EP0236221B1 - Procédé de préparation par lithiothermie de poudres métalliques - Google Patents

Procédé de préparation par lithiothermie de poudres métalliques Download PDF

Info

Publication number
EP0236221B1
EP0236221B1 EP87400417A EP87400417A EP0236221B1 EP 0236221 B1 EP0236221 B1 EP 0236221B1 EP 87400417 A EP87400417 A EP 87400417A EP 87400417 A EP87400417 A EP 87400417A EP 0236221 B1 EP0236221 B1 EP 0236221B1
Authority
EP
European Patent Office
Prior art keywords
metal
bath
reduced
lithium
molten salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400417A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0236221A1 (fr
Inventor
Françoise Seon
Philippê Nataf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT87400417T priority Critical patent/ATE64627T1/de
Publication of EP0236221A1 publication Critical patent/EP0236221A1/fr
Application granted granted Critical
Publication of EP0236221B1 publication Critical patent/EP0236221B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Definitions

  • the present invention relates to a method of manufacturing powdered metals by metallothermy. It relates more particularly to a process for the manufacture by lithiothermal of metals of groups IV A of the Periodic Table of the Elements or of metals of the Lanthanide class.
  • This process can in particular be advantageously applied to the manufacture of high purity titanium in powder form.
  • This operation takes place batchwise in a steel reactor and under an inert atmosphere (helium or argon).
  • the metallic titanium is then released in the form of a sponge embedded in molten MgCl2.
  • This sponge contains approximately 30% of its weight in impurities, in particular in magnesium and magnesium chloride entrained during the precipitation of the sponge.
  • To obtain a very pure metal it is then necessary to carry out a very high vacuum distillation of magnesium and its chloride, a long operation, delicate and costly in energy.
  • the purified sponge is then dried and then ground to obtain a titanium powder.
  • liquid titanium tetrachloride is poured onto a sheet of molten lithium supernatant over a bath of molten salts.
  • the titanium obtained is in the form of a sponge containing impurities, such as lithium and its chloride, entrained during the precipitation of the sponges in the bath of molten salts.
  • Another object of the invention is to provide a process for the continuous manufacture of these metals, in which the yields are improved and savings are made, in particular thanks to the ease of purification of the product.
  • the Applicant has developed a process for manufacturing a metal essentially in the form of a powder belonging to group IV A of the Periodic Table of the Elements or to the class of Lanthanides by reduction of a salt of this metal by lithium which is characterized in that the abovementioned salt is introduced into a liquid mixture comprising lithium maintained in dispersion by mechanical stirring in a bath of molten salts.
  • this process makes it possible to obtain, with good yield, a metal directly and essentially in the form of a powder, this powder proving to be easy to purify.
  • the process of the invention applies particularly well to the case of titanium.
  • the metal to be obtained is therefore initially in the form of one of its salts.
  • titanium it will be possible in particular to work directly with tetrachloride or tetrabromide of titanium, obtained respectively by carbochlorination and carbobromuration around 1000 ° C of the rutile TiO2.
  • tetrachloride or tetrabromide of titanium obtained respectively by carbochlorination and carbobromuration around 1000 ° C of the rutile TiO2.
  • neodymium it is advantageously possible to work with neodymium trichloride.
  • a preferred embodiment of the invention will consist in operating with the chlorides of these metals.
  • the molten salt baths used in the present invention preferably consist of mixtures of halides chosen from the group of halides of alkali metals or alkaline earth metals. They may be binary mixtures or ternary mixtures. As binary mixtures which can be used, mention may be made of LiCl and KCl, LiCl and CsCl, LiCl and RbCl, LiBr and KBr, LiBr and CsBr, LiBr and NaBr, LiBr and SrBr2, LiI and CsI.
  • ternary mixtures which can be used, mention may be made of mixtures containing, in addition to lithium chloride or potassium chloride, a chloride chosen from sodium, rubidium, strontium, magnesium, calcium and barium chlorides. Finally, mention may be made of the ternaries LiCl-NaCl-CsCl, LiCl-NaCl-RbCl and LiCl-KCl-KF.
  • the eutectic composition of the mixture this in order to reduce the bath melting temperature as much as possible. Even more preferably, the eutectic mixture LiCl - KCl will be taken.
