dieser Ko­axialleitung ist fest mit dem Resonator R₁ verbunden, der Außenleiter fest mit dem Gehäuse G verbunden. Entsprechend dazu ist am Resonator R₄ die Ausgangsleitung A zu erkennen, deren Innenleiter mit dem Resonator R₄ verbunden ist, während der Außenleiter ebenfalls mit dem Gehäuse G verbunden ist. Erkennbar ist auch durch die Bezugszeichen K₁, K₂ und K₃ daß die Kopplung zwischen den Resonatoren als Leitungskopplung wirkt wie dies auch bei Interdigital­filtern der Fall ist.
  • Diese Art der Filterrealisierung hat jedoch den Nachteil, daß sie einen verhältnismäßig großen Raumbedarf hat und gegebenenfalls auch verhältnismäßig schwer wird.
  • Im Ausführungsbeispiel der Fig. 2a und 2b sind nun Spi­ralresonatoren SpR₁ bis SpR₄ verwendet, die als flache, ebene Spiralen ausgebildet sind und die ebenfalls im Ge­häuse G untergebracht sind. Auch zwischen diesen Spiralen besteht eine Leitungskopplung K₁ K₂ und K₃. Die Eingangs­leitung E und die Ausgangsleitung A ist ebenfalls zu er­kennen. Im Aufriß von Fig. 2b ist zu erkennen, daß dort Abstimmschrauben A₁ bis A₄ vorgesehen sind, die im speziellen Ausführungsbeispiel senkrecht stehen auf dem Ebenen der Spiralen und deren Längsachse etwa durch das Zentrum der Spiralen geht.
  • In Fig. 3 ist das elektrische Ersatzschaltbild darge­stellt, das also vier Resonanzkreise 1, 2, 3 und 4 enthält. Der Eingang E und der Ausgang A sind als ange­zapfte Spulen dargestellt um die transformatorische Wir­kung der Anzapfung ebenfalls symbolisch darzustellen.
  • Der wesentliche Vorteil der planaren Spiralresonatoren besteht jedoch darin, daß jeweils der gesamte Resonator­satz eines Filters in Stanz-, Formätz- oder Gußtechnik sowie auf kaschierten Leiterplatten präzise und kosten­günstig hergestellt werden kann, was z.B. bei den Filtern mit Helixresonatoren grundsätzlich nicht möglich ist. Zur Konzipierung können alle Entwurfsverfahren für Leitungs­filter (z.B. Fujitsu Scientific Technical Journal, Vol. 4 Nr. 3, S. 29 bis 52) angewandt werden, wobei der Kopp­lungsabstand K₁-K₃ zwischen den Spiralen abhängig ist von der gewählten Spiralform und dem Windungssinn und experi­mentell ermittelt werden muß. Ebenso ist eine geringe Ver­kürzung der Spiralenlänge gegenüber einem gestreckten Re­sonator erforderlich wegen der zwischen den Spiralwindun­gen auftretenden zusätzlichen Kapazität Cw.
  • Fig. 2 zeigt also ein zwischen Eingang E und Ausgang A liegendes unversteilertes Filter mit einem geätzten oder gestanzten oder funkenerodierten kompakten Resonatorsatz SpR₁-SpR₄, eingebaut in ein Gehäuse G und umgeben von einem Dielektrikum D₁, welches hier z.B. Luft ist. Eine Frequenzabstimmung ist durch die Schrauben A₁-A₄ möglich. Die vereinfachte Ersatzschaltung mit vier Schwingkreisen zeigt die schon erläuterte Fig. 3.
  • In den Fig. 4a, 4b und 5 sind weitere vorteilhafte Ausfüh­rungsformen gezeigt. Auch bei diesen Ausführungsbeispielen sind wirkungsgleiche Teile mit den gleichen Bezugshinwei­sen wie in den vorhergehenden Figuren bezeichnet, so daß hierauf nicht mehr im einzelnen eingegangen werden muß. In den Fig. 4a, 4b und 5 sind im Aufriß, in der Seitenansicht und in Fig. 4a auch der Draufsicht Spiralresonatorfilter mit einer Überkopplung Ü₁ bzw. Ü₂ gezeigt. Das zugehörige elektrische Ersatzschaltbild ist in Fig. 6 gezeichnet. Die Überkopplung Ü₁ führt vom Eingang E zu einem Anschlußpunkt S₁, die Überkopplung Ü₂ die als Beispiel gezeigt und die im Ausführungsmuster nicht realisiert ist - führt von einem Anschlußpunkt S₂ zum Ausgang A. Wenn solche Überkopplungen nicht unmittelbar vom Eingang zum ersten Resonator SpR₁ führen bzw. analog dazu auch eine Überkopplung Ü₂ nicht unmittelbar zum Ausgang A führt, dann lassen sich mit solchen Maßnahmen bekanntlich Dämpfungspole in der Filter­charakteristik erzeugen. Im speziellen sind im Ausführungs­beispiel der Fig. 5 zwei Resonatorsätze SpR₁ bis SpR₄ parallel geschaltet. Die beiden Resonatorsätze haben die gleiche Geomtrie und durch die Parallelschaltung der einzelnen Leiterteile werden die Verluste verringert und damit die Güte der Resonatoren erhöht. In Fig. 6 sind die einzelnen Resonatoren wieder mit 1 bis 4 bezeichnet, die zugehörigen Induktivitäten mit L₁ bis L₄ und die zugehörigen Kapazitäten C₁ bis C₄. Die Einkoppelkapazit ät ist mit CK1 und die Auskoppelkapazität mit CK2 bezeichnet. Zwischen den einzelnen Resonanzkreisen liegen Induktivitäten im Längszweig der Schaltung, die noch mit LK1 bzw. LK2 kennt­lich gemacht sind. Eine kapazitive Überkopplung Cü, die vom Eingang zum Resonanzkreis 2 geschaltet ist, veranschau­licht die Wirkung der Überkopplung Ü₁.
