EP0240795A2 - Kraftfahrzeug mit Allradantrieb - Google Patents

Kraftfahrzeug mit Allradantrieb Download PDF

Info

Publication number
EP0240795A2
EP0240795A2 EP87103982A EP87103982A EP0240795A2 EP 0240795 A2 EP0240795 A2 EP 0240795A2 EP 87103982 A EP87103982 A EP 87103982A EP 87103982 A EP87103982 A EP 87103982A EP 0240795 A2 EP0240795 A2 EP 0240795A2
Authority
EP
European Patent Office
Prior art keywords
motor vehicle
drive
vehicle according
brake
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87103982A
Other languages
English (en)
French (fr)
Other versions
EP0240795B1 (de
EP0240795A3 (en
Inventor
Paul Bausch
Hans-Peter Dipl.-Ing. Hemmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adam Opel GmbH
Opel Espana SLU
Original Assignee
Adam Opel GmbH
General Motors Espana SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adam Opel GmbH, General Motors Espana SL filed Critical Adam Opel GmbH
Publication of EP0240795A2 publication Critical patent/EP0240795A2/de
Publication of EP0240795A3 publication Critical patent/EP0240795A3/de
Application granted granted Critical
Publication of EP0240795B1 publication Critical patent/EP0240795B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3003Band brake actuating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3505Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed
    • B60K17/351Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed comprising a viscous clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/103Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic in combination with other control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/005Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D49/00Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like
    • F16D49/08Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like shaped as an encircling band extending over approximately 360 degrees

Definitions

  • the invention relates to a motor vehicle with all-wheel drive, in which the wheels are constantly driven by only one axle, while the drive for the wheels of the second axle by means of a clutch which is located between the axles in the drive train and acts automatically as a function of the driving conditions, in particular one Viscose coupling that can be manufactured.
  • a viscose coupling transmits only very small torques when the speed of the coupled shafts is low, and high torques when there are large differences in speed.
  • the viscose clutch can therefore operate as a self-locking center differential or a combined center differential and axle differential, depending on the driving conditions.
  • the viscose coupling transmits a correspondingly low drive torque, and you have a driving behavior that essentially corresponds to that of a motor vehicle with only one driven axle.
  • the viscose coupling "locks" and, depending on the type of installation, the viscose coupling Coupling the driving behavior of an all-wheel drive vehicle with a locked center differential or a locked center differential and a locked axle differential. With the viscose coupling, a four-wheel drive that is permanently in standby is realized.
  • DE-OS 33 17 247 it has already been proposed to place a controllable additional clutch together with the viscose clutch in the drive train of a motor vehicle in order to enable torque coupling and decoupling of the drive.
  • the known additional clutch is designed as a torque-automatically coupling and uncoupling clamping roller freewheel or as a hydraulically or electromagnetically actuated switchable clutch. It ensures that when the service brake is actuated, no torque is transmitted between the axles of the vehicle via the drive train, so that the rear wheels are not blocked when the front wheels are overbraked.
  • the object of the invention is to provide an additional clutch for a motor vehicle according to the preamble of patent claim 1, which has an inexpensive, compact structure can be easily integrated into the drivetrain and is optimally controlled for all driving, maintenance and test situations.
  • a planetary gear provided between the axes serves as an additional clutch, on which controllable means for locking a gear element work.
  • the invention now also gives the planetary gear the function of an additional clutch in the drive train in which the viscous clutch is located, which leads to a structurally inexpensive, compact, wear-resistant and low-loss gearbox construction.
  • the ring gear of the planetary gear is rotatably mounted and can be braked by means of a brake.
  • this arrangement comes close to that of a planetary gear unit with a ring gear fixed to the body, ie it is extremely compact.
  • the ring gear as a radially external part of the planetary gear, is also excellently suited for the application of a brake.
  • the drive of the planetary gear can via the planet carrier, and the output takes place via the sun gear.
  • the ring gear can be braked during normal driving of the motor vehicle.
  • the torque coupling of the axles via the viscose coupling is then effective, and the all-wheel drive is in the ready position at all times.
  • the ring gear should be released by releasing the brake, and the torque coupling of the axles should be released when certain driving or test conditions exist. This includes every actuation of the service brake, so that the wheels on the rear axle do not necessarily lock when the wheels on the front axle are overbraked, which are usually used to a greater extent for the adhesion value when braking.
  • the decoupling of the axles when braking also has the advantage that the vehicle can be equipped with an anti-lock braking system, as is customary for uniaxially driven vehicles.
  • the control unit should also respond when the engine is coasting and release the ring gear in order to improve driving stability. When towing the vehicle it is also desirable to release the ring gear as automatically as possible so that harmful speed differences in the viscous clutch are avoided. Likewise, the control unit should respond when maneuvering in the event of low ambient temperatures in order to keep the steering effort low in the event of a possible adhesive closure in the viscose coupling.
  • At least one workshop should be able to activate the control unit and release the ring gear so that the vehicle can be tested on a single-axle chassis dynamometer, for example, for performance and emission measurements can be and only has to be lifted in the area of an axis when dynamically balancing the wheels.
  • the control unit can receive in particular a signal which characterizes the position of the brake pedal and accelerator pedal and a signal which characterizes the switch-on state of the ignition. Further possible input variables for the control unit are the signal of a steering angle sensor and the signal of a temperature sensor on the viscous coupling as well as, if applicable, a signal characterizing the engine speed and the signal of a timer. The control unit uses these input variables to determine an output signal that activates the brake for the ring gear.
  • the ring gear of the planetary gear is released in normal driving operation.
  • the all-wheel drive is then not per se in the permanent standby position otherwise guaranteed by the viscose coupling, but is switched on by braking the ring gear.
  • This goes hand in hand with the advantage of a low transmission loss power while all the other possible uses of a viscose coupling continue to exist; in particular, the viscose clutch forms a comparatively inexpensive center differential or a combined center differential and axle differential.
  • the ring gear can be braked by an operator intervention or automatically, the latter variant preferably detecting the rotational speed of the front axle and rear axle and, if a certain speed difference is exceeded, the brake operating on the ring gear is activated.
  • the corresponding sensors of an anti-lock braking system can be used for speed detection.
  • the gear arrangement described is that of a viscose coupling alone not noticeably after.
  • a brake band that wraps around the ring gear can be used to brake the ring gear of the planetary gear.
  • An actuator actuated by the engine oil pressure is preferably provided for tensioning the brake band.
  • the motor vehicle according to the invention can have a front engine which is preferably installed transversely. Its main drive axle is preferably the front axle, while the viscose clutch and the planetary gear fulfilling the function of an additional clutch are located in a drive train to the rear.
  • the planetary gear can be arranged behind the front axle differential and preferably directly in front of the viscose clutch.
  • other installation positions for the planetary gear are also conceivable, for example at the end of a propeller shaft in front of the rear axle differential.
  • the motor vehicle according to the invention can also have a standard drive with a front engine and a rear axle forming the main drive axle.
  • a drivetrain is then branched off from the drive train leading to the rear axle via the planetary gear, which also fulfills the function of an additional clutch, and the viscose coupling to the front axle.
  • FIG. 1 shows the gear arrangement of a motor vehicle with a transversely installed front engine located in the area of the front axle differential.
  • the drive torque of the engine is transmitted via a conventional manual transmission, the output wheel 10 of which has external teeth and meshes with a gear 14 arranged rigidly on the differential housing 12 of the front axle differential. Part of the drive torque is thus transmitted via the front axle differential to the front axle shafts 16 and the front wheels of the motor vehicle seated thereon.
  • the differential housing 12 is rotatably connected to a hollow shaft 18 on which a ring gear 20 is seated in a rigid arrangement. The latter is in engagement with a bevel gear 22, which forms a planet carrier.
  • One of the planet gears is shown at 24.
  • the planet gears 24 mesh radially on the outside with a ring gear 26 and radially on the inside with a sun gear 28.
  • the ring gear 26 of the planetary gear is mounted in a gear housing 40 which is fixedly connected to the vehicle body. It is wrapped in a brake band 42 and can be braked by tightening the brake band 42.
  • the ring gear 26 runs freely. Differences in speed between the wheels of the front and rear axles can then be compensated for in the planetary gear with very low friction losses, without anything changing the synchronism of the drive and output-side disk sets 34, 36 of the viscous clutch 32.
  • the viscose coupling therefore transmits no or only a minimal torque, and the front and rear axles remain decoupled in terms of torque even under conditions such as with a fixed ring gear 26 would block the viscose coupling 32.
  • a drive for tensioning and releasing the brake band 42 can be controlled with a control unit 44, as is shown schematically in FIG. 2.
  • a control unit 44 receives a signal from the control unit 44, on the basis of which the brake band 42 is released and the torque coupling of the front axle and rear axle is interrupted.
  • the control unit 44 receives input variables which characterize the position of a brake pedal 46, an accelerator pedal 48 and the switch-on state of the ignition 50. Further input variables can come from a temperature sensor on the viscose coupling 32 and from a steering angle transmitter, the latter serving to identify a maneuvering operation of the vehicle. For this purpose, a signal characterizing the engine speed and the signal of a timer can also be used, which measures, for example, a time interval after the ignition 50 is switched on. The desired output signal for the brake band drive is determined in the control unit 44 from these input variables.
  • the brake band 42 is released in particular when the service brake of the vehicle is actuated.
  • This operating state is identified on the basis of the input variables of the control unit 44 by depressing the brake pedal 46, the accelerator pedal 48 is in its zero position and the ignition 50 is switched on.
  • brake band 42 is released when the vehicle is coasting.
  • accelerator pedal 48 and brake pedal 46 must be in their zero position and the ignition 50 must be switched on.
  • the brake band 42 is released when maneuvering, in particular for parking the vehicle.
  • the temperature measured by the temperature sensor on the viscose coupling 32 must be below a certain temperature threshold, for example -5 ° C., which is indicated by a corresponding signal from the temperature sensor.
  • the maneuvering mode of the vehicle must be identified on the basis of a corresponding signal from the steering angle sensor and / or a signal characterizing the low engine speed.
  • the steering angle transmitter can respond, for example, when there is more than one steering wheel revolution.
  • the regularly required maneuvering operation can be identified shortly after the ignition 50 of the motor vehicle is switched on by a corresponding signal from a timer.
  • the specialist personnel of a workshop should be able to activate the control unit 44 by a suitable switching intervention in order to release the brake band 42.
  • the axles of the vehicle can be decoupled in terms of torque, particularly in the case of roller dynamometer measurements and dynamic wheel balancing.
  • Towing is always done with the engine stopped, however with the ignition 50 possibly switched on, so that a further control specification is required for the automatic torque decoupling of the axes. It can be exploited here in particular that the engine oil pressure drops when the engine is not running, and provide a brake belt drive actuated by the engine oil pressure, as illustrated below in FIGS. 3 to 5.
  • the brake belt drives are each shown with a view of the end face of the ring gear 26, which, like the other parts of the planetary gear, is only indicated schematically.
  • the brake band 42 wraps around the ring gear 26 over almost its entire circumference.
  • a holder 52, 54 is attached to each of the two ends of the brake band 42.
  • a set screw 56 which is fixed to the body and engages tangentially to the ring gear 26 and serves to adjust the tension of the brake band 42, engages in one holder 52.
  • the actuator 58 of a hydraulically actuated diaphragm servomotor 60 engages in the other holder 54.
  • the actuator 58 is in alignment with the adjusting screw 56, and it is driven in tangential movement to the ring gear 26.
  • the membrane servo motor 60 has a housing in which two working spaces are divided by a membrane 62.
  • the actuator 58 is arranged to be axially displaceable on the longitudinal center axis of the housing and is connected to the inner ring of the membrane 62. It protrudes from the housing at both ends, with one end engaging in the holder 54, while the other end interacts with a lifting magnet 64.
  • the work space through the pressurization of which the actuator 58 is extended to tension the brake band 42 is constantly under pressure from the engine oil via a connection 66.
  • the one 3 in the design of FIG. 3 is relieved of pressure towards the atmosphere and not connected.
  • the diaphragm servomotor 60 tensions the brake band 42 when the motor is running due to the engine oil pressure applied to the diaphragm 62, so that the ring gear 26 is braked.
  • the four-wheel drive running via the viscose coupling 32 is therefore in a constant standby position.
  • the hydraulic actuating force of the diaphragm servomotor 60 can, however, be overcome by activating the lifting magnet 64, as a result of which the actuator 58 is withdrawn and the brake band 42 is released. This takes place on the basis of a corresponding output signal from the control unit 44.
  • the brake band 42 is released when the engine of the vehicle is stopped and the engine oil pressure drops accordingly. The torque coupling of the axles via the viscose coupling 32 is then canceled.
  • Fig. 4 shows an alternative design of a brake belt drive.
  • Hydraulic lifting units actuated by engine oil pressure work here on the holders 52, 54 at both ends of the brake band 42. In this way, a uniform introduction of the braking force over its circumference is achieved.
  • One of the lifting units is designed as a double-acting diaphragm servo motor 68, the working spaces of which can be acted upon alternately by the engine oil pressure via an electromagnetic switch slide 70 and a brake band release slide 72.
  • Spring preload 74 of the diaphragm servomotor 68 ensures that the brake band 42 is tensioned when the engine oil pressure drops.
  • a holder 52 with an adjusting screw 56 engaging therein is again provided at one end of the brake band 42.
  • the actuator 58 of a piston-cylinder unit 76 actuated by the engine oil pressure works.
  • a spring spring 78 is tensioned, which is actuated by means of a lifting magnet 80.
  • a cam drive, a stepping motor or the like can also be used. act on the spring 78. In its rest position, this does not prevent the tensioning of the brake band 42, so that the ring gear 26 is normally braked again via the piston-cylinder unit 76 due to the oil pressure of the running engine. But if the solenoid 80 or similar Actuator actuated, the holders 52, 54 are pressed apart and the ring gear 26 is released.
  • Figures 6 to 9 show alternative, non-hydraulically operated brake belt drives.
  • the actuator 58 working on the holder 54 at one end of the brake band 42 is under the force of a mechanical spring accumulator 82 with a compression spring 84.
  • the brake band 42 is normally tensioned in this way.
  • the actuator 58 can be withdrawn by means of a lifting magnet 64 against the force of the compression spring 84, as a result of which the ring gear 26 is released.
  • FIG. 7 illustrates a brake belt drive with an actuator 58 which is acted upon by the eccentric cam 86 of a cam drive and is thereby deflected.
  • the cam can be operated with an actuator or the like. be driven.
  • the brake band 42 is tensioned with loops 88, 90 via an eccentric shaft 92.
  • the fastening sections for the loops 88, 90 are offset eccentrically from one another, so that the brake band 42 is tensioned and rotated by rotating the eccentric shaft 92 can be solved.
  • one of the loops 88 is forked in a U-shape in its anchoring region.
  • An anchoring section on the other tab 90 comes to rest in the fork opening in which the shaft 92 also has its eccentric part.
  • FIG. 10 illustrates an arrangement of a planetary gear 94, which at the same time works as an additional clutch with a viscose clutch in the same drive train.
  • the ring gear 26 of the planetary gearbox was braked in normal driving operation and the all-wheel drive was thus in the constant ready position
  • a special control process is required in order to brake the ring gear 26 and to put the all-wheel drive running via the viscose clutch 32 into the ready position. This can be done, for example, by operator intervention by the driver, who thus has the all-wheel drive activated.
  • the control process can also run automatically. 10 and 11, the speeds on the transmission output shaft in the region of the front axle and the entrance to the rear axle differential are recorded with sensors 98, for which purpose the corresponding sensors of an anti-lock braking system can serve in particular.
  • a control unit 100 The speeds are compared in a control unit 100. If the difference signal exceeds a predetermined threshold, a motor control 104 of the brake band drive becomes effective and the brake band 42 is tightened, for which purpose in particular a servomotor with limit switch 106, but also every other one the brake band drives described above can serve. At the same time, a first signal lamp 108 lights up, which signals to the driver that the four-wheel drive is in the ready position. However, this only applies if there is not one or more of the aforementioned situations in which the engagement of the four-wheel drive is to be inhibited. This is the case in particular when the brake pedal 46 is actuated, and is illustrated correspondingly schematically in FIG. 11.
  • the activation of the all-wheel drive can also be prevented in the overrun mode of the engine and during measurement and maintenance work.
  • a special detection of the maneuvering operation can be omitted, since in normal cases there is no torque coupling of the axes via the viscose coupling 32.
  • the brake band 42 is released again when the detected speed difference is so small in normal driving that the viscous coupling 32 has no effect.
  • a safety circuit 110 monitors the sensors 98 and ensures that the brake band 42 remains released in any case in the event of a defect. Such a fault is indicated by a second signal lamp 112.
  • a diagnostic connector 114 makes troubleshooting easier for the workshop.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Das Kraftfahrzeug hat eine ständig angetriebene Achse. In dem Antriebsstrang zu der zweiten Achse liegt eine Viskose-Kupplung (32).Zwischen den Achsen ist ein Planetengetriebe vorgesehen. Das Hohlrad (26) des Planetengetriebes ist drehbar gelagert und mittels eines Bremsbands (42) festbremsbar. Bei angezo­genem Bremsband (42) ist der über die Viskose-Kupplung (32) laufende Vierradantrieb in Bereitschaftsstellung, während er bei gelöstem Bremsband (42) unwirksam ist.

Description

  • Die Erfindung bezieht sich auf ein Kraftfahrzeug mit Allrad­antrieb, bei dem die Räder nur einer Achse ständig angetrie­ben sind, während der Antrieb für die Räder der zweiten Ach­se mittels einer im Antriebsstrang zwischen den Achsen lie­genden, in Abhängigkeit von den Fahrbedingungen selbsttätig wirkenden Kupplung, insbesondere einer Viskose-Kupplung, herstellbar ist.
  • Eine Viskose-Kupplung überträgt bei geringen Drehzahldiffe­renzen der gekuppelten Wellen nur sehr kleine Drehmomente, und bei größeren Drehzahldifferenzen hohe Drehmomente. Je nach Einbauort im Antriebsstrang kann die Viskose-Kupplung daher als in Abhängigkeit von den Fahrbedingungen selbsttä­tig sperrendes Mittendifferential oder kombiniertes Mitten­differntial und Achsdifferential arbeiten. Im normalen Fahr­betrieb des Kraftfahrzeugs treten nur geringe Drehzahldif­ferenzen zwischen den Rädern der beiden Achsen auf. Die Vis­kose-Kupplung überträgt ein entsprechend geringes Antriebs­drehmoment, und man hat ein Fahrverhalten, das im wesentli­chen dem eines Kraftfahrzeugs mit nur einer angetriebenen Achse entspricht. Ergeben sich aber beispielsweise bei gerin­gen Reibwerten, wie sie auf nassen, eis- oder schneeglatten oder sandigen Straßen vorzufinden sind, größere Drehzahldifferenzen zwischen den Rädern, so "sperrt" die Viskose-Kupplung, und man hat je nach Einbauart der Viskose-­ Kupplung das Fahrverhalten eines allradgetriebenen Fahr­zeugs mit gesperrtem Mittendifferential bzw. gesperrtem Mittendifferential und gesperrtem Achsdifferential. Mit der Viskose-Kupplung wird also ein permanent in Bereit­schaftstellung befindlicher Allradantrieb realisiert.
  • Die mit der Viskose-Kupplung bewirkte drehzahldifferenzab­hängige Kopplung zwischen den Achsen des Kraftfahzeugs ist nun nicht immer erwünscht. Blockieren beispielsweise bei einer Betätigung der Betriebsbremse die Vorderräder, so werden über die Viskose-Kupplung zwangsweise auch die Hinterräder überbremst, was zu einem Verlust der Fahrstabi­lität führt. Ein etwa vorgesehenes Antiblockiersystem muß den Besonderheiten des Allradantriebs mit Viskose-Kupplung Rechnung tragen, was einen hohen konstruktiven Aufwand mit sich bringt. Im Schubbetrieb des Motors bei Geradeausfahrt treibt die Hinterachse über die Viskose-Kupplung den Motor an. Dabei verlieren die Hinterräder auf glattem Untergrund an Seitenführungskraft, und das Fahrzeug kann ausbrechen. Im Schubbetrieb bei enger Kurvenfahrt treibt umgekehrt die Vorderachse über die Viskose-Kupplung die Hinterachse an. Daraus resultiert ein Verlust an Seitenführungskraft, auf­grund dessen das Fahrzeug nach außen schiebt. Ein allrad­getriebenes Fahrzeug mit Viskose-Kupplung läßt sich nicht wie üblich mit angehobener Vorderachse auf einer Abschlepp­brille abschleppen, da dies Drehzahldifferenzen in der Vis­kose-Kupplung zur Folge hat, die zum Hump und zur Zerstö­rung führen. Beim Rangieren des Fahrzeugs insbesondere zum Ausparken kann es bei winterlichen Temperaturen zu einem Haftschluß in der Viskose-Kupplung kommen. Daraus resultiert ein erheblich vergrößerter Lenkkraftaufwand, der die Bedie­nung des Fahrzeugs höchst unbequem macht. Bei Rollenprüf­standsmessungen beispielsweise für Leistungs- und Emisions­tests braucht man für allradgetriebene Fahrzeuge mit Viskose-Kupplung einen Zweiachs-Rollenprüfstand, der viel aufwendiger ist als ein Einachs-Rollenprüfstand und in den Werkstätten vielfach noch nicht zur Verfügung steht. Eben­so muß bei einem dynamischen Auswuchten der Räder das ganze Fahrzeug vom Boden abgehoben werden, und nicht nur die Rä­der an jeweils einer auszuwuchtenden Achse, was einen er­heblichen Mehraufwand bedingt. Nach alledem gibt es sowohl im Fahrbetrieb, als auch bei der Wartung eines allradge­triebenen Fahrzeugs mit Viskose-Kupplung genug Situationen, in denen man auf die drehmomentenmäßige Kopplung der Achsen über die Viskose-Kupplung lieber verzichten würde.
  • In der DE-OS 33 17 247 wurde bereits vorgeschlagen, zusam­men mit der Viskose-Kupplung eine steuerbare Zusatzkupp­lung in den Antriebsstrang eines Kraftfahrzeugs zu legen, um eine drehmomentmäßige Kopplung und Entkopplung des An­triebs zu ermöglichen. Die bekannte Zusatzkupplung ist als drehmomentenmäßig selbsttätig koppel- und entkoppelbarer Klemmrollenfreilauf oder als hydraulisch oder elektromag­netisch betätigte schaltbare Trennkupplung ausgebildet. Sie sorgt dafür, daß bei Betätigung der Betriebsbremse kein Drehmoment über den Antriebsstrang zwischen den Achsen des Fahrzeugs übertragen wird, so daß bei einem Überbremsen der Vorderräder die Hinterräder nicht mit blockieren.
  • Die aus der DE-OS 33 17 247 bekannten Bauformen einer Zusatz­kupplung sind konstruktiv aufwendig, sperrig und nicht leicht in den Antriebsstrang eines Kraftfahrzeugs zu integrieren, und ihre Ansteuerung gewährleistet nicht, daß die drehmo­mentenmäßige Kopplung der Fahrzeugachsen in allen Situationen unterbrochen ist, in denen dies wünschenswert erscheint.
  • Aufgabe der Erfindung ist es, eine Zusatzkupplung für ein Kraftfahrzeug nach dem Oberbegriff des Patentanspruchs 1 anzugeben, die sich bei unaufwendigem, kompaktem Aufbau einfach in den Antriebsstrang integrieren läßt und eine allen Fahr-, Wartungs- und Testsituationen optimal Rech­nung tragende Ansteuerung erfährt.
  • Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgeschla­gen, daß als Zusatzkupplung ein zwischen den Achsen vorge­sehenes Planetengetriebe dient, auf das steuerbare Mittel zum Sperren eines Getriebeelements arbeiten.
  • Die Erfindung gibt nun dem Planetengetriebe zugleich die Funktion einer Zusatzkupplung in dem Antriebsstrang, in dem die Viskose-Kupplung liegt, was zu einem konstruktiv unaufwendigen, kompakten, verschleißfesten und verlustarmen Getriebeaufbau führt.
  • In einer bevorzugten Ausführungsform ist das Hohlrad des Planetengetriebes drehbar gelagert und mittels einer Bremse festbremsbar. Diese Anordnung kommt in ihrem Platzbedart der eines Planetengetriebes mit karosseriefestem Hohlrad nahe, d.h. sie baut höchst kompakt. Auch ist das Hohlrad als radial außenliegendes Teil des Planetengetriebes für den Angriff einer Bremse hervorragend geeignet. Der Antrieb des Planetengetriebes kann über den Planetenträger, und der Abtrieb über das Sonnenrad erfolgen.
  • Das Hohlrad kann im normalen Fahrbetrieb des Kraftfahrzeugs festgebremst sein. Die drehmomentmäßige Kopplung der Achsen über die Viskose-Kupplung ist dann wirksam, und der Allrad­antrieb in ständiger Bereitschaftsstellung. Mittels einer geeigneten Steuereinheit sollte hingegen das Hohlrad durch Lösen der Bremse freigegeben, und die drehmomentmäßige Kopp­lung der Achsen aufgehoben werden, wenn bestimmte Fahr- oder Testbedingungen vorliegen. Dazu gehört jede Betätigung der Betriebsbremse, damit nicht bei einem Überbremsen der Räder an der Vorderachse, die üblicherweise stärker zur Haftwertausnutzung beim Bremsen herangezogen werden, zwangs­weise auch die Räder der Hinterachse blockieren. Die Entkopp­lung der Achsen beim Bremsen hat außerdem den Vorteil, daß das Fahrzeug mit einem Antiblockiersystem ausgerüstet werden kann, wie es für einachsig angetriebene Fahrzeuge üblich ist. Es entfällt also der Bauaufwand für ein besonderes, mit einem Vierradantrieb kompatibles Antiblockiersystem. Die Steuereinheit sollte auch im Schubbetrieb des Motor ansprechen und das Hohlrad freigeben, um so die Fahrstabili­tät zu verbessern. Beim Abschleppen des Fahrzeugs ist eben­falls ein möglichst automatisches Freigeben des Hohlrads erwünscht, damit schädliche Drehzahldifferenzen in der Vis­kosekupplung vermieden werden. Genauso sollte die Steuerein­heit im Fall niedriger Umgebungstemperaturen beim Rangie­ren ansprechen um im Fall eines möglicherweise vorliegenden Haftschlusses in der Viskose-Kupplung den Lenkkraftaufwand gering zu halten. Und schließlich sollte fur Wartungsar­beiten zumindest eine Werkstatt die Möglichkeit haben, die Steuereinheit zu aktivieren und das Hohlrad freizugeben, damit das Fahrzeug beispielsweise für Leistungs- und Emis­sionsmessungen auf einem Einachs-Rollenprüfstand getestet werden kann und beim dynamischen Auswuchten der Räder nur im Bereich einer Achse angehoben werden muß.
  • Die Steuereinheit kann als Eingangsgrößen insbesondere ein die Stellung von Bremspedal und Fahrpedal sowie ein den Einschaltzustand der Zündung charakterisierendes Signal erhalten. Weitere mögliche Eingangsgrößen für die Steuerein­heit sind das Signal eines Lenkwinkelgebers und das Signal eines Temperaturfühlers an der Viskose-Kupplung sowie gege­benenfalls ein die Motordrehzahl charakterisierendes Sig­nal und das Signal eines Zeitgebers. Die Steuereinheit er­mittelt aus diesen Eingangsgrößen ein die Bremse für das Hohlrad aktivierendes Ausgangssignal.
  • In einer alternativen Betriebsform der Erfindung ist das Hohlrad des Planetengetriebes im normalen Fahrbetrieb frei­gegeben. Der Allradantrieb ist dann per se nicht in der sonst durch die Viskose-Kupplung gewährleisteten ständigen Bereitschaftsstellung, sondern er wird durch Abbremsen des Hohlrads zugeschaltet. Damit geht der Vorteil einer geringen Getriebeverlustleistung einher während im übrigen alle Nut­zungsmöglichkeiten einer Viskose-Kupplung weiter bestehen; insbesondere bildet die Viskose-Kupplung ein konstruktiv vergleichsweise unaufwendiges Mittendifferential bzw. kombi­niertes Mittendifferntial und Achsdifferential. Das Fest­bremsen des Hohlrads kann durch einen Bedienungseingriff oder automatisch erfolgen, wobei man in letzterer Variante vorzugsweise die Drehzahl von Vorderachse und Hinterachse erfaßt und bei Überschreiten einer bestimmten Drehzahldif­ferenz die auf das Hohlrad arbeitende Bremse wirksam werden läßt. Zur Drehzahlerfassung können beispielsweise die ent­sprechenden Sensoren eines Antiblockiersystems dienen. Im prompten Einsetzen des Vierradantriebs steht die beschrie­bene Getriebeanordnung der einer Viskose-Kupplung allein nicht merklich nach.
  • Um das Hohlrad des Planetengetriebes abzubremsen, kann ein Bremsband Verwendung finden, das das Hohlrad umschlingt. Vorzugsweise ist ein vom Motoröldruck betätigtes Stellglied zum Spannen des Bremsbands vorgesehen. Letzteres hat den Vorteil, daß das Bremsband bei stehendem Motor gelöst, das Hohlrad entsprechend freigegeben und die drehmomentenmäßige Kopplung der Achsen durch die Viskose-Kupplung aufgehoben ist, so daß es insbesondere bei einem Abschleppen des Fah­zeugs mit angehobener Achse nicht zu Beschädigungen der Viskose-Kupplung kommen kann.
  • Das erfindungsgemäße Kraftfahrzeug kann einen vorzugsweise quer eingebauten Frontmotor haben. Seine Hauptantriebsachse ist vorzugsweise die Vorderachse, während die Viskose-Kupp­lung und das die Funktion einer Zusatzkupplung erfüllende Planetengetriebe in einem Antriebsstrang zur Hinterache liegen. Das Planetengetriebe kann dabei hinter dem Vorder­achsdifferential und vorzugsweise unmittelbar vor der Vis­kose-Kupplung angeordnet sein. Doch sind auch andere Einbau­positionen für das Planetengetriebe denkbar, beispielsweise am Ende einer Kardanwelle vor dem Hinterachsdifferential.
  • Schließlich kann das erfindungsgemäße Kraftfahrzeug aber auch einen Standardantrieb mit einem Frontmotor und einer die Hauptantriebsachse bildenden Hinterachse haben. Man zweigt dann von dem zur Hinterachse führenden Antriebsstrang über das zugleich die Funktion einer Zusatzkupplung erfül­lende Planetengetriebe und die Viskose-Kupplung einen An­triebsstrang an die Vorderachse ab.
  • Die Erfindung wird im folgenden anhand von in den Zeich­nungen dargestellten Ausführungsbeispielen näher erläutert. Teilweise schematisch zeigen:
    • Fig. 1 das im Bereich des Vorderachsdifferentials ange­ordnete Verteilergetriebe eines allradgetriebenen Kraftfahrzeugs mit Frontmotor, ausgelegt als Pla­netengetriebe mit einem durch ein Bremsband fest­bremsbaren Hohlrad;
    • Fig. 2 eine Steuereinheit, die einen Antrieb zum Spannen und Lösen des Bremsbands ansteuert;
    • Fig. 3 und Fig. 4 zwei Bauformen eines Bremsbandantriebs, bei denen ein hydraulischer Membranservomotor mit elektro­magnetischer Ansteuerung als Stellglied dient;
    • Fig. 5 einen Bremsbandantrieb mit einem Stellglied in Form eines hydraulischen Arbeitszylinders, der mittels einer elektromagnetisch betätigten Über­springfeder geschaltet wird;
    • Fig. 6 einen Bremsbandantrieb mit einem mechanischen Fe­derspeicher und einem dagegen arbeitenden elektro­magnetisch betätigten Stellglied;
    • Fig. 7 einen Bremsbandantrieb mit einem gegen einen Brems­bandhalter wirkenden, mittels eines Stellmotors in Drehung versetzbaren Exzenternocken:
    • Fig. 8 einen Bremsbandantrieb mit einer in angetriebene Drehung versetzbaren Exzenterwelle, über die das Bremsband gespannt ist;
    • Fig. 9 eine Draufsicht auf den letztgenannten Bremsband­antrieb, teilweise im Schnitt, mit Blick in Rich­tung IX von Fig. 8;
    • Fig. 10 Fahrwerk und Antriebsstrang eines allradgetriebe­nen Kraftfahrzeugs mit Frontmotor und einem im Bereich des Vorderachsdifferentials angeordneten Verteilergetriebe, das als Planetengetriebe mit einem durch ein Bremsband festbremsbaren Hohlrad ausgelegt ist, wobei eine alternative Ansteuerung des Bremsbandantriebs erfolgt;
    • Fig. 11 das Blockschaltbild einer Steuereinheit für den Bremsbandantrieb gemäß Fig. 10.
  • Fig. 1 zeigt die im Bereich des Vorderachsdifferentials liegende Getriebeanordnung eines Kraftfahrzeugs mit quer eingebautem Frontmotor. Das Antriebsdrehmoment des Motors wird über ein übliches Schaltgetriebe übertragen, dessen Ausgangsrad 10 eine Außenverzahnung aufweist und mit ei­nem starr an dem Differentialgehäuse 12 des Vorderachsdif­ferentials angeordneten Zahnrad 14 kämmt. Ein Teil des An­triebsdrehmoments wird so über das Vorderachsdifferential auf die Vorderachswellen 16 und die daran sitzenden Vorder­räder des Kraftfahrzeugs übertragen. Das Differentialge­häuse 12 ist drehfest mit einer Hohlwelle 18 verbunden, auf der in starrer Anordnung ein Tellerrad 20 sitzt. Letzte­res steht mit einem Kegelrad 22 im Eingriff, das einen Pla­netenradträger bildet. Eines der Planetenräder ist bei 24 dargestellt. Die Planetenräder 24 stehen radial außen mit einem Hohlrad 26 und radial innen mit einem Sonnenrad 28 im Eingriff. Mit dem Sonnenrad 28 ist in starrer Anordnung ein Wellenstummel 30 verbunden, der in das Gehäuse einer Viskose-Kupplung 32 ragt und einen antriebsseitigen Lamellen­satz 34 trägt. Dieser arbeitet mit einem abtriebsseitigen Lamellensatz 36 an einer zur Hinterachse führenden Gelenk­welle 38 zusammen. Das Hohlrad 26 des Planetengetriebes ist in einem fest mit der Fahrzeugkarosserie verbundenen Getriebegehäuse 40 gelagert. Es wird von einem Bremsband 42 umschlungen und kann durch Anziehen des Bremsbands 42 festgebremst werden.
  • Über den Antriebsstrang zur Hinterachse, in dem die Vis­kose-Kupplung liegt, wird bei festgebremsten Hohlrad 26 ein permanent in Bereitschaftsstellung befindlicher All­radantrieb geschaffen. Bei geringen Drehzahldifferenzen zwischen Vorderachse und Hinterachse, wie sie im normalen Fahrbetrieb vorliegen, überträgt die Viskose-Kupplung nur ein geringes Drehmoment, so daß man im wesentlichen das Fahrverhalten eines Kraftfahrzeugs mit Frontmotor und Vor­derradantrieb erhält. Ergeben sich aber größere Drehzahl­differenzen zwischen den Rädern an Vorderachse und Hinter­achse, wie dies beispielsweise bei Schlupf eines oder meh­rerer der Räder auf glattem Untergrund der Fall ist, so "sperrt" die Viskose-Kupplung, und man hat das Fahrverhal­ten eines Kraftfahrzeugs mit Allradantrieb und gesperrtem Mittendifferential.
  • Bei gelöstem Bremsband 42 läuft das Hohlrad 26 frei. Dreh­zahldifferenzen zwischen den Rädern der Vorder- und Hin­terachse können dann in dem Planetengetriebe mit sehr ge­ringen Reibungsverlusten ausgeglichen werden, ohne daß sich etwas am Gleichlauf der antriebs- und abtriebsseitigen La­mellensätze 34, 36 der Viskosekupplung 32 ändert. Die Vis­kose-Kupplung überträgt also kein oder nur ein minimales Drehmoment, und Vorder- und Hinterachse bleiben drehmomen­tenmäßig auch unter Bedingungen entkoppelt, unter denen bei festem Hohlrad 26 die Viskose-Kupplung 32 sperren würde. Durch Lösen des Bremsbands 42 wird also der Allradantrieb praktisch außer Funktion gesetzt, und man erhält das Betriebs­verhalten eines Fahrzeugs mit reinem Vorderradantrieb.
  • Ein Antrieb zum Spannen und Lösen des Bremsbands 42 kann mit einer Steuereinheit 44 angesteuert werden, wie sie sche­matisch in Fig. 2 dargestellt ist. Man geht hier von einem normalen Fahrbetrieb aus, bei dem das Bremsband 42 gespannt, das Hohlrad 26 entsprechend festgebremst und der über die Viskose-Kupplung 32 laufenden Vierradantrieb in Bereitschafts­stellung ist. Der nachstehend noch näher erläuterte Brems­bandantrieb erhält von der Steuereinheit 44 ein Signal, aufgrund dessen das Bremsband 42 gelöst, und die drehmo­mentenmäßige Kopplung von Vorderachse und Hinterachse unter­brochen wird.
  • Die Steuereinheit 44 erhält Eingangsgrößen, die die Stel­lung eines Bremspedals 46, eines Fahrpedals 48 sowie den Einschaltzustand der Zündung 50 kennzeichnen. Weitere Ein­gangsgrößen können von einem Temperaturfühler an der Vis­kose-Kupplung 32 und von einem Lenkwinkelgeber kommen, wobei letztere dazu dient, einen Rangierbetrieb des Fahrzeugs zu identifizieren. Hierzu kann zusätzlich ein die Motor­drehzahl charakterisierendes Signal und das Signal eines Zeitgebers herangezogen werden, der beispielsweise ein Zeit­intervall nach dem Einschalten der Zündung 50 mißt. Aus diesen Eingangsgrößen wird in der Steuereinheit 44 das ge­wünschte Ausgangssignal für den Bremsbandantrieb ermittelt.
  • Das Bremsband 42 wird insbesondere dann gelöst, wenn die Betriebsbremse des Fahrzeugs betätigt wird. Dieser Betriebs­zustand wird anhand der Eingangsgrößen der Steuereinheit 44 dadurch identifiziert, daß das Bremspedal 46 getreten, das Fahrpedal 48 in seiner Null-Stellung und die Zündung 50 eingeschaltet ist.
  • Weiter wird das Bremsband 42 im Schubbetrieb des Fahrzeugs gelöst. Hierzu müssen Fahrpedal 48 und Bremspedal 46 in ihrer Null-Stellung und die Zündung 50 eingeschaltet sein.
  • Bei niedrigen Umgebungstemperaturen wird das Bremsband 42 beim Rangieren insbesondere zum Ausparken des Fahrzeugs gelöst. Hierzu muß die von dem Temperaturfühler an der Viskose-Kupp­lung 32 gemessene Temperatur unterhalb einer bestimmten Temperaturschwelle, beispielsweise - 5 C°, liegen, was durch ein entsprechendes Signal des Temperaturfühlers angezeigt wird. Weiter muß der Rangierbetrieb des Fahrzeugs anhand eines entsprechenden Signals des Lenkwinkelgebers und/oder eines die niedrige Motordrehzahl charakterisierenden Sig­nals identifiziert sein. Der Lenkwinkelgeber kann beispiels­weise bei mehr als einer Lenkradumdrehung ansprechen. Al­ternativ oder zusätzlich kann der regelmäßig erforderliche Rangierbetrieb kurz nach Einschalten der Zündung 50 des Kraftfahrzeugs durch ein entsprechendes Signal eines Zeit­gebers identifiziert werden.
  • Schließlich sollte das Fachpersonal einer Werkstatt, even­tuell aber auch der Fahrer des Kraftfahrzeugs durch einen geeigneten Schalteingriff in der Lage sein, die Steuerein­heit 44 zu aktivieren, um das Bremsband 42 zu lösen. Damit können insbesondere bei Rollenprüfstandsmessungen und bei einem dynamischen Auswuchten der Räder die Achsen des Fahr­zeugs drehmomentenmäßig entkoppelt werden. Dasselbe gilt, wenn das Fahrzeug auf einer Abschleppbrille abgeschleppt wird und dabei nur mit zwei Rädern auf dem Boden läuft. Das Abschleppen erfolgt stets mit stehendem Motor, aber mit möglicherweise eingeschalteter Zündung 50, so daß zur automatischen drehmomentenmäßigen Entkopplung der Achsen eine weitere Steuerungsvorgabe erforderlich ist. Man kann hier insbesondere ausnutzen, daß bei stehendem Motor der Motoröldruck abfällt, und einen von dem Motoröldruck be­tätigten Bremsbandantrieb vorsehen, wie er nachstehend in Fig. 3 bis 5 illustriert ist.
  • Die Bremsbandantriebe sind jeweils mit Blick auf die Stirn­seite des Hohlrads 26 gezeigt, das wie auch die übrigen Teile des Planetengetriebes nur schematisch angedeutet ist. Das Bremsband 42 umschlingt das Hohlrad 26 über fast sei­nen vollen Umfang. An den beiden Enden des Bremsbands 42 ist je ein Halter 52, 54 befestigt. In den einen Halter 52 greift eine karosseriefest angebrachte Stellschraube 56 ein, die sich tangential zu dem Hohlrad 26 vorschraubt und dazu dient, die Spannung des Bremsbands 42 einzustel­len.
  • In den anderen Halter 54 greift das Stellglied 58 eines hydraulisch betätigten Membran-Servomotors 60 ein. Das Stellglied 58 liegt dabei in fluchtender Anordnung der Stellschraube 56 gegenüber, und es wird in tangentialer Bewegung zum Hohlrad 26 angetrieben. Der Membran-Servomo­tor 60 hat ein Gehäuse, in dem von einer Membran 62 zwei Arbeitsräume abgeteilt werden. Das Stellglied 58 ist auf der Längsmittelachse des Gehäuses axial verschieblich ange­ordnet und mit dem Innenring der Membran 62 verbunden. Es ragt beidendig aus dem Gehäuse heraus, wobei das eine Ende in den Halter 54 eingreift, während das andere Ende mit einem Hubmagneten 64 zusammenwirkt. Derjenige Arbeitsraum, durch dessen Druckbeaufschlagung das Stellglied 58 zum Span­nen des Bremsbands 42 ausgefahren wird, steht über einen Anschluß 66 ständig unter dem Druck des Motoröls. Der an­ dere Arbeitsraum ist in der Bauform der Fig. 3 zur Atmos­phäre hin druckentlastet und nicht beschaltet.
  • Im Betrieb spannt der Membran-Servomotor 60 bei laufendem Motor durch den an der Membran 62 anstehenden Motoröldruck das Bremsband 42, so daß das Hohlrad 26 festgebremst ist. Der über die Viskose-Kupplung 32 laufende Vierradantrieb ist also in ständiger Bereitschaftsstellung. Die hydrau­lische Stellkraft des Membran-Servomotors 60 kann aber durch Aktivieren des Hubmagnets 64 überwunden werden, wodurch das Stellglied 58 zurückgezogen und das Bremsband 42 ge­löst wird. Dies geschieht anhand eines entsprechenden Aus­gangssignals der Steuereinheit 44. Darüber hinaus wird das Bremsband 42 gelöst, wenn der Motor des Fahrzeugs steht, und der Motoröldruck entsprechend abfällt. Die drehmomenten­mäßige Kopplung der Achsen über die Viskose-Kupplung 32 ist dann aufgehoben.
  • Fig. 4 zeigt eine alternative Bauform eines Bremsbandan­triebs. Hier arbeiten vom Motoröldruck betätigte, hydrau­lische Hubaggregate auf die Halter 52, 54 an beiden Enden des Bremsbands 42. Man erreicht so eine gleichmäßige Ein­leitung der Bremskraft über dessen Umfang. Eines der Hub­aggregate ist als doppeltwirkender Membran-Servomotor 68 ausgebildet, dessen Arbeitsräume über einen elektromagneti­schen Schaltschieber 70 sowie einen Bremsband-Löseschieber 72 wechselweise mit dem Motoröldruck beaufschlagt werden können. Durch Federvorspannung 74 des Membran-Servomotor 68 ist dafur gesorgt, daß das Bremsband 42 bei abfallendem Motoröldruck gespannt ist.
  • Bei dem in Fig. 5 gezeigten Bremsbandantrieb ist wiederum am einen Ende des Bremsbands 42 ein Halter 52 mit einer darin eingreifenden Stellschraube 56 vorgesehen. Auf den Halter 54 am anderen Ende des Bremsbands 42 arbeitet das Stellglied 58 einer vom Motoröldruck betätigten Kolben-Zylinder-Einheit 76. Zwischen die Halter 52, 54 ist eine Überspringfeder 78 gespannt, die mittels eines Hubmagneten 80 betätigt wird. Statt eines solchen Hubmagneten 80 kann aber auch ein Nocken­antrieb, ein Schrittmotor o.ä. auf die Überspringfeder 78 wirken. Diese hindert in ihrer Ruhestellung das Spannen des Bremsbands 42 nicht, so daß über die Kolben-Zylinder-­Einheit 76 durch den Öldruck des laufenden Motors wiederum das Hohlrad 26 normalerweise festgebremst ist. Wird aber der Hubmagnet 80 o.ä. Antrieb betätigt, so werden die Hal­ter 52, 54 auseinander gedrückt und das Hohlrad 26 freige­geben.
  • Die Abbildung Fig. 6 bis Fig. 9 zeigt alternative, nicht hydraulisch betätigte Bremsbandantriebe. So steht in Fig. 6 das auf den Halter 54 am einen Ende des Bremsbands 42 arbeitende Stellglied 58 unter der Kraft eines mechanischen Federspeichers 82 mit einer Druckfeder 84. Das Bremsband 42 ist so normalerweise gespannt. Das Stellglied 58 kann mittels eines Hubmagneten 64 gegen die Kraft der Druckfeder 84 zurückgezogen werden, wodurch das Hohlrad 26 freigegeben wird.
  • Fig. 7 illustriert einen Bremsbandantrieb mit einem Stell­glied 58, das von dem Exzenternocken 86 eines Nockenantriebs beaufschlagt ist und dadurch ausgelenkt wird. Der Nocken kann mit einem Stellmotor o.ä. angetrieben sein.
  • In der Bauform der Fig. 8 und 9 schließlich ist das Brems­band 42 mit Schlaufen 88, 90 über eine Exzenterwelle 92 gespannt. Die Befestigungsabschnitte für die Schlaufen 88, 90 sind dabei exzentrisch zueinander versetzt, so daß durch Drehen der Exzenterwelle 92 das Bremsband 42 gespannt und gelöst werden kann. In dem dargestellten Ausführungsbei­spiel ist eine der Schlaufen 88 in ihrem Verankerungsbereich U-förmig gegabelt. Ein Verankerungsabschnitt an der anderen Lasche 90 kommt in der Gabelöffnung zu liegen, in der die Welle 92 auch ihre exzentrische Partie hat.
  • Fig. 10 illustriert eine Anordnung eines Planetengetriebes 94, das zugleich als mit einer Viskose-Kupplung im selben Antriebstrang liegende Zusatzkupplung arbeitet.
  • Während bei den bisher beschriebenen Ausführungsbeispielen das Hohlrad 26 des Planetengetriebes im normalen Fahrbe­trieb festgebremst, und damit der Allradantrieb in stän­diger Bereitschaftsstellung war, ist gemäß Fig. 10 vorge­sehen, das Hohlrad 26 im normalen Fahrbetrieb freizugeben. Es bedarf eines besonderen Steuervorgangs, um das Hohlrad 26 festzubremsen und den über die Viskose-Kupplung 32 lau­fenden Allradantrieb in Bereitschaftsstellung zu versetzen. Dies kann beispielsweise durch einen Bedienungseingriff des Fahrers geschehen, der so das Zuschalten des Allradan­trieb in der Hand hat. Der Steuervorgang kann aber auch automatisch ablaufen. Gemäß Fig. 10 und 11 werden hierzu die Drehzahlen an der Getriebeabtriebswelle im Bereich der Vorderachse und des Eingangs zum Hinterachsdifferential mit Sensoren 98 erfaßt, wozu insbesondere die entsprechen­den Sensoren eines Antiblockiersystems dienen können. Die Drehzahlen werden in einer Steuereinheit 100 verglichen. Überschreitet das Differenzsignal eine vorgegebene Schwelle, so wird eine Motorsteuerung 104 des Bremsbandantriebs wirk­sam, und das Bremsband 42 wird festgezogen, wozu insbesondere ein Stellmotor mit Endschalter 106, aber auch jeder andere der vorbeschriebenen Bremsbandantriebe dienen kann. Zugleich leuchtet eine erste Signallampe 108 auf, die dem Fahrer die Bereitschaftsstellung des Vierradantriebs signalisiert. Dies gilt allerdings nur, wenn nicht eine oder mehrere der vorerwähnten Situationen vorliegt, in denen das Zuschalten des Vierradantriebs inhibiert werden soll. Das ist insbe­sondere bei einer Betätigung des Bremspedals 46 der Fall, und wird in Fig. 11 entsprechend schematisch illustriert. Ebenso kann aber auch im Schubbetrieb des Motors sowie bei Meß- und Wartungsarbeiten das Zuschalten des Allradantriebs unterbunden werden. Eine besondere Erfassung des Rangier­betriebs kann hingegen entfallen, da im Normalfall eben keine drehmomentmäßige Kopplung der Achsen über die Vis­kose-Kupplung 32 erfolgt.
  • In dem Steuerschema der Fig. 11 wird das Bremsband 42 wieder gelöst, wenn im normalen Fahrbetrieb die erfaßte Drehzahldif­ferenz so gering ist, daß die Viskose-Kupplung 32 keine Wirkung mehr hat. Eine Sicherheitsschaltung 110 überwacht die Sensoren 98 und sorgt dafür, daß bei einem Defekt in jedem Fall das Bremsband 42 gelöst bleibt. Ein solcher Fehler wird mit einer zweiten Signallampe 112 angezeigt. Ein Diagno­seanschluß 114 erleichtert der Werkstatt die Fehlersuche.
  • Liste der Bezugszeichen
    • 10 Ausgangsrad des Schaltgetriebes
    • 12 Differentialgehäuse
    • 14 Zahnrad
    • 16 Vorderachswelle
    • 18 Hohlwelle
    • 20 Tellerrad
    • 22 Kegelrad
    • 24 Planetenrad
    • 26 Hohlrad
    • 28 Sonnenrad
    • 30 Wellenstummel
    • 32 Viskose-Kupplung
    • 34 antriebsseitiger Lamellensatz
    • 36 abtriebsseitiger Lamellensatz
    • 38 Gelenkwelle
    • 40 Getriebegehäuse
    • 42 Bremsband
    • 44 Steuereinheit
    • 46 Bremspedal
    • 48 Fahrpedal
    • 50 Zündung
    • 52, 54 Bremsbandhalter
    • 56 Stellschraube
    • 58 Stellglied
    • 60 einfachwirkender Membran-Servomotor
    • 62 Membran
    • 64 Hubmagnet
    • 66 Anschluß
    • 68 doppeltwirkender Membran-Servomotor
    • 70 Schaltschieber
    • 72 Bremsband-Löseschieber
    • 74 Feder
    • 76 Kolben-Zylinder-Einheit
    • 78 Überspringfeder
    • 80 Hubmagnet
    • 82 Federspeicher
    • 84 Druckfeder
    • 86 Exzenternocken
    • 88, 90 Schlaufe
    • 92 Exzenterwelle
    • 94 Planetengetriebe
    • 96 Hinterachsdifferenzial
    • 98 Sensor
    • 100 Steuereinheit
    • 102 Differenzverstärker
    • 104 Motorsteuerung
    • 106 Stellmotor mit Endschalter
    • 108 Signallampe
    • 110 Sicherheitsschaltung
    • 112 Signallampe
    • 114 Diagnoseanschluß

Claims (15)

1. Kraftfahrzeug mit Allradantrieb, bei dem die Räder nur einer Achse ständig angetrieben sind, während der An­trieb für die Räder der zweiten Achse mittels einer im Antriebsstrang zwischen den Achsen liegenden, in Abhängigkeit von den FAhrbedingungen selbsttätig wir­kenden Kupplung, insbesondere einer Viskose-Kupplung, herstellbar ist, in welchem Antriebsstrang eine steuer­bare Zusatzkupplung liegt, die eine drehmomentenmäßige Kopplung und Entkopplung des Antriebs ermöglicht, da­durch gekennzeichnet, daß als Zusatz­kupplung ein zwischen den Achsen vorgesehenes Umlauf­rädergetriebe, insbesondere ein Planetengetriebe (22, 24, 26, 28; 94) dient, auf das steuerbare Mittel zum Sperren eines Getriebeelements arbeiten.
2. Kraftfahrzeug nach Anspruch 1, dadurch gekenn­zeichnet, daß das Hohlrad (26) des Planeten­getriebes (22, 24, 26, 28; 94) drehbar gelagert und mittels einer Bremse festbremsbar ist.
3. Kraftfahrzeug nach Anspruch 1 oder 2, dadurch ge­kennzeichnet, daß der Antrieb des Plane­tengetriebes (22, 24, 26, 28; 94) über den Planeten­radträger (22), und der Abtrieb über das Sonnenrad (28) erfolgt.
4. Kraftfahrzeug nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Hohlrad (26) im normalen Fahrbetrieb festgebremst, und dementspre­chend der über die Viskose-Kupplung (32) laufende Vier­radantrieb wirksam ist.
5. Kraftfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es eine Steuerein­heit (44) enthält, die das Hohlrad (26) durch Lösen der Bremse freigibt, und dementsprechend die Achsen entkoppelt
(a) bei Betätigung der Betriebsbremse (46) sowie gege benenfalls einem daraus resultierenden Ansprechen­eines Antiblockiersystems und/oder
(b) im Schubbetrieb und/oder
(c) beim Abschleppen des Fahrzeugs und/oder
(d) im Fall niedriger Umgebungstemperaturen beim Ran­gieren und/oder
(e) bei Wartungsarbeiten, beispielsweise Rollenprüf­standsmessungen oder beim dynamischen Auswuchten der Räder.
6. Kraftfahrzeug nach Anspruch 5, dadurch gekenn­zeichnet, daß die Steuereinheit (44) als Ein­gangsgrößen ein die Stellung von Bremspedal (46) und Fahrpedal (48) sowie ein den Einschaltszustand der Zün­dung (50) charakterisierendes Signal erhält und ein die Bremse für das Hohlrad (26) aktivierendes Signal abgibt.
7. Kraftfahrzeug nach Anspruch 6, dadurch gekenn­zeichnet, daß die Steuereinheit (44) als wei­tere Eingangsgrößen des Signal eines Lenkwinkelgebers und das Signal eines Temperaturfühlers an der Viskose­ Kupplung (32) und gegebenenfalls ein die Motordrehzahl charakterisierendes Signal und/oder das Signal eines Zeitgebers erhält.
8. Kraftfahrzeug nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Hohlrad (26) im normalen Fahrbetrieb freigegeben, und dementspre­chend der über die Viskose-Kupplung (32) laufende Vier­radantrieb unwirksam ist.
9. Kraftfahrzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Hohlrad (26) durch einen Bedienungseingriff und/oder bei Überschrei­ten einer vorgegebenen Drehzahldifferenz zwischen den Achsen automatisch betätigt festbremsbar ist.
10. Kraftfahrzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Bremse ein das Hohlrad (26) umschlingendes Bremsband (42) vorgesehen ist.
11. Kraftfahrzeug nach Anspruch 10, dadurch gekenn­zeichnet, daß zum Spannen des Bremsbands (42) ein vom Motoröldruck betätigtes Stellglied (58) vor­gesehen ist.
12. Kraftfahrzeug nach einem der Anspüche 1 bis 11, dadurch gekennzeichnet, daß es einen vorzugswei­se quer eingebauten Frontmotor hat, daß die Hauptan­triebsachse die Vorderachse ist, und daß die Viskose-­Kupplung (32) und das als Zusatzkupplung arbeitende Planetengetriebe in einem Antriebsstrang zur Hinter­achse liegen.
13. Kraftfahrzeug nach Anspruch 12, dadurch gekenn­zeichnet, daß das Planetengetriebe (22, 24, 26, 28) hinter dem Vorderachsdifferential und vorzugs­weise unmittelbar vor der Viskose-Kupplung (32) liegt.
14. Kraftfahrzeug nach einem der Ansprüche 1 bis 12, da­durch gekennzeichnet, daß das Plane­tengetriebe (94) vor dem Hinterachsdifferential (96) liegt.
15. Kraftfahrzeug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es einen Standardan­trieb mit einem vom Frontmotor zu der die Hauptantriebs­achse bildenden Hinterachse führenden Antriebsstrang hat, von dem über das Planetengetriebe und die Viskose-­Kupplung ein Antriebsstrang an die Vorderachse abgeht.
EP87103982A 1986-04-03 1987-03-18 Kraftfahrzeug mit Allradantrieb Expired - Lifetime EP0240795B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863611093 DE3611093A1 (de) 1986-04-03 1986-04-03 Kraftfahrzeug mit allradantrieb
DE3611093 1986-04-03

Publications (3)

Publication Number Publication Date
EP0240795A2 true EP0240795A2 (de) 1987-10-14
EP0240795A3 EP0240795A3 (en) 1989-04-19
EP0240795B1 EP0240795B1 (de) 1991-03-06

Family

ID=6297791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87103982A Expired - Lifetime EP0240795B1 (de) 1986-04-03 1987-03-18 Kraftfahrzeug mit Allradantrieb

Country Status (5)

Country Link
US (1) US4784236A (de)
EP (1) EP0240795B1 (de)
CA (1) CA1290256C (de)
DE (2) DE3611093A1 (de)
ES (1) ES2020522B3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315200A1 (de) * 1987-11-05 1989-05-10 Viscodrive Japan Ltd Kraftübertragungseinrichtung
EP0315741B1 (de) * 1987-11-09 1991-10-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Vorrichtung zum Antrieb eines Kraftfahrzeugs
FR2661375A1 (fr) * 1990-04-30 1991-10-31 Viscodrive Gmbh Procede et dispositif pour desaccoupler un deuxieme essieu moteur d'un vehicule.
EP0851154A2 (de) * 1996-12-31 1998-07-01 Borg-Warner Automotive, Inc. Selektiv gebremster Planetenradträger für ein Getriebeübertragungsgehäuse oder dergleichen
WO2006122627A1 (de) * 2005-05-13 2006-11-23 Volkswagen Aktiengesellschaft Steuerung der drehmomentübertragung in einem differenzial

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3862425D1 (de) * 1987-05-27 1991-05-23 Opel Adam Ag Bremsmechanismus fuer das eine viskose-kupplung beschaltende zusatzgetriebe eines kraftfahrzeugs mit allradantrieb.
US5419419A (en) * 1989-05-26 1995-05-30 Macpherson; Roger Shifting system for positive variable drive transmisison
IT1238112B (it) * 1989-10-10 1993-07-07 Fiat Auto Spa Trasmissione a trazione integrale disinseribile per autoveicoli
JPH03282034A (ja) * 1990-03-28 1991-12-12 Tochigi Fuji Ind Co Ltd 歯車装置
US5267914A (en) * 1992-04-13 1993-12-07 New Venture Gear, Inc. Power transmission device for a four wheel drive vehicle
US6035988A (en) * 1997-11-28 2000-03-14 Ntn Corporation Four-wheel drive control system
US6001043A (en) * 1997-12-29 1999-12-14 Hyundai Motor Company Drive mechanism for four wheel drive automobiles
FR2777834B1 (fr) * 1998-04-28 2000-06-23 Valeo Actionneur electromecanique pour boite de vitesse
DE19859964C2 (de) * 1998-12-29 2003-05-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Bremswirkung an wenigstens einer Radbremse eines vierradangetriebenen Kraftfahrzeugs
US7091842B2 (en) * 2004-02-03 2006-08-15 Koncelik Jr Lawrence J Four wheel drive alert

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015379A1 (de) * 1980-04-22 1981-10-29 Audi Nsu Auto Union Ag, 7107 Neckarsulm Allradgetriebenes kraftfahrzeug, insbesondere personenkraftwagen
DE3317247A1 (de) * 1983-05-11 1984-11-15 Volkswagenwerk Ag, 3180 Wolfsburg Kraftfahrzeug mit allradantrieb
EP0149302A2 (de) * 1983-10-25 1985-07-24 American Motors Corporation Fahrzeuggetriebe mit Viskositätskupplung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583617A (en) * 1978-12-19 1980-06-24 Aisin Warner Ltd Four-wheel drive apparatus
GB2057987B (en) * 1979-07-26 1983-05-18 Schuler Presses Ltd Vehicle transmission
JPS59109431A (ja) * 1982-12-16 1984-06-25 Fuji Heavy Ind Ltd 4輪駆動車の切換制御装置
AT382826B (de) * 1984-10-01 1987-04-10 Steyr Daimler Puch Ag Antriebsanordnung fuer ein kraftfahrzeug
WO1986002132A1 (en) * 1984-10-04 1986-04-10 Zahnradfabrik Friedrichshafen Ag Viscous clutch with filling adjustment
DE3507490C1 (de) * 1985-03-02 1986-03-13 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Sperrsystem fuer ein Kraftfahrzeug mit Allradantrieb
DE3514947A1 (de) * 1985-04-25 1986-10-30 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Allradantrieb fuer ein kraftfahrzeug
AT390765B (de) * 1985-09-11 1990-06-25 Steyr Daimler Puch Ag Antriebsanordnung fuer kraftfahrzeuge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015379A1 (de) * 1980-04-22 1981-10-29 Audi Nsu Auto Union Ag, 7107 Neckarsulm Allradgetriebenes kraftfahrzeug, insbesondere personenkraftwagen
DE3317247A1 (de) * 1983-05-11 1984-11-15 Volkswagenwerk Ag, 3180 Wolfsburg Kraftfahrzeug mit allradantrieb
EP0149302A2 (de) * 1983-10-25 1985-07-24 American Motors Corporation Fahrzeuggetriebe mit Viskositätskupplung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315200A1 (de) * 1987-11-05 1989-05-10 Viscodrive Japan Ltd Kraftübertragungseinrichtung
US4899859A (en) * 1987-11-05 1990-02-13 Tochigifujisangyo Kabushiki Kaisha Power transmission apparatus
EP0315741B1 (de) * 1987-11-09 1991-10-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Vorrichtung zum Antrieb eines Kraftfahrzeugs
FR2661375A1 (fr) * 1990-04-30 1991-10-31 Viscodrive Gmbh Procede et dispositif pour desaccoupler un deuxieme essieu moteur d'un vehicule.
EP0851154A2 (de) * 1996-12-31 1998-07-01 Borg-Warner Automotive, Inc. Selektiv gebremster Planetenradträger für ein Getriebeübertragungsgehäuse oder dergleichen
EP0851154A3 (de) * 1996-12-31 2000-05-17 Borg-Warner Automotive, Inc. Selektiv gebremster Planetenradträger für ein Getriebeübertragungsgehäuse oder dergleichen
WO2006122627A1 (de) * 2005-05-13 2006-11-23 Volkswagen Aktiengesellschaft Steuerung der drehmomentübertragung in einem differenzial

Also Published As

Publication number Publication date
ES2020522B3 (es) 1991-08-16
DE3611093A1 (de) 1987-10-08
US4784236A (en) 1988-11-15
CA1290256C (en) 1991-10-08
DE3768301D1 (de) 1991-04-11
EP0240795B1 (de) 1991-03-06
DE3611093C2 (de) 1992-02-06
EP0240795A3 (en) 1989-04-19

Similar Documents

Publication Publication Date Title
DE4243926C2 (de) Drehmoment-Übertragungsvorrichtung
EP0240795B1 (de) Kraftfahrzeug mit Allradantrieb
EP0272570B1 (de) Antriebssystem für die Räder zweier Radpaare
DE3533745C2 (de)
DE3621225C1 (de) Steuereinrichtung fuer die zeitweise Umschaltung eines Fahrzeugantriebes von einachsigem Antrieb ueber eine permanent angetriebene Fahrzeugachse auf zweiachsigen Antrieb
DE3808402A1 (de) Ausgleichsgetriebe fuer die antriebsachsen von kraftfahrzeugen
EP3216333B1 (de) Landwirtschaftlicher zug mit einem zugfahrzeug und anhänger
DE102005023675A1 (de) Drehmomentübertragende Differentialanordnung mit Drehmomentabkopplung
DE3612189C2 (de)
EP2493732A1 (de) Adaptives bremssystem für lastanhänger
EP0274610A2 (de) Fahrzeug mit Antiblockiersystem und Antriebsschlupfregelung
DE3636260A1 (de) Kraftfahrzeug mit zumindest einer permanent angetriebenen achse sowie einer antriebsmaessig zuschaltbaren achse
DE3706459A1 (de) Kraftuebertragungssystem fuer ein vierrad-getriebenes fahrzeug
DE4110161C2 (de)
DE3538351C2 (de) Bremsanlage mit Blockierschutzregelung für ein Kraftfahrzeug mit Allradantrieb
DE3902082A1 (de) Fahrzeug mit einer vorder- und einer hinterachse
EP1189782B1 (de) Hydrostatischer fahrantrieb
DE3527959A1 (de) Verfahren und vorrichtung zur vortriebsregelung
EP1522767A2 (de) Formschlüssige Kupplung für Verteilergetriebe und Ausgleichsgetriebe für Kraftfahrzeuge
DE3536682A1 (de) Vierrad-antriebsanordnung fuer fahrzeuge, insbesondere kraftfahrzeuge
DE1922964A1 (de) Auf Schlupf ansprechendes Differential
EP0292858B1 (de) Bremsmechanismus für das eine Viskose-Kupplung beschaltende Zusatzgetriebe eines Kraftfahrzeugs mit Allradantrieb
DE102016214803B4 (de) Verfahren zum Überprüfen eines Antriebsstrangs eines Kraftwagens, sowie Antriebsstrang für einen Kraftwagen
DE3913487A1 (de) Allradgetriebener ackerschlepper
DE3630754A1 (de) Kraftfahrzeug mit allradantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19890505

17Q First examination report despatched

Effective date: 19900511

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3768301

Country of ref document: DE

Date of ref document: 19910411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19981006

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010302

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010313

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010515

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050318