  • baths and operating conditions will be chosen such that the temperature of the salt bath will be between 400 and 550 ° C., preferably close to 500 ° C.
  • the molten lithium necessary for the reduction of the metal salt may in particular be advantageously produced according to the process as described in French application FR 2560 221.
  • This process has the advantage of continuously operating the electrolysis of lithium chloride in a mixture of molten salts, for example the binary KCl-LiCl, whereby a liquid layer of molten lithium supernatant is obtained continuously on said salt bath.
  • any mechanical means providing sufficiently high agitation may be suitable, in particular a paddle stirrer, for example with straight and inclined paddles and a system of counterpales fixed to the reactor vessel.
  • the counterpales will have a width equal to approximately one tenth of the diameter of the reactor vessel.
  • the stirring speed will obviously vary depending on the size of said tank.
  • peripheral rotation speeds of the paddle stirrer greater than 1.3 m / s and more particularly greater than 1.9 m / s may be mentioned.
  • the metal salt can be introduced in solid, liquid or gaseous form.
  • contacting it can be done on the surface or even inside the intimate mixture of lithium and molten salts.
  • the quantity of lithium present in the mixture must correspond at least to stoichiometric equality with respect to the metal salt to be reduced.
  • the reaction which is then brought into play can be generally written: MCl n + n Li ⁇ M + n LiCl
  • the metal thus obtained is essentially in the form of powder.
  • the yield of the lithiothermal reduction is also improved, since generally at least 70% of the metal to be reduced introduced in the form of salt is found after the reaction in the metallic state.
  • the metal thus produced being solid in this temperature zone, it can be easily separated from the reaction medium, enriched in dissolved lithium chloride originating from the reaction, which remains in the molten state.
  • the reduced metal can be separated from the bath by any known means, in particular by filtration, whereby the desired metal extracted on the one hand is obtained in the form of fine particles and on the other hand the mixture of molten salts, LiCl-KCl for example.
  • At least 70% of the particles have a size of between 100 ⁇ m and 1 mm.
  • the LiCl-KCl mixture can then be recycled at the top at the electrolysis which regenerates the lithium in the metallic state.
  • the lithium thus regenerated is reused to reduce the salt of the metal that it is desired to obtain.
  • the completion of this operation allows obviously to reduce the costs due to the reducer; indeed, to the nearest loss, the quantity of lithium contained in Li or LiCl form is constant, which in part reduces the problems of supplying lithium salts.
  • the collected metallic particles can then undergo a purification operation. But unlike the other conventional methods for manufacturing these metals described above, which require a long and costly distillation purification, a simple purification by acid washing suffices here.
  • the advantage is a low energy consuming process.
  • This acid washing can be done with nitric acid or hydrochloric acid.
  • acidulated water at a pH of at least 1.5.
  • This powder generally has a metal content of at least 80% and in the case of titanium generally at least 99%.
  • a 316 L stainless steel crucible with an internal diameter of 70 mm is used.
  • a 24 mm diameter turbine with 6 straight blades is used as the stirring system.
  • the crucible is fitted with 4 5 mm counter blades.
  • the bath is a LiCl-KCl mixture.
  • Test 1 concerns the preparation of neodymium.
  • Tests 2 and 3 relate to the preparation of titanium. They are driven with different stirring speeds.
  • titanium 100% in the form of powder.
  • the titanium is in the form of powder and sponge in the respective proportions by weight of 64% and 36%.
  • the titanium powder has the following particle size: 83% of the particles have a size of between 100 ⁇ m and 1 mm, 14% are of size less than 100 ⁇ m and 3% have a size greater than 1 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP87400417A 1986-02-28 1987-02-25 Procédé de préparation par lithiothermie de poudres métalliques Expired - Lifetime EP0236221B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87400417T ATE64627T1 (de) 1986-02-28 1987-02-25 Verfahren zum lithiothermischen herstellen von metallischen pulvern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8602792A FR2595101A1 (fr) 1986-02-28 1986-02-28 Procede de preparation par lithiothermie de poudres metalliques
FR8602792 1986-02-28