  • Im Ausführungsbeispiel der Fig. 4 wurde der komplette Re­sonatorsatz zur Vermeidung von mechanischen Schwingungen zusätzlich auf einer verlustarmen z.B. Teflon-Trägerplatte T punktuell befestigt ins Gehäuse G eingebaut. In der Trä­gerplatte T sind ferner Bohrungen für die Abstimmelemente A₁ bis A₄ und die Ankoppelstützpunkte S₁ und S₂ eingear­beitet.
  • In Fig. 5 wurde als Beispiel der Resonatorsatz auf einer doppeltkaschierten, verlustarmen Leiterplatte L reali­siert. Bei dieser Lösung ist je nach Art des verwendeten Dielektrikums eine geringere Güte als bei reinem Luftdi­elektrikum zu erwarten.
    Das Ersatzschaltbild für die Realisierungen nach den Fig. 4 und 5 ist in Fig. 6 wiedergegeben. Ihnen können einige weitere vorteilhafte Details entnommen werden. Aus der zu Fig. 6 gehörenden charakteristischen Funktion
    Figure imgb0001
    ersieht man eine endliche Polstelle, die durch die Überkopplung Cü (Fig. 6) bzw. Ü₁ realisiert wird.
  • Eine weitere Polstelle wäre z.B. durch die Überkopplung Ü₂ von SpR₄ nach SpR₃ (Fig. 4) möglich.
    Zur Konzipierung von Filtern aus λ/4-Resonatoren z.B. mit Luftdielektrikum sind folgende Gesichtspunkte zu be­achten.
  • Die Leiterlänge der Spirale ist inklusive der Wirkung eines Verkürzungsfaktors gleich λ/4. Die dazu korres­pondierende Frequenz ist auf die Mitte des Durchlaßbe­reiches bezogen.
  • Der Wellenwiderstand Z wird zweckmäßig mit 50...150 ge­wählt. Z ist bei rechteckigem Querschnitt des Leiters bekanntlich von der Leiterbreite und -dicke sowie von dessen Abstand zum Metallgehäuse abhängig und kann nach bekannten Methoden wie in der Strip-Line-Technik berech­net werden.
  • Die Resonatorgüten sind wesentlich von der Beschaffenheit und Leitfähigkeit der Oberfläche und dem Filtervolumen ab­hängig. Zwei etwa im Abstand der Leiterbreite parallel aufgebaute Resonatoranordnungen gleicher Geometrie (nach Fig. 5) bringen Güteverbesserungen bis zu 30 %.
  • In den Fig. 7 bis 10 sind weitere mögliche Ausführungs­varianten nur noch schematisch dargestellt, da die Wir­kungsweise im vorstehenden bereits beschrieben wurde.
  • Zum Beispiel braucht die Geometrie der Resonatoren nicht auf Spiralen mit stetigem Verlauf beschränkt bleiben. Die Resonatoren können ggfs. auch in rechteckiger Form wie in Fig. 7 gezeigt oder mit unterschiedlichem Leitungsquerschnitt - angepaßt an die Strombelegung des Resonators - realisiert werden. Ebenso ist eine 90°-Dre­hung der Spiralen SpR₁ bis SpR₅, wie in Fig. 8 oder Fig. 9 dargestellt, möglich. Als gemeinsamer Fußpunkt der Spi­ralen können auch die Spiralenmittelpunkte M wie in den Fig. 9 und Fig. 10 gewählt werden. Im Beispiel der Fig. 10 ist eine Trägerplatte 6 zur Aufnahem der Masseanschlüsse M und der Resonatoren SpR₁ bis SpR₄ verwendet.
  • Fig. 11 zeigt den gemessenen Verlauf der Betriebsdämpfung aB und der Reflexionsdämpfung ar in Abhängigkeit von der Frequenz f eines bei 900 MHZ realisierten Filters nach Fig. 4. Der Durchlaßbereich liegt etwa zwischen 935 MHZ und 970 MHZ. Im frequenztieferen Sperrbereich, also etwa bei 910 MHZ tritt ein Dämpfungspol der Betriebsdämpfung ab auf, so daß erkennbar ist, daß Versteilerungen des Betriebsdämpfungsverlaufes jederzeit möglich sind.
  • Es kommt hinzu, daß die vorstehend beschriebenen Filter, insbesondere auch im Frequenzbereich des Verkehrsfunkes, bei guten elektrischen Eigenschaften ein verhältnismäßig kleines Volumen benötigen. Die als Spiralresonatoren aus­gebildeten Resonatoren haben eine Verkürzung der elektri­ schen Baulänge zur Folge, was gerade auch in fahrbaren Anlagen als vorteilhaft anzusehen ist.

Claims (10)

1. In der Art von Kammleitungs- bzw. Interdigitallei­tungsfiltern ausgebildetes Filter für kurze elektromag­netische Wellen, bei dem die Resonatoren derart angeordnet sind, daß ihre Kopplung als Leitungskopplung (K₁...K₃) wirkt,
dadurch gekennzeichnet,
daß die Innenleiter der Resonatoren (R₁...R₄) als ebene Spirale (SpR₁...SpR₄) ausgebildet ist (Fig. 2).
2. Filter nach Anspruch 1,
dadurch gekennzeichnet,
daß Abstimmelemente (A₁...A₄) vorgesehen sind, die in den Feldraum der Spiralresonatoren (SpR₁...SpR₄) ein­tauchen.
3. Filter nach Anspruch 2,
dadurch gekennzeichnet,
daß die Abstimmelemente (A₁...A₄) als Abstimmschrauben ausgebildet sind, deren Längsachse senkrecht steht zur Ebene der Spiralresonatoren (SpR₁...SpR₄) und die Spi­rale etwa mittig durchdringt.
4. Filter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Form der Spirale (SpR₁) abweicht von der stetigen Form.
5. Filter nach Anspruch 5,
dadurch gekennzeichnet,
daß die Spirale (SpR₁) als rechteckförmiger Linienzug nachgebildet ist.
6. Filtern nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Leiterquerschnitt der Spirale (SpR₁) sich stetig oder sprunghaft ändert.
7. Filter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Spiralresonatoren (SpR₁...SpR₄) derart angeordnet sind, daß die von den Spiralen gebildeten Ebenen in der gleichen Ebene liegen (Fig. 2).
8. Filter nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Spiralresonatoren (SpR₁...SpR₅) derart angeordnet sind, daß die von den Spiralen gebildeten Ebenen zueinan­der parallel verlaufen (Fig. 8).
9. Filter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Einkopplung (E) bzw. die Auskopplung (A) derart ausgebildet ist, daß wenigstens ein Resonator (SpR₁) über­brückt ist (Fig. 4).
10. Filter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zwei Resonatorsätze (SpR₁...SpR₄) gleicher Geometrie parallel geschaltet sind (Fig. 5).
EP87110779A 1986-07-29 1987-07-24 In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen Expired - Lifetime EP0255068B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87110779T ATE84639T1 (de) 1986-07-29 1987-07-24 In der art vom kammleitungs- bzw. interdigitalleitungsfiltern ausgebildetes filter fuer kurze elektromagnetische wellen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3625559 1986-07-29
DE3625559 1986-07-29

Publications (2)

Publication Number Publication Date
EP0255068A1 true EP0255068A1 (de) 1988-02-03
EP0255068B1 EP0255068B1 (de) 1993-01-13

Family

ID=6306176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110779A Expired - Lifetime EP0255068B1 (de) 1986-07-29 1987-07-24 In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen

Country Status (5)

Country Link
US (1) US4757285A (de)
EP (1) EP0255068B1 (de)
JP (1) JPS6338305A (de)
AT (1) ATE84639T1 (de)
DE (1) DE3783530D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005654A1 (de) * 1989-02-23 1990-09-13 Dx Antenna Kupplungsvorrichtung fuer hf-koaxialleitungen
EP1014469A2 (de) * 1998-12-22 2000-06-28 Murata Manufacturing Co., Ltd. Resonator,Filter,Duplexer und Kommunikationsgerät
EP1109246A1 (de) * 1999-12-07 2001-06-20 Murata Manufacturing Co., Ltd. Filter, Duplexer und Kommunikationsvorrichtung

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04801A (ja) * 1990-04-17 1992-01-06 Murata Mfg Co Ltd バンドパスフィルタ
US5420553A (en) * 1991-01-16 1995-05-30 Murata Manufacturing Co., Ltd. Noise filter
CA2073272C (en) * 1991-07-08 1997-04-01 Kenjiro Higaki Microwave resonator of compound oxide superconductor material
JP3120682B2 (ja) * 1995-01-09 2000-12-25 株式会社村田製作所 チップ型フィルタ
US5945894A (en) * 1995-03-22 1999-08-31 Murata Manufacturing Co., Ltd. Dielectric resonator and filter utilizing a non-radiative dielectric waveguide device
JP2897678B2 (ja) * 1995-03-22 1999-05-31 株式会社村田製作所 誘電体共振器及び高周波帯域通過フィルタ装置
US5838213A (en) * 1996-09-16 1998-11-17 Illinois Superconductor Corporation Electromagnetic filter having side-coupled resonators each located in a plane
US6522217B1 (en) * 1999-12-01 2003-02-18 E. I. Du Pont De Nemours And Company Tunable high temperature superconducting filter
JP3452032B2 (ja) * 2000-06-26 2003-09-29 株式会社村田製作所 フィルタ、デュプレクサおよび通信装置
JP3603826B2 (ja) * 2001-09-17 2004-12-22 株式会社村田製作所 スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置
US7084720B2 (en) * 2002-01-09 2006-08-01 Broadcom Corporation Printed bandpass filter for a double conversion tuner
GB0202839D0 (en) * 2002-02-07 2002-03-27 Johnson Electric Sa Blower motor
US7714688B2 (en) * 2005-01-20 2010-05-11 Avx Corporation High Q planar inductors and IPD applications
JP5120945B2 (ja) * 2008-05-16 2013-01-16 Dxアンテナ株式会社 バラン装置およびアンテナ装置
WO2010082384A1 (ja) 2009-01-15 2010-07-22 株式会社村田製作所 ストリップラインフィルタ
KR101295869B1 (ko) * 2009-12-21 2013-08-12 한국전자통신연구원 복수의 절연층들에 형성된 선로 필터
CN103311621A (zh) * 2012-03-15 2013-09-18 成都赛纳赛德科技有限公司 一种基于细线支节的带线高通滤波器
CN103311609A (zh) * 2012-03-15 2013-09-18 成都赛纳赛德科技有限公司 一种基于螺旋支节的带线高通滤波器
WO2020147063A1 (zh) * 2019-01-17 2020-07-23 罗森伯格技术(昆山)有限公司 一种滤波器
CN112038740A (zh) * 2020-08-10 2020-12-04 广州智讯通信系统有限公司 一种小型化多工器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751558A (en) * 1952-04-02 1956-06-19 Itt Radio frequency filter
GB770166A (en) * 1951-05-31 1957-03-20 Standard Telephones Cables Ltd Microwave radio receiver
FR1246658A (fr) * 1959-02-19 1960-11-18 Marconi Wireless Telegraph Co Perfectionnements aux lignes de transmission
US3210697A (en) * 1963-12-30 1965-10-05 Automatic Elect Lab Strip transmission line tuning devices
US3836881A (en) * 1972-11-14 1974-09-17 Alps Electric Co Ltd Double-tuned circuit device with adjustable coupling coefficient means
EP0044941A1 (de) * 1980-07-30 1982-02-03 ANT Nachrichtentechnik GmbH Abstimmbare Streifenleiterschaltung
US4468644A (en) * 1982-09-23 1984-08-28 General Instrument Corp. Tunable reject filter for radar warning receiver

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE44941C (de) * E. C. marc in Paris, 1 Avenue de Clichy Waage, welche Marken mit gedruckter Gewichtsangabe automatisch vertheilt
US3864824A (en) * 1971-12-27 1975-02-11 Rockwell International Corp Tuning and matching of film inductors or transformers with paramagnetic and diamagnetic suspensions
JPS5210269Y2 (de) * 1972-02-17 1977-03-05
US3895325A (en) * 1974-04-30 1975-07-15 Gte International Inc Variable oscillating circuit arrangement for UHF range
JPS5221745A (en) * 1975-08-12 1977-02-18 Toshiba Corp High frequency fier
JPS5712562U (de) * 1980-06-27 1982-01-22
JPS58136107A (ja) * 1982-02-08 1983-08-13 Nec Corp スパイラル型伝送線路
JPH0716124B2 (ja) * 1983-08-02 1995-02-22 松下電器産業株式会社 同調装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB770166A (en) * 1951-05-31 1957-03-20 Standard Telephones Cables Ltd Microwave radio receiver
US2751558A (en) * 1952-04-02 1956-06-19 Itt Radio frequency filter
FR1246658A (fr) * 1959-02-19 1960-11-18 Marconi Wireless Telegraph Co Perfectionnements aux lignes de transmission
US3210697A (en) * 1963-12-30 1965-10-05 Automatic Elect Lab Strip transmission line tuning devices
US3836881A (en) * 1972-11-14 1974-09-17 Alps Electric Co Ltd Double-tuned circuit device with adjustable coupling coefficient means
EP0044941A1 (de) * 1980-07-30 1982-02-03 ANT Nachrichtentechnik GmbH Abstimmbare Streifenleiterschaltung
US4468644A (en) * 1982-09-23 1984-08-28 General Instrument Corp. Tunable reject filter for radar warning receiver

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
7TH EUROPEAN MICROWAVE CONFERENCE, 5.-8. September 1977, Seiten 450-454, Microwave Exhibitions and Publishers, Sevenoaks, Kent, GB; M. HOUDART et al.: "Coplanar lines: application to lumped and semi-lumped microwave integrated circuits" *
PATENT ABSTRACTS OF JAPAN, Band 1, Nr. 86, 11. August 1977, Seite 1878 E77; & JP-A-52 21 745 (TOKYO SHIBAURA DENKI K.K.) 18-02-1977 *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 247 (E-208)[134], 2. November 1983; & JP-A-58 136 107 (NIPPON DENKI K.K.) 13-08-1983 *
PROCEEDINGS OF THE IEEE, Band 67, Nr. 1, Januar 1979, Seiten 20-24, IEEE, New York, US; O. INUI et al.: "Miniaturization of wide-band VHF filters by using spiral resonators" *
REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES, Band 24, Nrs. 9-10, September-Oktober 1976, Seiten 776-786; I. NISHI et al.: "Spiral Resonator for PCM-400 M system" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005654A1 (de) * 1989-02-23 1990-09-13 Dx Antenna Kupplungsvorrichtung fuer hf-koaxialleitungen
EP1014469A2 (de) * 1998-12-22 2000-06-28 Murata Manufacturing Co., Ltd. Resonator,Filter,Duplexer und Kommunikationsgerät
EP1014469A3 (de) * 1998-12-22 2001-05-02 Murata Manufacturing Co., Ltd. Resonator,Filter,Duplexer und Kommunikationsgerät
US6486754B1 (en) 1998-12-22 2002-11-26 Murata Manufacturing Co., Ltd. Resonator, filter, duplexer, and communication device
EP1109246A1 (de) * 1999-12-07 2001-06-20 Murata Manufacturing Co., Ltd. Filter, Duplexer und Kommunikationsvorrichtung
US6501345B2 (en) 1999-12-07 2002-12-31 Murata Manufacturing Co., Ltd. Filter, duplexer, and communications device

Also Published As

Publication number Publication date
EP0255068B1 (de) 1993-01-13
JPH056921B2 (de) 1993-01-27
US4757285A (en) 1988-07-12
ATE84639T1 (de) 1993-01-15
JPS6338305A (ja) 1988-02-18
DE3783530D1 (de) 1993-02-25

Similar Documents

Publication Publication Date Title
EP0255068B1 (de) In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen
DE3877235T2 (de) Filter mit elementen mit verteilten parametern, wobei zwei arten von kopplungsvorrichtungen vorhanden sind.
DE10248477B4 (de) LC-Hochpaßfilter-Schaltungsvorrichtung, laminierte LC-Hochpaßfiltervorrichtung, Multiplexer und Funkkommunikationseinrichtung
DE69424618T2 (de) Dielektrischer Resonator, dielektrisches Bandsperrfilter und dielektrisches Filter
DE69114216T2 (de) Abstimmbares Bandpass Filter.
DE69718548T2 (de) Integrierte filterkonstruktion
DE69320884T2 (de) Wellenfilter mit elektrisch gut isolierten dielektrischen Resonatoren
DE69432059T2 (de) Geschichtetes dielektrisches Filter
DE10150159B4 (de) Impedanzanpassungsschaltung für einen Mehrband-Leisungsverstärker
DE2510854A1 (de) Bandpassfilter fuer mikrowellen
DE69014674T2 (de) Dielektrisches Filter des LC-Typs.
EP1212806A1 (de) Hochfrequenz-bandpassfilteranordnung mit dämpfungspolen
EP0947030A1 (de) Mikrowellenfilter
DE2610013C3 (de) Resonator
CH617039A5 (de)
DE69125641T2 (de) Modulares dielektrisches Bandsperrfilter
DE68917373T2 (de) Magnetisch abstimmbares Bandpassfilter.
DE69715035T2 (de) Mikrowellenresonator
DE69323660T2 (de) Koaxialer Resonator und dielektrisches Filter mit einem derartigen Resonator
DE69618278T2 (de) Dielektrisches Filter
DE60215749T2 (de) Dielektrisches Bauteil
DE60110033T2 (de) Bandpassfilter mit einer kompakten dielektrischen Struktur aus halbwellen Resonatoren und dazwischenliegenden evanescenten Wellenleitern
DE2714181A1 (de) Filter fuer sehr kurze elektromagnetische wellen
DE10303653B4 (de) Dielektrischer Resonator und dielektrisches Filter
DE2640210C3 (de) Filter für sehr kurze elektromagnetische Wellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880627

17Q First examination report despatched

Effective date: 19901001

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 84639

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3783530

Country of ref document: DE

Date of ref document: 19930225

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87110779.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960621

Year of fee payment: 10

Ref country code: AT

Payment date: 19960621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960716

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960717

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960719

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960801

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960917

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961017

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970724

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970724

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19970731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

EUG Se: european patent has lapsed

Ref document number: 87110779.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050724