Publications (2)

Publication Number Publication Date
EP0236221A1 EP0236221A1 (fr) 1987-09-09
EP0236221B1 true EP0236221B1 (fr) 1991-06-19

Family

ID=9332628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400417A Expired - Lifetime EP0236221B1 (fr) 1986-02-28 1987-02-25 Procédé de préparation par lithiothermie de poudres métalliques

Country Status (8)

Country Link
US (1) US4725312A (enrdf_load_stackoverflow)
EP (1) EP0236221B1 (enrdf_load_stackoverflow)
JP (1) JPS62240704A (enrdf_load_stackoverflow)
KR (1) KR910006946B1 (enrdf_load_stackoverflow)
AT (1) ATE64627T1 (enrdf_load_stackoverflow)
CA (1) CA1286507C (enrdf_load_stackoverflow)
DE (1) DE3770834D1 (enrdf_load_stackoverflow)
FR (1) FR2595101A1 (enrdf_load_stackoverflow)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865644A (en) * 1987-07-23 1989-09-12 Westinghouse Electric Corporation Superconducting niobium alloys
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US5259862A (en) * 1992-10-05 1993-11-09 The United States Of America As Represented By The Secretary Of The Interior Continuous production of granular or powder Ti, Zr and Hf or their alloy products
US5442978A (en) * 1994-05-19 1995-08-22 H. C. Starck, Inc. Tantalum production via a reduction of K2TAF7, with diluent salt, with reducing agent provided in a fast series of slug additions
US7445658B2 (en) 1994-08-01 2008-11-04 Uchicago Argonne, Llc Titanium and titanium alloys
US20030145682A1 (en) * 1994-08-01 2003-08-07 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US20030061907A1 (en) * 1994-08-01 2003-04-03 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US7435282B2 (en) 1994-08-01 2008-10-14 International Titanium Powder, Llc Elemental material and alloy
DE69521432T2 (de) * 1994-08-01 2002-05-29 International Titanium Powder L.L.C., Willowbrook Verfahren zur herstellung von metallen und anderen elementen
WO2004033736A1 (en) * 2002-10-07 2004-04-22 International Titanium Powder, Llc. System and method of producing metals and alloys
US7416697B2 (en) 2002-06-14 2008-08-26 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
AU2003252040A1 (en) * 2002-07-17 2004-02-02 Liquidmetal Technologies Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof
UA79310C2 (en) * 2002-09-07 2007-06-11 Int Titanium Powder Llc Methods for production of alloys or ceramics with the use of armstrong method and device for their realization
US20050284824A1 (en) * 2002-09-07 2005-12-29 International Titanium Powder, Llc Filter cake treatment apparatus and method
EA006616B1 (ru) * 2002-09-07 2006-02-24 Интернэшнл Тайтейнием Паудер, Ллк Способ отделения титана от содержащей титан суспензии
WO2004033737A1 (en) * 2002-10-07 2004-04-22 International Titanium Powder, Llc. System and method of producing metals and alloys
BR0204587A (pt) 2002-11-04 2004-06-29 Cbmm Sa Processo de produção de pó de nióbio e/ou de tântalo de elevada área superficial
US6968990B2 (en) * 2003-01-23 2005-11-29 General Electric Company Fabrication and utilization of metallic powder prepared without melting
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
WO2006098055A1 (ja) * 2005-03-15 2006-09-21 Sumitomo Titanium Corporation 高融点金属の分離回収方法
US20070017319A1 (en) 2005-07-21 2007-01-25 International Titanium Powder, Llc. Titanium alloy
JP2009511739A (ja) 2005-10-06 2009-03-19 インターナショナル・タイテイニアム・パウダー・リミテッド・ライアビリティ・カンパニー ホウ化チタン
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US20100288649A1 (en) * 2006-10-11 2010-11-18 Pal Uday B Magnesiothermic som process for production of metals
US7753989B2 (en) * 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US9127333B2 (en) * 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder
RU2353686C1 (ru) * 2007-11-09 2009-04-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ переработки титановой губки
CN102470443B (zh) * 2009-07-17 2014-10-15 波士顿电子材料有限公司 金属粉末和合金的制造和应用
RU2466198C1 (ru) * 2011-06-14 2012-11-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ получения губчатого титана
AU2012358205B2 (en) 2011-12-22 2017-10-12 Universal Achemetal Titanium, Llc A system and method for extraction and refining of titanium
CN103305876B (zh) * 2013-06-05 2015-08-12 哈尔滨工程大学 熔盐电解和还原萃取连用提取镨并制得铝锂镨合金的方法
WO2014209173A1 (ru) * 2013-06-28 2014-12-31 Общество с ограниченной ответственностью "Современные химические и металлургические технологии" Способ получения титана восстановлением из тетрахлорида титана
RU2549795C2 (ru) * 2013-06-28 2015-04-27 Общество с ограниченной ответственностью "Современные химические и металлургические технологии" (ООО "СХИМТ") Способ получения титана и устройство для его осуществления
RU2559075C2 (ru) * 2013-11-26 2015-08-10 ООО "Современные химические и металлургические технологии" (ООО "СХИМТ") Способ алюмотермического получения титана
US10245642B2 (en) * 2015-02-23 2019-04-02 Nanoscale Powders LLC Methods for producing metal powders
CA3047102C (en) 2016-09-14 2023-12-05 Universal Achemetal Titanium, Llc A method for producing titanium-aluminum-vanadium alloy
AU2018249909B2 (en) 2017-01-13 2023-04-06 Universal Achemetal Titanium, Llc Titanium master alloy for titanium-aluminum based alloys
JP7388651B2 (ja) * 2019-10-31 2023-11-29 東邦チタニウム株式会社 粉末金属の製造方法
CN113500204A (zh) * 2021-07-08 2021-10-15 安徽理工大学 一种氯化钙熔盐中钙热还原氯化铌制备细微铌粉的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2839385A (en) * 1954-12-08 1958-06-17 Du Pont Method of producing titanium metal
US2913332A (en) * 1957-04-05 1959-11-17 Dow Chemical Co Production of titanium metal
US4105440A (en) * 1969-09-05 1978-08-08 Battelle Memorial Institute Process for reducing metal halides by reaction with calcium carbide
US3966458A (en) * 1974-09-06 1976-06-29 Amax Speciality Metal Corporation Separation of zirconium and hafnium
US4032328A (en) * 1975-10-23 1977-06-28 University Of Minnesota, Inc. Metal reduction process
US4149876A (en) * 1978-06-06 1979-04-17 Fansteel Inc. Process for producing tantalum and columbium powder
FR2432553A1 (fr) * 1978-07-31 1980-02-29 Pechiney Aluminium Procede et dispositif de traitement d'un metal ou alliage liquide au moyen de flux liquide et solide
US4252564A (en) * 1979-08-21 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Method for cleaning bomb-reduced uranium derbies
US4468248A (en) * 1980-12-22 1984-08-28 Occidental Research Corporation Process for making titanium metal from titanium ore
US4519837A (en) * 1981-10-08 1985-05-28 Westinghouse Electric Corp. Metal powders and processes for production from oxides
US4556420A (en) * 1982-04-30 1985-12-03 Westinghouse Electric Corp. Process for combination metal reduction and distillation
US4578242A (en) * 1984-07-03 1986-03-25 General Motors Corporation Metallothermic reduction of rare earth oxides
US4602947A (en) * 1984-11-01 1986-07-29 Alti Corporation Process for producing titanium metal and titanium metal alloys
FR2582019B1 (fr) * 1985-05-17 1987-06-26 Extramet Sa Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre
US4668287A (en) * 1985-09-26 1987-05-26 Westinghouse Electric Corp. Process for producing high purity zirconium and hafnium
US4680055A (en) * 1986-03-18 1987-07-14 General Motors Corporation Metallothermic reduction of rare earth chlorides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IUPAC, Nomenclature of Inorganic Chemistry, 2nd edition, 1971, Pergamon Press *

Also Published As

Publication number Publication date
DE3770834D1 (de) 1991-07-25
KR910006946B1 (ko) 1991-09-14
US4725312A (en) 1988-02-16
JPS6365723B2 (enrdf_load_stackoverflow) 1988-12-16
FR2595101A1 (fr) 1987-09-04
EP0236221A1 (fr) 1987-09-09
CA1286507C (fr) 1991-07-23
ATE64627T1 (de) 1991-07-15
KR870007743A (ko) 1987-09-21
JPS62240704A (ja) 1987-10-21

Similar Documents

Publication Publication Date Title
EP0236221B1 (fr) Procédé de préparation par lithiothermie de poudres métalliques
FR2582019A1 (fr) Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre
EP0233816A1 (fr) Procédé d'oxydation d'aldoses et un catalyseur mis en oeuvre
FR2596302A1 (fr) Procede de traitement de chlorosilanes contamines
EP0020224B1 (fr) Eléments agglomérés pour mélanges vitrifiables, procédé pour leur fabrication et leur application
EP0406550A1 (fr) Procédé de préparation par voie aqueuse de dihydrate de sulfate de calcium purifié
CA2020494C (fr) Procede d'obtention d'uranium a partir d'oxyde et utilisant une voie chlorure
EP0318362B1 (fr) Procédé de préparation de borures de terres rares
EP0161975B1 (fr) Procédé de fabrication de produits poreux en bore ou en composés du bore
CH656869A5 (fr) Procede d'obtention de trihydroxyde d'aluminium de diametre median inferieur a 4 microns, regle a la demande.
CA2742732C (fr) Procede de preparation de concentres d'uranium par precipitation en lit fluidise, et preparation d'uo3 et d'u3o8 par sechage/calcination desdits concentres
EP0407242A1 (fr) Mélanges déshydratés d'halogénures de terres rares et d'alcalino-terreux ou d'alcalins
EP0470020A1 (fr) Procédé et catalyseur comprenant un composé de lanthanide comme additif promoteur pour la synthèse directe du diméthyldichlorosilane
EP3638621B1 (fr) Procede de preparation d'un phosphate de vanadium
FR2514786A1 (fr) Procede de debismuthage du plomb
CA2158797A1 (fr) Procede pour la fabrication de particules de persels enrobes
EP3310713B1 (fr) Procédé de stabilisation de mercure métallique
EP2111373B1 (fr) Procede de preparation de ferrates (vi)
FR2490618A1 (fr) Procede de fabrication d'une solution stable de sulfates de titanyle
FR2504109A1 (fr) Procede de preparation de silane en milieu sels fondus
CA1304943C (fr) Procede pour la production de metaux par reduction de sels metalliques
EP0055681B1 (fr) Procédé amélioré de carbochloration de l'alumine en bain de sels fondus
RU2043873C1 (ru) Способ получения титанового порошка
EP0011524A1 (fr) Procédé de fabrication du carbure de bore
EP0213003B1 (fr) Procédé discontinu de préparation, en deux étapes de chloration, d'hypochlorite neutre de calcium hydraté

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19871028

17Q First examination report despatched

Effective date: 19890105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19910619

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910619

Ref country code: GB

Effective date: 19910619

Ref country code: SE

Effective date: 19910619

Ref country code: AT

Effective date: 19910619

Ref country code: NL

Effective date: 19910619

REF Corresponds to:

Ref document number: 64627

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3770834

Country of ref document: DE

Date of ref document: 19910725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920229

Ref country code: LI

Effective date: 19920229

Ref country code: CH

Effective date: 19920229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST