EP0224522B1 - Verfahren zur spanlosen umformung von metallen - Google Patents

Verfahren zur spanlosen umformung von metallen Download PDF

Info

Publication number
EP0224522B1
EP0224522B1 EP86903351A EP86903351A EP0224522B1 EP 0224522 B1 EP0224522 B1 EP 0224522B1 EP 86903351 A EP86903351 A EP 86903351A EP 86903351 A EP86903351 A EP 86903351A EP 0224522 B1 EP0224522 B1 EP 0224522B1
Authority
EP
European Patent Office
Prior art keywords
products
oxidation
lubricant
saponification
lubricants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86903351A
Other languages
English (en)
French (fr)
Other versions
EP0224522A1 (de
Inventor
Karl Stetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STETTER, KARL
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86903351T priority Critical patent/ATE61063T1/de
Publication of EP0224522A1 publication Critical patent/EP0224522A1/de
Application granted granted Critical
Publication of EP0224522B1 publication Critical patent/EP0224522B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/18Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating

Definitions

  • Metallic molded parts are often produced by non-cutting shaping, whereby the workpiece is given the desired shape without or with preheating due to the action of high external forces.
  • Types of non-cutting metal forming are e.g. wire, bar, tube, profile, deep drawing and ironing, as well as cold extrusion, cold upsetting, civilage, cold and hot rolling or forging.
  • lubricants in non-cutting metal forming to improve results by reducing the friction between the workpiece and the mold.
  • metal forming using conventional lubricants is generally only possible if additional separating or lubricant carrier layers are applied to the workpiece surface before the forming.
  • the application of the separating or lubricant carrier layers generally has to be chemically complex by reaction of mostly certain salt solutions with the workpiece surface with the formation of corresponding coatings on the workpiece surface follow (eg "phosphating", "oxalating").
  • a physical application by letting salt solutions dry on the surface of the workpiece is only sufficient in less difficult cases, although the physical application often gives completely inadequate results.
  • the separating layers also often impair the surface quality of the workpieces and require a great deal of effort to remove them before the workpieces are further processed, and waste water that requires reprocessing also occurs.
  • the effect of the separating or carrier layers in difficult cases of metal forming is often insufficient to achieve acceptable forming results.
  • the invention has for its object to improve a method for the non-cutting forming of metals using a synthetic lubricant, which may be used in conjunction with separating and / or lubricant carrier layers, so that higher degrees of forming and higher forming speeds can be achieved with such methods and Workpieces can be obtained that have higher dimensional accuracy and better surface quality, while longer tool life is achieved.
  • a process for the non-cutting shaping of metals using a synthetic lubricant which is optionally used in conjunction with separating and / or lubricant carrier layers, which is characterized in that the lubricant is selected from the products of Air oxidation of polymers of 1-olefins with acid numbers between 5 and 150 mg KOH / g, melt viscosities between 5 and 100000 mPa s at 160 ° C and melting points above 90 ° C as well
  • the advantages achieved by the invention compared to known methods are, in particular, that higher degrees of forming and higher forming speeds, higher dimensional accuracy and better surface qualities of the workpieces as well as longer tool life are achieved.
  • the reshaping can also be carried out with significantly reduced energy consumption and reduced environmental impact.
  • the application of additional separating or lubricant carrier layers can be simplified or eliminated entirely.
  • the oxidants of polymers of 1-olefins used as lubricants in the process according to the invention are oxidates of homopolymers of C2-C 18 -alkenes with a terminal double bond, preferably the C2-C 12 -alkenes, especially of ethene, propene and 1-butene , 3-methyl-1-butene, 1-pentene, 1-hexene and 1-octene, and copolymers of these 1-olefins with one another and also from copolymers of these 1-olefins with up to 50, preferably up to 30, in particular up to 20, but above all up to 15% by weight of oxygen-containing 1-olefins.
  • Polymers used in the luff oxidation are, for example, the commercially available polyethylenes, polypropylenes, polybutylenes, etc., as are obtained by known processes, for example by high, medium or low pressure polymerization.
  • Copolymers of 1-olefins contain at least two different 1-olefin building blocks at the same time. These include, for example, polyethylenes with a content of up to 30, preferably up to 20, in particular up to 10,% by weight of other 1-olefins such as propene, 1-butene, etc. Also the copolymers of ethylene which have recently become available under the name LLDPE higher 1-olefins are to be expected here.
  • Copolymers of 1-olefins with oxygen-containing olefins are, for example, copolymers of ethylene with vinyl esters of carboxylic acids such as vinyl acetate or vinyl propionate, furthermore with vinyl ethers or 1,2-ethylenically unsaturated carboxylic acids and their derivatives such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, fumaric acid, maleic acid, maleic acid, maleic acid Itaconic acid mesaconic acid or the esters of these acids. It is possible to use low molecular weight wax-like polymers with molecular weights between 200 and 20,000 (melt viscosities approx.
  • the oxidation products of the polymers are understood to mean products which are formed by air oxidation of the polymers. They can be produced by known processes, e.g. from low molecular weight polymers by mixing the polymers in the molten state with air or particularly advantageously from higher molecular weight polymers by treating the polymers at elevated temperatures with air in the solid state or in the molten state, finely divided in an inert dispersion medium. Such a method is described in DE-OS 20 35 706.
  • the oxidates have acid numbers between 5 and 150, preferably between 10 and 70, advantageously between 15 and 50, in particular between 20 and 45 mg KOH / g, and melt viscosities between 5 and 100,000, preferably between 50 and 50,000, advantageously between 100 and 30,000, in particular between 500 and 20,000, especially between 1,000 and 15,000 mPas at 160 ° C.
  • Their melting points are above 90, preferably above 100, in particular above 110, especially above 115 ° C.
  • the melting points of the oxidates of copolymers are rather in the lower of the ranges specified.
  • oxidates with a high content of dicarboxylic acids such as those formed in the oxidation of higher molecular weight polymers (molecular weights> 5000, preferably> 10000) , and oxidates with comparatively high melting points, high melt viscosities, high crystallinities and high polarities have excellent properties as lubricants in metal forming, even in difficult cases.
  • esterification and / or saponification products of the oxidates are obtained by partially or completely esterifying or saponifying or partially esterifying the oxidates with mono- or polyhydric alcohols or with mono- or trihydric metal ions or with ammonium ions, and then partially or esterifying the still free carboxyl groups completely saponified.
  • esterification components monovalent C 1 -C 22 -alkanols, dihydric alcohols such as 1, 2-ethanediol, 1, 2-propanediol, 1, 4-butanediol or ether alcohols such as diethylene glycol and higher polyalkylene glycols, further higher alcohols such as trimethylol propane or Pentaerythritol, optionally in a mixture with one another.
  • As saponification components are usually Li+, Na+, K+, Mg 2+ , Ca 2+ , Ba 2+ , Zn 2+ , Pb 2+ , Al 3+ , NH4+ and ammonium ions of organic amines in the form of their hydroxides, Carbonates, acetates, stearates and other salts used, optionally in a mixture with one another.
  • the esterification or saponification is carried out generally in a known manner by stirring the molten oxidates with the esterification or saponification components, if appropriate in the presence of suitable catalysts, to the desired degree of esterification or saponification.
  • Such an ancestor is described in DE-OS 22 01 862.
  • the esterification or saponification can also be carried out by intimately mixing the solid powdered, suspended, dispersed or dissolved oxidates with the solid, suspended, dispersed or dissolved reactants.
  • the resulting product can be used for the process according to the invention in moist, optionally in suspended or dispersed form, or after drying in powder form.
  • the saponification products can be prepared by stirring the oxidation products or the partially pre-esterified oxidation products in the molten state, optionally with the addition of emulsifiers, with the saponification component dissolved or dispersed in water. This results in aqueous solutions or dispersions of the saponification products, which as such can also be used advantageously for the process according to the invention.
  • the saponification products less the esterification products, generally have higher melting points and melt viscosities than the underlying oxidates.
  • the melting points are above 100, preferably above 110, in particular above 120, advantageously above 130, especially above 140 ° C.
  • the melt viscosities above 100 preferably above 500, in particular above 1000, advantageously above 3000, especially above 5000 mPas at 180 ° C.
  • the lower of the ranges specified apply to the esterification products.
  • the esterification and / or saponification products have, in certain respects, further optimized lubrication properties compared to the oxidates due to a specially given combination of comparatively high melting points, high melt viscosities, high crystallinities as well as a special balance between polar and non-polar components.
  • the saponification products in particular have proven to be particularly advantageous, as they form lubricating films with particularly excellent sliding, adhesive and separating properties and increased tear resistance and maintain these properties even under extreme pressure and temperature loads.
  • the esterified and especially the saponified oxidation products are therefore particularly suitable for use as a lubricant in difficult metal forming processes, e.g.
  • tube drawing, profile drawing, wire drawing, vocational travel, rolling, cold extrusion, upsetting or Forging preferably in the case of difficult-to-deform metals such as steels, especially high-alloy steels, also stainless steels, for example acid-proof chrome and chrome-nickel steels.
  • the oxidates or the esterification and / or saponification products can be used for the process according to the invention on their own, in a mixture with one another or in a mixture with other substances as lubricants for the shaping of metals.
  • Other mixture components that can be considered are, for example, mineral oils, vegetable or animal oils, fats, waxes or resins and also fatty acids, fatty alcohols, soaps, synthetic resins or oils, preferably polyalkylene glycols and their derivatives, very low molecular weight polyethylenes or esters.
  • customary additives such as high-pressure active substances (for example chlorine, sulfur or phosphorus-containing substances), pigments and fillers (for example lime, chalk, talc, borax, soda, mica, graphite, molybdenum disulphide, tungsten disulphide, boron nitride, iodine), Glass) emulsifiers, surfactants, wetting agents, thickeners (eg montmorillonite), adhesion improvers, binders, corrosion inhibitors and antioxidants are added to round off the properties.
  • high-pressure active substances for example chlorine, sulfur or phosphorus-containing substances
  • pigments and fillers for example lime, chalk, talc, borax, soda, mica, graphite, molybdenum disulphide, tungsten disulphide, boron nitride, iodine
  • emulsifiers for example lime, chalk, talc, borax, soda, mica, graphite, molybdenum disulphide, tungs
  • the oxidates or the esterification and / or saponification products of the oxidates can be used as lubricants in the form of powders, suspensions, dispersions or solutions for the process according to the invention.
  • the lubricants In powder form, the lubricants have good free-flowing properties which are advantageous for use and which, in contrast to conventional lubricants, are retained even at higher atmospheric humidity.
  • suspensions, dispersions and solutions water, mineral oils, natural or synthetic oils and chlorinated hydrocarbons, optionally in a mixture with one another, preferably serve as suspension, dispersion or solvent.
  • Polyalkylene glycols have proven to be particularly advantageous due to their solution-mediating effect both in the preparation of the lubricants according to the invention and in their removal from the metal surface.
  • the suspensions and dispersions can be prepared with the addition of known ionic or nonionic emulsifiers and wetting agents.
  • the lubricants are applied to the workpieces by known methods, for example by powdering, brushing, dipping, flooding, spraying or in a continuous process, if appropriate at elevated temperatures and while drying the workpiece.
  • the method according to the invention can be used advantageously in all types of non-cutting forming of metals, for example in wire, bar, tube, profile, deep, stretching and ironing, or in cold extrusion, cold upsetting, stamping, reducing, vocational, Rolling, cutting and forging.
  • the process is not limited to the cold forming of metals, but includes the warm and hot forming of metals, e.g. hot rolling, drop forging or extrusion, especially for non-ferrous metals.
  • the advantages of the method of operation according to the invention are particularly evident in the more difficult forming processes, e.g. tube drawing, profile drawing, wire drawing, pipe vocational, rolling, cold extrusion, upsetting or forging.
  • the method according to the invention is advantageously suitable for the forming of all common metallic materials, e.g. of low-carbon or high-carbon steels, non-alloyed, low-alloyed or high-alloyed steels, stainless steels, galvanized, copper-plated or other metallic-coated steels, non-ferrous metals, such as magnesium, aluminum, copper, brass, bronze, zinc, lead, nickel, titanium, zirconium, tungsten and their alloys.
  • the advantages of the method according to the invention come into play when shaping metals which are difficult to form, e.g. for austenitic and ferritic steels, especially for high-alloy, especially stainless steels, preferably stainless steels, e.g. acid-resistant chrome or chrome-nickel steels, also for galvanized steels. Because of the excellent lubricating effect of the lubricants used, several successive reshaping operations are generally possible in the method according to the invention without intermediate relubrication.
  • the additional application of a separating or lubricant carrier layer to the workpieces prior to the forming can generally be omitted in the method according to the invention even in difficult forming processes.
  • the lubricants used can also be used in combination with known separating or lubricant carrier layers.
  • additional advantages can be achieved in some cases in the case of particularly difficult metal forming the, for example when pulling complex shaped profiles made of stainless steel or cold extrusion.
  • the simpler physical application of the separating or lubricant carrier layers by allowing appropriate solutions or dispersions to dry on the workpiece surface is sufficient to achieve excellent results.
  • appropriate solutions or dispersions for example liming, boraxing
  • the more complex chemical application of the separating or lubricant carrier layers by chemical reaction of corresponding solutions or dispersions with the workpiece surface brings additional advantages only in extreme cases.
  • the method according to the invention Due to the excellent lubricating effect of the lubricants used, the method according to the invention generally achieves higher degrees of deformation and higher forming speeds, higher dimensional accuracy and better surface qualities of the workpieces, and longer tool life compared to known methods. Cold welding with the associated adverse effects on the workpiece surfaces due to drawing grooves and adverse effects on tool life due to welding do not occur or only to a greatly reduced extent.
  • the method according to the invention further reduces the energy consumption and the amount of waste water.
  • the process according to the invention is also distinguished by the fact that lubricants are used which do not contain any harmful substances and also do not contain any substances such as chlorine, sulfur, phosphorus or boron which adversely affect the properties of the processed materials, for example as a result of discoloration and corrosion the environment is heavily polluted.
  • the lubricants do not have a corrosive effect on metals, but have a protective effect against corrosion.
  • After the shaping they can be removed from the metal surface without residue using conventional means and methods, for example using conventional alkaline, neutral or acidic cleaners or else using organic solvents.
  • a special advantage of the method according to the invention is that the lubricants used can also be removed from the workpiece surface by evaporation without residue by simple vacuum-heat treatment, for example in the preliminary stage of post-heat treatment of the workpiece.
  • Bare steel wire with a carbon content of 0.85% is drawn by using the oxidation products of polymers listed in the following table as lubricants.
  • the lubricants are used in the solid state by running the wire through the powdered lubricant in front of the tool.
  • the wire is reduced in diameter to 1/4 of the original value in 15 passes.
  • the forming results given in the table are achieved.
  • Stainless steel wire is drawn by using aqueous alkaline dispersions from oxidation products of polymers as lubricants.
  • the same oxidation products of polymers as in Examples 1 to 8 are assumed.
  • the oxidation products are first converted into aqueous alkaline dispersions by being in the molten state together with the amounts of potassium calculated according to the acid number hydroxide and together with emulsifiers (5% by weight of ethoxylated fatty alcohol, based on oxidate) can be dispersed in hot water. Dispersions with the properties listed in the following table are obtained.
  • the stainless steel wire (Z 2 CN 18-10) is coated with the lubricant dispersions by immersion and subsequent drying and deformed in 15 passes from the initial diameter of 6.5 mm to the final diameter of 1.2 mm.
  • the forming results given in the table are achieved. The results are consistently much better than those obtained with conventional lubricants under the same conditions. With conventional lubricants, the wire becomes thick and breaks partially.
  • lubricants according to the invention are used with the addition of small amounts of polyalkylene glycols, they can be removed particularly easily from the metal surface after the reshaping.
  • Lubricants are produced by converting the oxidation products of polymers used in Examples 10 to 17 into saponification products.
  • the powdered oxidation products are saponified by mixing with the equivalent amount of potassium hydroxide solution.
  • the test products listed in the following table are obtained.
  • the lubricants from Examples 26 to 33 are dissolved together with 30% by mass of polyethylene glycol, based on the lubricant, in a paraffinic mineral oil with a viscosity of 168 mm2 / s (20 ° C) at a temperature of 130 ° C. In this way, 8 lubricants are obtained in the oil phase, which are used to pull steel pipes of material quality St 35. The following results are achieved:
  • Comparable good results can only be achieved with conventional lubricants if a separating or carrier layer based on zinc phosphate is applied in a complex manner to the tubes before the lubricant is added.
  • the lubricants from Examples 17 to 24 are each suspended in a liquid polyglycol, which is composed of ethylene oxide and propylene oxide units.
  • the lubricants are also distinguished in particular by being easy to remove from the metal surface after the deformation has taken place.
  • a cylindrical steel body of material quality St 35 is converted into a sleeve by cold extrusion.
  • An aqueous dispersion of a polyethylene oxidate with the acid number 26, the saponification number 40, the melting point 118 ° C., the dicarboxylic acid content of 84% and the melt viscosity 1350 mPas at 160 ° C. is used as the lubricant.
  • Forming takes place with a comparatively low stamping force and minimal ejection force and leads to a dimensionally accurate molded part with a high surface quality. If a lubricant carrier layer based on zinc phosphate is applied to the steel body before, only marginally better forming results are achieved.
  • the cold extrusion process can only be carried out if the steel body has previously also been provided with a lubricant carrier layer based on zinc phosphate.
  • a polyethylene oxidate with the acid number 68, the saponification number 99, the dropping point 110 ° C., the dicarboxylic acid content of 93% and the melt viscosity 150 mPas at 140 ° C. is saponified by stirring the oxidate melt with half the equivalent amount of calcium hydroxide.
  • a saponification product with the acid number 32, the saponification number 72, the dropping point 107 ° C. and the melt viscosity 1500 mPas at 140 ° C. is obtained.
  • the saponification product is used in powder form as a lubricant when asymmetrical edges are drawn into a square stainless steel rod. A dimensionally accurate profile with sharp edges and a bright surface is obtained.
  • a polyethylene oxidate with the acid number 68, the saponification number 99, the dropping point 110 ° C., the melt viscosity 150 mPas at 140 ° C. and the molecular weight 1700 is esterified with the corresponding amount of stearyl alcohol to an acid number of 15.
  • a product with the acid number 15, the saponification number 120, the dropping point 104 ° C. and the melt viscosity 250 mPas at 140 ° C. is obtained, which is used in powder form as a lubricant for cold-forming a square rod made of stainless steel into a hexagonal rod by drawing. An end product with excellent dimensional accuracy and high surface quality is obtained.
  • the experiment is repeated with the difference that the polyethylene oxidate is first esterified with the appropriate amount of stearyl alcohol to an acid number of 30 and then saponified with calcium hydroxide to an acid number of 15.
  • a product with an acid number of 15, a saponification number of 105, a dropping point of 108 ° C. and a melt viscosity of 1700 mPas at 140 ° C. is obtained.
  • the product is subsequently used as a lubricant for cold-forming the square rod into the hexagonal rod, compared to the above, even better results are achieved in that the forming can be carried out with reduced effort. Equally good results are achieved if the only esterified lubricant used above is used with the addition of fillers (talc, lime).

Description

  • Die Fertigung metallischer Formteile erfolgt häufig durch spanlose Umfor- mung, wobei dem Werkstück ohne oder mit Vorwärmung durch die Einwirkung hoher äußerer Kräfte die gewünschte Form gegeben wird. Arten des span- losen Metallumformens sind z.B. das Draht-, Stangen-, Rohr-, Profil-, Tief- und Abstreckziehen, ferner das Kaltfließpressen, Kaltstauchen, Pilgern, Kalt- und Warmwalzen oder das Schmieden.
  • Es ist bekannt, bei der spanlosen Umformung von Metallen Schmiermittel einzusetzen, um die Ergebnisse durch Verringerung der Reibung zwischen dem Werkstück und dem Formwerkzeug zu verbessern. Als Schmiermittel werden Mineralöle mit oder ohne Hochdruckzusätzen, tierische und pflanzliche Öle, Fette und Wachse sowie Metallseifen auf Fettsaürebasis, insbesondere auf Stearinsäurebasis, eingesetzt.
  • Bei Verwendung der bekannten Schmiermittel führt die spanlose Umformung von Metallen in vieler Hinsicht zu unbefriedigenden Ergebnissen. Es werden häufig die erwünschten hohen Umformgrade und Umformgeschwindigkeiten nicht erreicht. Auch werden infolge auftretender Kaltverschweißungen und Ziehriefenbildung die erstrebten Maßgenauigkeiten und Oberflächengüten der Werkstücke sowie ausreichend lange Standzeiten der Werkzeuge nicht erzielt. Hinzu kommt, daß bei herkömmlichen Schmiermitteln zur Erreichung eines spürbaren Schmiereffektes oft chlor-, schwefel- und phosphorhaltige Zusatz­stoffe erforderlich sind, durch die die Metalloberflächen verfärbt oder korro­diert werden und die Umwelt stark belastet wird. Die genannten Nachteile treten insbesondere in schwierigeren Fällen der Metallumformung auf, z.B. beim Drahtziehen, Rohrziehen, Profilziehen, Kaltfließpressen oder Gesenk­schmieden von Stählen, vor allem von höherlegierten Stählen. In schwie­rigeren Fällen ist eine Metallumformung unter Verwendung herkömmlicher Schmiermittel in der Regel überhaupt nur möglich, wenn vor der Umformung auf die Werkstückoberfläche zusätzliche Trenn- bzw. Schmiermittelträger­schichten aufgebracht werden. Die Aufbringung der Trenn- bzw. Schmier­mittelträgerschichten muß im allgemeinen in aufwendiger Weise chemisch durch Reaktion meist bestimmter Salzlösungen mit der Werkstückoberfläche unter Ausbildung entsprechender Überzüge auf der Werkstückoberfläche er­ folgen (z.B. "Phosphatierung", "Oxalierung"). Nur in weniger schwierigen Fäl­len genügt auch eine physikalische Aufbringung durch Eintrocknenlassen von Salzlösungen auf der Werkstückoberfläche, wobei jedoch die physikalische Aufbringung häufig völlig unzureichende Ergebnisse liefert. Die Trennschich­ten beeinträchtigen im übrigen oft die Oberflächenqualität der Werkstücke und erfordern einen hohen Aufwand für ihre Wiederentfernung vor der Weiterbearbeitung der Werkstücke, wobei außerdem aufarbeitungsbedürftige Abwässer anfallen. Zudem reicht die Wirkung der Trenn- bzw. Trägerschich­ten in schwierigen Fällen der Metallumformung häufig zur Erzielung akzep­tabler Umformergebnisse nicht aus.
  • Aus der EP-A-0 028 384 ist es bekannt, daß Produkte der Luftoxidation von Polymerisaten von Ethylen mit 0, 5 bis 50 Gew.-% anderen olefinischen, sauerstoffhaltigen Comonomeren wachsartige Produkte liefern, die als Haushalts-Bodenpflege­mittel oder auch Gleitmittel für die Kunststoffverarbeitung geeignet sind. Sie weisen die Vorteile auf, aus ihren Emulsionen mit hohem Selbstglanz aufzutrocknen und rutsch­feste Filme zu bilden bzw. bei ihrer Verwendung als Gleit­mittel für die Kunststoffverarbeitung eine hohe Transparenz und hohe Ausstoßraten zu gewährleisten.
  • Aus der DE-OS 30 47 915 ist es ferner bekannt, daß durch Oxidation von pulverförmigen oder geschmolzenen Polyolefinen mit schwefelsaurer Chromsäurelösung helle, harte, sauerstoff­haltige Wachsprodukte entstehen.
  • Beide genannten Veröffentlichungen erwähnen neben der bevor­zugten Verwendung auf dem Putzmittelgebiet in offensichtlich rein spekulativer Weise zahlreiche andere Möglichkeiten einer Verwendung, ohne dazu nähere Ausführungen zu enthalten oder die tatsächliche Eignung dieser Produkte für alle diese Verwendungen glaubhaft zu machen.
  • Das gilt insbesondere für die Erwähnung einer Verwendung als Schmiermittel für die Metallbearbeitung, wobei dieser all­gemeine Begriff die spanabhebende Bearbeitung genauso umfaßt wie die spanlose Bearbeitung. Es ist dem Fachmann jedoch gut bekannt, daß an ein Schmiermittel für die spanlose Metall­bearbeitung ganz andere Anforderungen gestellt werden als an solche für die spanabhebene Metallbearbeitung. Insbeson­dere gibt die offensichtlich rein spekulative Erwähnung einer Eignung als Schmiermittel für die Metallbearbeitung einem Fachmann, der ein Verfahren zur spanlosen Umformung von Metallen, insbesondere auch ein bekanntermaßen schwie­rig durchzuführendes derartiges Verfahren wie Drahtziehen, Rohrziehen, Profilziehen, Kaltfließpressen oder Gesenkschmie­den von Stählen verbessern will, keinerlei Veranlassung, von den noch dazu voneinander deutlich unterschiedlichen Produk­ten der obigen Veröffentlichungen die gewünschte Lösung seines Problems zu erwarten, und ein derartiger Fachmann erhält aus den beiläufigen Bemerkungen der genannten Ver­öffentlichungen keinerlei nacharbeitbare Lehre zum technischen Handeln.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur spanlosen Umformung von Metallen unter Verwendung eines syn­thetischen Schmiermittels, das gegebenenfalls in Verbindung mit Trenn- und/oder Schmiermittelträgerschichten verwendet wird, so zu verbessern, daß bei derartigen Verfahren höhere Umformgrade und höhere Umformgeschwindigkeiten erreichbar werden und Werkstücke erhalten werden können, die höhere Maßgenauigkeiten und bessere Oberflächengüten aufweisen, wobei gleichzeitig längere Standzeiten der Werkzeuge erreicht werden.
  • Diese Aufgabe wird gemäß der vorliegenden Erfindung gelöst durch ein Verfahren zur spanlosen Umformung von Metallen unter Verwendung eines synthetischen Schmiermittels, das ge­gebenenfalls in Verbindung mit Trenn- und/oder Schmiermittel­trägerschichten verwendet wird, das dadurch gekennzeichnet ist, daß das Schmiermittel ausgewählt ist aus den Produkten der Luftoxidation von Polymerisaten von 1-Olefinen mit Säure­zahlen zwischen 5 und 150 mg KOH/g, Schmelzviskositäten zwi­schen 5 und 100000 mPa s bei 160°C sowie Schmelzpunkten über 90°C sowie
  • Veresterungs- und Verseifungsprodukten dieser Oxidationspro­dukte sowie Gemischen der genannten Substanzen, wobei dieses Schmiermittel in reiner Form oder im Gemisch mit anderen an sich bekannten Mischungsbestandteilen von Schmiermitteln ein­gesetzt wird.
  • Die mit der Erfindung im Vergleich zu bekannten Verfahren erzielten Vortei­le bestehen insbesondere darin, daß höhere Umformgrade und höhere Um­formgeschwindigkeiten, ferner höhere Maßgenauigkeiten und bessere Oberflä­chengüten der Werkstücke sowie längere Standzeiten der Werkzeuge erreicht werden. Auch lassen sich die Umformungen mit deutlich verringertem Ener­gieaufwand und verringerter Umweltbelastung durchführen. Darüber hinaus kann in vielen Fällen die Aufbringung zusätzlicher Trenn- bzw. Schmiermittelträgerschichten vereinfacht werden oder ganz entfallen.
  • Die beim erfindungsgemäßen Verfahren als Schmiermittel eingesetzten Oxidate von Polymerisaten von 1-Olefinen sind Oxidate von Homopolymerisaten von C₂-C18-Alkenen mit endständiger Doppelbindung, vorzugsweise der C₂-C12-Alkenen, vor allem des Ethens, des Propens, des 1-Butens, des 3-Methyl-1-butens, des 1-Pentens, des 1-Hexens und des 1-Octens, zu verstehen, sowie von Copolymerisaten dieser 1-Olefine miteinander und ferner von Copolymerisaten dieser 1-Olefine mit bis zu 50, vorzugsweise bis zu 30, insbesondere bis zu 20, vor allem aber bis zu 15 Gew.-%, an sauerstoffhaltigen 1-Olefinen.
  • In die Luffoxidation eingesetete polymerisate sind z.B. die handelsüblichen Polyethylene, Polypropylene, Poly­butylene usw., wie sie nach bekannten Verfahren, beispielsweise durch Hoch-, Mittel- oder Niederdrukpolymerisation erhalten werden. Copolymerisate der 1 -Olefine enthalten gleichzeitig mindestens zwei unterschiedliche 1 -Olefin­bausteine. Hierzu gehören z.B. Polyethylene mit einem Gehalt von bis zu 30, vorzugsweise bis zu 20, insbesondere bis zu 10 Gew.-%, an anderen l-Olefi­nen wie Propen, 1-Buten usw. Auch die neuerdings unter der Bezeichnung LLDPE verfügbaren Copolymerisate des Ethylens mit höheren 1-Olefinen sind hierzu zu rechnen. Copolymerisate der 1 -Olefine mit sauerstoffhaltigen Ole­finen sind z.B. Copolymerisate des Ethylens mit Vinylestern der Carbonsäuren wie Vinylacetat oder Vinylpropionat, ferner mit Vinylethern oder 1, 2-ethyle­nisch ungesättigten Carbonsäuren und deren Derivaten wie Acrylsäure, Meth­acrylsäure, Ethacrylsäure, Crotonsäure, Fumarsäure, Maleinsäure, Malein­säureanhydrid Itaconsäure Mesaconsäure oder den Estern dieser Säuren. Es ist möglich, niedermolekulare wachsartige Polymerisate mit Molekülmassen zwi­schen 200 und 20000 (Schmelzviskositäten ca. 5 bis 100000 mPas bei 160°C) und höhermolekulare, kunststoffartige Polymerisate mit Molekülmassen zwi­schen 20000 und 5000000 (Schmelzindices MFI 190/2, 16 ca. 1000 bis 0, 001 g/10 min.) einzusetzen.
  • Unter den Oxidationsprodukten der Polymerisate sind Produkte zu verstehen, die durch Luftoxidation der Polymerisate entstehen. Ihre Herstel­lung kann nach bekannten Verfahren erfolgen, z.B. aus niedermolekularen Po­lymerisaten durch Vermischen der polymerisate im geschmolzenen Zustand mit Luft oder besonders vorteilhaft aus höhermolekularen Polymerisaten durch ßehandlung der Polymerisate bei erhöhten Temperaturen mit Luft im festen Zustand oder im geschmolzenen Zustand feinverteilt in einem inerten Dispersionsmittel. Ein derartiges Verfahren ist in der DE-OS 20 35 706 beschrieben. Die Oxidate weisen Säurezahlen zwischen 5 und 150, vorzugsweise zwischen 10 und 70, vorteilhaft zwischen 15 und 50, insbesondere zwischen 20 und 45 mg KOH/g, sowie Schmelzviskositäten zwischen 5 und 100000, vorzugsweise zwischen 50 und 50000, vorteilhaft zwischen 100 und 30000, insbesondere zwischen 500 und 20000, vor allem zwischen 1000 und 15 000 mPas bei 160°C auf. Ihre Schmelzpunkte liegen über 90, vorzugsweise über 100, insbesondere über 110, vor allem über 115°C. Die Schmelzpunkte der Oxidate von Copolymerisaten liegen eher in den unteren der angegebenen Bereiche. Insbesondere Oxidate mit hohem Gehalt an Dicarbonsäuren (> 10, vorzugsweise >20, vorteilhaft >40, insbesondere >60, vor allem >80 Gew.-%), wie sie bei der Oxidation höhermolekularer Polymerisate (Molekülmassen >5000, vorzugsweise >10000) entstehen, und Oxidate mit gleichzeitig ver­gleichsweise hohen Schmelzpunkten, hohen Schmelzviskositäten, hohen Kri­stallinitäten und hohen Polaritäten besitzen als Schmierstoffe bei der Metall­umformung auch in schwierigeren Fällen hervorragende Eigenschaften.
  • Die Veresterungs- und/oder Verseifungsprodukte der Oxidate werden erhalten, indem man die Oxidate mit ein- oder mehrwertigen Alkoholen bzw. mit ein­bis dreiwertigen Metallionen oder mit Ammoniumionen teilweise oder voll­ständig verestert bzw. verseift oder zunächst teilweise verestert und dann die noch freien Carboxylgruppen teilweise oder vollständig verseift.
  • Als Veresterungskomponenten kommen hauptsächlich in Betracht: einwertige C₁- bis C22-Alkanole, zweiwertige Alkohole wie 1, 2-Ethandiol, 1, 2-Propan­diol, 1, 4-Butandiol oder Etheralkohole wie Diethylenglykol und höhere Poly­alkylenglykole, ferner höherwertige Alkohole wie Trimethylolpropan oder Pentaerythrit, gegebenenfalls im Gemisch miteinander. Als Verseifungskom­ponenten werden in der Regel Li⁺, Na⁺, K⁺, Mg2+, Ca2+, Ba2+, Zn2+, Pb2+, Al3+, NH₄⁺ und Ammoniumionen organischer Amine in Form ihrer Hydroxide, Carbonate, Acetate, Stearate u.a. Salze eingesetzt, gegebenenfalls im Ge­misch miteinander. Die Durchführung der Veresterung bzw. Verseifung erfolgt im allgemeinen in bekannter Weise durch Verrühren der geschmolzenen Oxi­date mit den Veresterungs- bzw. Verseifungskomponenten, gegebenenfallsin Gegenwart geeigneter Katalysatoren, bis zum gewünschten Veresterungs- bzw. Verseifungsgrad. Ein derartiges Vorfahren ist in der DE-OS 22 01 862 beschnieben. Die Veresterung bzw. Verseifung kann auch durch inniges Vermischen der festen pulverisierten, suspendierten, dispergierten oder gelösten Oxidate mit den festen, suspendierten, dispergierten oder gelösten Reaktionspartnern erfolgen. Bei Verwendung von suspendierten, dispergierten der gelösten Reaktionspartnern kann das entstehende Produkt in feuchter, gegebenenfalls in suspendierter bzw. dispergierter Form, oder nach dem Trocknen in Pulverform für das erfindungsgemäße Verfahren eingesetzt wer­en. In einer anderen Ausführungsform können die Verseifungsprodukte her­gestellt werden, indem die Oxidationsprodukte oder die teilweise vorver­esterten Oxidationsprodukte im geschmolzenen Zustand, gegebenenfalls unter Zugabe von Emulgatoren, mit der in Wasser gelösten oder dispergierten Ver­seifungskomponente verrührt werden. Dabei entstehen wäßrige Lösungen oder Dispersionen der Verseifungsprodukte, die auch als solche vorteilhaft für das erfindungsgemäße Verfahren eingesetzt werden können.
  • Die Verseifungsprodukte, weniger die Veresterungsprodukte, weisen gegenüber den zugrundeliegenden Oxidaten im allgemeinen erhöhte Schmelzpunkte und Schmelzviskositäten auf. Bei den Verseifungsprodukten liegen die Schmelz­punkte über 100, vorzugsweise über 110, insbesondere über 120, vorteilhaft über 130, vor allem über 140°C, die Schmelzviskositäten über 100, vorzugs­weise über 500, insbesondere über 1000, vorteilhaft über 3000, vor allem über 5000 mPas bei 180°C. Für die Veresterungsprodukte gelten eher die un­teren der angegebenen Bereiche. Die Veresterungs- und/oder Verseifungspro­dukte besitzen gegenüber den Oxidaten in bestimmter Hinsicht weiter opti­mierte Schmiereigenschaften durch eine speziell gegebene Kombination von vergleichsweise hohen Schmelzpunkten, hohen Schmelzviskositäten, hohen Kristallinitäten sowie durch eine spezielle Ausgewogenheit zwischen polaren und unpolaren Anteilen. Als besonders vorteilhaft haben sich vor allem die Verseifungsprodukte erwiesen, die Schmierfilme mit speziell herausragendem Gleit-, Haft- und Trennvermögen sowie erhöhter Reißfestigkeit bilden und diese Eigenschaften auch unter extremen Druck- und Temperaturbelastungen beibehalten. Die veresterten und vor allem die verseiften Oxidationsprodukte eignen sich deswegen in ganz besonderer Weise zum Einsatz als Schmier­mittel bei schwierigen Umformungen von Metallen, z.B. beim Rohrziehen, Profilziehen, Drahtziehen, Pilgern, Walzen, Kaltfließpressen, Stauchen oder Schmieden, vorzugsweise bei schwer verformbaren Metallen wie Stählen, vor allem hochlegierten Stählen, auch Edelstählen, z.B. säurefesten Chrom- und Chrom-Nickel-Stählen.
  • Die Oxidate oder die Veresterungs- und/oder Verseifungsprodukte der können für das erfindungsgemäße Verfahren für sich, im Gemisch miteinander oder im Gemisch mit anderen Stoffen als Schmiermittel für die Umformung von Metallen eingesetzt werden. Als ande­re Mischungskomponenten kommen beispielsweise Mineralöle, pflanzliche oder tierische Öle, Fette, Wachse oder Harze sowie Fettsäuren, Fettalkohole, Sei­fen, synthetische Harze oder Öle, vorzugsweise Polyalkylenglykole und deren Derivate, sehr niedermolekulare Polyethylene oder Ester, in Betracht. Ferner können den Schmiermitteln beim erfindungsgemäßen Verfahren übliche Zu­satzstoffe wie Hochdruckwirkstoffe (z.B. chlor-, schwefel- oder phosphor­haltige Substanzen) ferner Pigmente und Füllstoffe (z.B. Kalk, Kreide, Tal­kum, Borax, Soda, Glimmer, Graphit, Molybdändisulfid, Wolframdisulfid, Bor­nitrid, Jod, Glas) Emulgatoren, Tenside, Netzmittel, Verdicker (z.B. Mont­morillonit), Haftverbesserer, Bindemittel, Korrosionsinhibitoren und Antioxi­dantien zur Abrundung der Eigenschaften beigemischt werden.
  • Die Oxidate oder die Veresterungs- und/oder Verseifungsprodukte der Oxidate lassen sich für das erfindungsgemäße Verfahren als Schmiermittel in Form von Pulvern, Suspensionen, Dispersionen oder Lösun­gen einsetzen. In Pulverform weisen die Schmierstoffe eine für die Ver­wendung vorteilhafte gute Rieselfähigkeit auf, die im Unterschied zu her­kömmlichen Schmiermitteln auch bei höherer Luftfeuchtigkeit erhalten bleibt. Bei Suspensionen, Dispersionen und Lösungen dienen bevorzugt Wasser, Mineralöle, natürliche oder synthetische Öle und Chlorkohlenwasserstoffe, ge­gebenenfalls im Gemisch miteinander, als Suspensions-, Dispersions- bzw. Lösungsmittel. Als besonders vorteilhaft erweisen sich dabei Polyalkylengly­kole aufgrund einer lösungsvermittelnden Wirkung sowohl bei der Zubereitung der erfindgungsgemäßen Schmierstoffe als auch bei ihrer Wiederentfernung von der Metalloberfläche. Die Herstellung der Suspensionen und Dispersionen kann unter Hinzufügung bekannter ionischer oder nichtionischer Emulgatoren sowie Netzmittel erfolgen. Die Aufbringung der Schmiermittel auf die Werk­stücke wird nach bekannten Verfahren vorgenommen, z.B. durch Aufpudern, Streichen, Tauchen, Fluten, Spritzen oder im Durchlaufverfahren, gegebenen­falls bei erhöhten Temperaturen und unter Nachtrocknen des Werkstücks.
  • Das erfindungsgemäße Verfahren kann bei allen Arten der spanlosen Umfor­mung von Metallen vorteilhaft angewandt werden, beispielsweise beim Draht-, Stangen-, Rohr-, Profil-, Tief-, Streck-, und Abstreckziehen oder beim Kaltfließpressen, Kaltstauchen, Prägen, Reduzieren, Pilgern, Walzen, Schneiden und Schmieden. Das Verfahren beschränkt sich nicht auf das Kalt­umformen von Metallen, sondern schließt das Halbwarm- und Warmumformen von Metallen mit ein, z.B. das Warmwalzen, das Gesenkschmieden oder das Strangpressen, insbesondere auch bei Nichteisenmetallen. Besonders zeigen sich die Vorteile der erfindungsgemäßen Arbeitsweise bei den schwierigeren Umformverfahren, z.B. beim Rohrziehen, Profilziehen, Drahtziehen, Rohr­pilgern, Walzen, Kaltfließpressen, Stauchen oder Schmieden.
  • Das erfindungsgemäße Verfahren eignet sich vorteilhaft zur Umformung von allen gängigen metallischen Werkstoffen, z.B. von kohlenstoffarmen oder kohlenstoffreichen Stählen, nicht-, nieder- oder hochlegierten Stählen, Edel­stählen, verzinkten, verkupferten oder anderweitig metallisch beschichteten Stählen, Nichteisenmetallen, etwa Magnesium, Aluminium, Kupfer, Messing, Bronze, Zink, Blei, Nickel, Titan, Zirkon, Wolfram und deren Legierungen. Im besonderen kommen die Vorteile des erfindungsgemäßen Verfahrens bei der Umformung schwer umformbarer Metalle zum tragen, z.B. bei austenitischen und ferritischen Stählen, insbesondere bei hochlegierten, vor allem nicht­rostenden Stählen, vorzugsweise Edelstählen, z.B. säurebeständigen Chrom­oder Chrom-Nickel-Stählen, ferner bei verzinkten Stählen. Wegen der hervor­ragenden Schmierwirkung der eingesetzten Schmierstoffe sind beim erfin­dungsgemäßen Verfahren im allgemeinen mehrere aufeinanderfolgende Um­formungen ohne dazwischengeschaltetes Nachschmieren möglich.
  • Aufgrund des hervorragenden Gleit-, Haft-, und Trennvermögens sowie der ausgezeichneten Filmfestigkeit der eingesetzten Schmierstoffe kann beim erfindungsgemäßen Verfahren in der Regel selbst bei schwierigen Umform­prozessen die zusätzliche Aufbringung einer Trenn- bzw. Schmiermittelträ­gerschicht auf die Werkstücke vor der Umformung entfallen. Dadurch erge­ben sich gegenüber bekannten Umformverfahren verringerte Kosten, ver­ringerte Abwasserprobleme und verbesserte Oberflächenqualitäten der End­produkte. Beim erfindungsgemäßen Verfahren können jedoch die eingesetzten Schmierstoffe auch in Kombination mit bekannten Trenn- bzw. Schmiermit­telträgerschichten benutzt werden. Dadurch können bei besonders schwierigen Umformungen von Metallen in manchen Fällen weitere Vorteile erzielt wer­ den, beispielsweise beim Ziehen kompliziert geformter Profile aus Edel­stählen oder beim Kaltfließpressen. Dabei genügt im allgemeinen die ein­fachere physikalische Aufbringung der Trenn- bzw. Schmiermittelträger­schichten durch Auftrocknenlassen entsprechender Lösungen bzw. Disper­sionen auf der Werkstückoberfläche (z.B. Kälkung, Boraxierung) zur Erzielung hervorragender Ergebnisse. Die aufwendigere chemische Aufbringung der Trenn- bzw. Schmiermittelträgerschichten durch chemische Reaktion ent­sprechender Lösungen bzw. Dispersionen mit der Werkstückoberfläche (z.B. Phosphatierung, Oxalierung, Verkupferung) bringt nur in extremen Fällen zusätzliche Vorteile.
  • Aufgrund der hervorragenden Schmierwirkung der eingesetzten Schmierstoffe werden beim erfindungsgemäßen Verfahren im Vergleich zu bekannten Ver­fahren allgemein höhere Umformgrade und höhere Umformgeschwindigkeiten, ferner höhere Maßgenauigkeiten und bessere Oberflächengüten der Werk­stücke sowie längere Standzeiten der Werkzeuge erreicht. Kaltverschweißun­gen mit den damit verbundenen Beeinträchtigungen der Werkstückoberflächen durch Ziehriefen und Beeinträchtigungen der Werkzeugstandzeiten durch Auf­schweißungen treten nicht oder nur in stark verringertem Maße auf. Das er­findungsgemäße Verfahren verringert ferner den Energieverbrauch und den Anfall von Abwässern.
  • Das erfindungsgemäße Verfahren zeichnet sich auch dadurch aus, daß Schmierstoffe benutzt werden, die keine gesundheitsschädlichen Stoffe enthalten und auch keine Stoffe wie Chlor, Schwefel, Phosphor oder Bor enthal­ten, durch die die Eigenschaften der bearbeiteten Werkstoffe, z.B.infolge Verfärbungen und Korrosion, nachteilig beeinflußt werden und die Umwelt stark belastet wird. Die Schmierstoffe wirken auf Metalle nicht korrosiv, sondern korrosionsschützend. Nach der Umformung lassen sie sich nach Be­darf mit einfachen Mitteln und Methoden, beispielsweise mittels üblicher alkalischer, neutraler oder saurer Reiniger oder auch mittels organischer Lösungsmittel, nach üblichen Reinigungsverfahren rückstandsfrei von der Metalloberfläche entfernen. Ei n spezieller Vorteil des erfindungsgemäßen Verfahrens besteht ferner darin, daß sich die benutzten Schmiermittel auch durch eine einfache Vakuum-Wärme-Behandlung, beispielsweise im Vorstadium der Wärmenachbehandlung des Werkstücks, durch Verdampfen rückstandsfrei wieder von der Werkstückoberfläche entfernen lassen.
  • Beispiele 1 bis 8
  • Blanker Stahldraht mit einem Kohlenstoffgehalt von 0, 85% wird gezogen, in­dem die in folgender Tabelle aufgeführten Oxidationsprodukte von Polymeri­saten als Schmiermittel eingesetzt werden.
    Figure imgb0001
  • Die Schmiermittel werden im festen Zustand eingesetzt, indem der Draht vor dem Werkzeug durch das pulverisierte Schmiermittel läuft. Der Draht wird in 15 Zügen in seinem Durchmesser auf 1/4 des ursprünglichen Wertes reduziert. Es werden die in der Tabelle angegebenen Umformergebnisse erzielt.
  • Wird der Ziehversuch mit herkömmlichen Schmiermitteln, z.B. auf Fettsäu­reseifen-Basis, durchgeführt, so werden durchwegs geringere Ziehgeschwindig­keiten und weniger gute Drahtoberflächen erhalten. Außerdem tritt bei herkömmlichen Schmiermitteln ein höherer Ziehsteinverschleiß auf.
  • Beispiele 9 bis 16
  • Edelstahldraht wird gezogen, indem wäßrig-alkalische Dispersionen aus Oxida­tionsprodukten von Polymerisaten als Schmiermittel eingesetzt werden.
  • Es wird von den gleichen Oxidationsprodukten von Polymerisaten wie in den Beispielen 1 bis 8 ausgegangen. Die Oxidationsprodukte werden zunächst in wäßrig-alkalische Dispersionen übergeführt, indem sie im geschmolzenen Zu­stand zusammen mit den nach der Säurezahl berechneten Mengen an Kalium­ hydroxid sowie zusammen mit Emulgatoren (5 Gew.-% ethoxilierterFett­alkohol, bezogen auf Oxidat) in heißem Wasser dispergiert werden. Es werden Dispersionen mit den in folgender Tabelle aufgeführten Eigenschaften er­halten.
    Figure imgb0002
  • Der Edelstahldraht (Z 2 CN 18-10) wird jeweils mit den Schmiermitteldis­persionen durch Tauchen und anschließendes Trocknen beschichtet und in 15 Zügen vom Ausgangsdurchmesser 6, 5 mm auf den Enddurchmesser von 1, 2 mm verformt. Es werden die in der Tabelle angegebenen Umformergebnisse erzielt. Die Ergebnisse sind durchwegs deutlich besser als sie unter gleichen Bedingungen mit herkömmlichen Schmierstoffen erhalten werden. Mit her­kömmlichen Schmierstoffen wird der Draht riefig und bricht teilweise.
  • Gleichartige Ergebnisse werden mit den oben aufgeführten Schmiermitteln erzielt, wenn sie zum Ziehen von Edelstahlrohren eingesetzt werden. Mit her­kömmlichen Schmiermitteln lassen sich annähernd gleich gute Ergebnisse nur erreichen, wenn stark umweltbelastende und korrodierende Schmiermittel auf Basis Chlorparaffin herangezogen werden oder wenn die Rohre zunächst durch Oxalierung in aufwendiger Weise vorbehandelt und dann mit speziellen Fettsäureseifen nachbehandelt werden.
  • Werden die erfindungsgemäßen Schmierstoffe unter Zusatz geringer Mengen an Polyalkylenglykolen eingesetzt, so lassen sie sich nach erfolgter Umfor­mung besonders leicht wieder von der Metalloberfläche entfernen.
  • Beispiele 17 bis 24
  • Es werden Schmiermittel hergestellt, indem die in den Beispielen 10 bis 17 benutzten Oxidationsprodukte von Polymerisaten in Verseifungsprodukte über­geführt werden. Zu diesem Zweck werden die pulverisierten Oxidationspro­dukte durch Vermischen mit der äquivalenten Menge an Kalilauge verseift. Es werden die in der folgenden Tabelle aufgeführten Versuchsprodukte erhalten.
    Figure imgb0003
  • In Rundstäbe aus austenitischem Chrom-Nickel-Stahl von 30 mm Durchmesser werden in einem Zug vier symmetrisch angeordnete Nuten mit je 5 mm Tiefe und 5 mm Breite eingezogen, wobei die in obiger Tabelle aufgeführten Verseifungsprodukte von Polymerisaten als Schmiermittel eingesetzt werden. Es werden die in der Tabelle angegebenen Umformergebnisse erzielt. Die Werkstückoberfläche enthält noch soviel Schmiermittel, daß ohne Nach­schmieren weitere Züge möglich sind.
  • Werden die Ziehversuche mit herkömmlichen Schmiermitteln, beispielsweise auf Fettsäureseifen-Basis durchgeführt, so lassen sich allenfalls annähernd gleich gute Ergebnisse nur erzielen, wenn auf die Werkstücke vor der Umfor­mung eine Trenn- bzw. Schmiermittelträgerschicht auf Eisenoxalatbasis durch chemische Behandlung der Oberfläche mit entsprechenden Lösungen aufge­bracht wird.
  • Beispiele 25 bis 32
  • Die Schmiermittel aus den Beipielen 26 bis 33 werden jeweils zusammen mit 30 Massen-% Polyethylenglykol, bezogen auf das Schmiermittel, in einem paraffinischen Mineralöl mit der Viskosität 168 mm²/s (20°C) bei einer Tem­peratur von 130°C gelöst. Auf diese Weise werden 8 Schmiermittel in Öl­phase erhalten, die zum Ziehen von Stahlrohren der Werkstoffqualität St 35 eingesetzt werden. Es werden folgende Ergebnisse erzielt:
    Figure imgb0004
  • Mit herkömmlichen Schmiermitteln werden vergleichbar gute Ergebnisse nur erzielt, wenn auf die Rohre vor Zugabe des Schmiermittels in aufwendiger Weise eine Trenn- bzw. Trägerschicht auf Zinkplhosphatbasis aufgebracht wird.
  • Beispiele 33 bis 40
  • Die Schmiermittel aus den Beispielen 17 bis 24 werden jeweils in einem flüssigen Polyglykol, das aus Ethylenoxid- und Propylenoxid-Einheiten aufge- baut ist, suspendiert. Die so erhaltenen flüssigen Schmiermittel werden zum Ziehen von Edelstahlrohren eingesetzt (= Beispiele 33 bis 40). Es werden bei niederen Ziehkräften hohe Umformgrade (bis zu 51%) und ausgezeichnete Oberflächenqualitäten erreicht. Innerhalb der Versuchsreihe ergibt sich die gleiche Qualitätsabstufung wie bei den Beispielen 25 bis 32. Die Schmiermit­tel zeichnen sich insbesondere auch durch eine leichte Entfernbarkeit von der Metalloberfläche nach erfolgter Umformung aus.
  • Beispiel 41
  • Ein zylinderförmiger Stahlkörper der Werkstoffqualität St 35 wird durch Kaltfließpressen in eine Hülse übergeführt. Als Schmiermittel wird eine wäßrige Dispersion eines Polyethylenoxidates mit der Säurezahl 26, der Ver­seifungszahl 40, dem Schmelzpunkt 118°C, dem Dicarbonsäuregehalt von 84% und der Schmelzviskosität 1350 mPas bei 160°C eingesetzt. Die Umformung läuft mit vergleichsweise geringer Stempelkraft und minimaler Auswurfkraft ab und führt zu einem maßgenauen Formteil mit hoher Oberflächenquali­tät.Wird auf den Stahlkörper vor der Zugabe des Schmiermittels eine Schmier­mittelträgerschicht auf Zinkphosphatbasis aufgebracht, so werden nur un­wesentlich bessere Umformergebnisse erzielt.
  • Mit einem herkömmlichen Schmierstoff auf Fettsäureseifen-Basisist der Kaltfließpreßvorgang nur durchführbar, wenn der Stahlkörper vorher zusätz­lich mit einer Schmiermittelträgerschicht auf Zinkphosphatbasis versehen wurde.
  • Beispiel 42
  • Ein Polyethylenoxidat mit der Säurezahl 68, der Verseifungszahl 99, dem Tropfpunkt 110°C, dem Dicarbonsäuregehalt von 93% und der Schmelzviskosi­tät 150 mPas bei 140°C wird durch Verrühren der Oxidatschmelze mit der halben äquivalenten Menge Calciumhydroxid verseift. Man erhält ein Versei­fungsprodukt mit der Säurezahl 32, der Verseifungszahl 72, dem Tropfpunkt 107°C und der Schmelzviskosität 1500 mPas bei 140°C. Das Verseifungspro­dukt wird in Pulverform als Schmiermittel beim Einziehen asymmetrischer Kanten in einen Vierkantstab aus Edelstahl eingesetzt. Es wird ein maßgenau­es Profil mit scharfen Kanten und hellblanker Oberfläche erhalten.
  • Der Versuch wird wiederholt, wobei auf die Werkstückoberfläche zuvor durch chemische Behandlung mit einer entsprechenden Lösung eine Trenn- bzw. Schmierstoffträgerschicht auf Eisenoxalatbasis aufgebracht wird. Es werden - im Vergleich zum Versuch ohne Trenn- bzw. Trägerschicht - graduell wei­ter verbesserte Umformergebisse erzielt.
  • Bei Benutzung herkömmlicher Schmiermittel auf Fettsäureseifen-Basis ist ein Ziehen des Profils ohne vorheriges Aufbringen einer Trenn- bzw. Träger­ schicht nicht möglich. Nach dem Aufbringen einer Trenn- bzw. Trägerschicht ist das Ziehen zwar prinzipiell möglich, es werden aber deutlich schlechtere Ergebnisse erzielt als beim erfindungsgemäßen Verfahren, z.B. tritt starke Riefenbildung und hoher Werkzeugverschleiß auf.
  • Beispiel 43
  • Ein Polyethylenoxidat mit der Säurezahl 68, der Verseifungszahl 99, dem Tropfpunkt 110°C, der Schmelzviskosität 150 mPas bei 140°C und der Mole­külmasse 1700 wird mit der entsprechenden Menge Stearylalkohol bis auf eine Säurezahl von 15 verestert. Man erhält ein Produkt mit der Säurezahl 15, der Verseifungszahl 120, dem Tropfpunkt 104°C und der Schmelzviskosität 250 mPas bei 140°C, das in Pulverform als Schmiermittel zum Kaltumformen eines Vierkantstabes aus Edelstahl in einen Sechskantstab durch Ziehen ver­wendet wird. Es wird ein Endprodukt mit ausgezeichneter Maßgenauigkeit und hoher Oberflächengüte erhalten.
  • Der Versuch wird wiederholt mit dem Unterschied, daß das Polyethylenoxidat zunächst mit der entsprechenden Menge Stearylalkohol bis auf eine Säurezahl von 30 verestert und dann mit Calciumhydroxid bis auf eine Säurezahl von 15 verseift wird. Man erhält ein Produkt mit der Säurezahl 15, der Ver­seifungszahl 105, dem Tropfpunkt 108°C und der Schmelzviskosität 1700 mPas bei 140°C. Bei der anschließenden Verwendung des Produktes als Schmiermittel zum Kaltumformen des Vierkantstabes in den Sechskantstab werden im Vergleich zu oben insofern noch weiter verbesserte Ergebnisse erzielt als sich die Umformung mit verringertem Kraftaufwand durchführen läßt. Gleich gute Ergebnisse werden erzielt, wenn das oben benutzte, nur veresterte Schmiermittel unter Zumischung von Füllstoffen (Talkum, Kalk) eingesetzt wird.

Claims (9)

1. Verfahren zur spanlosen Umformung von Metallen unter Verwendung eines synthetischen Schmiermittels, das gegebenen­falls in Verbindung mit Trenn- und/oder Schmiermittelträger­schichten verwendet wird, dadurch gekennzeichnet, daß das Schmiermittel ausgewählt ist aus den Produkten der Luftoxida­tion von Polymerisaten von 1-Olefinen mit Säurezahlen zwischen 5 und 150 mg KOH/g, Schmelzviskositäten zwischen 5 und 100000 mPa s bei 160°C sowie Schmelzpunkten über 90°C sowie Veresterungs- und Verseifungsprodukten dieser Oxidationspro­dukte sowie Gemischen der genannten Substanzen, wobei dieses Schmiermittel in reiner Form oder im Gemisch mit anderen, an sich bekannten Mischungsbestandteilen von Schmiermitteln ein­gesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Produkte der Luftoxidation die Oxidationsprodukte von Polymerisaten sind, die ausgewählt sind aus
- Homopolymerisaten von C₂-C18-Alkenen mit endständiger Doppelbindung, vorzugsweise C₂-C12-Alkenen und insbesondere von Ethen, Propen, 1-Buten, 3-Methyl-1-buten, 1-Penten, 1-Hexen und 1-Octen,
- Copolymerisaten derartiger 1-Olefine miteinander und
- Copolymerisaten derartiger 1-Olefine mit bis zu 50 Gew.-% an sauerstoffhaltigen 1-Olefinen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die zur Herstellung der Oxidationsprodukte verwendeten Poly­merisate höhermolekulare Polymerisate mit Molekülmassen von mehr als 5000 und vorzugsweise mehr als 10000 sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Oxidationsprodukte Säurezahlen zwi­schen 10 und 70 KOH/g, Schmelzviskositäten zwischen 50 und 50000 mPa s bei 160°C, Schmelzpunkte über 100°C sowie einen Dicarbonsäuregehalt über 10 Gew.-% aufweisen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Veresterungsprodukte der Oxidations­produkte mit ein- oder mehrwertigen Alkoholen verestert sind und die Verseifungsprodukte Verseifungsprodukte mit ein- bis dreiwertigen Metallionen oder mit Ammoniumionen sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Veresterungs- und Verseifungsprodukte der Oxidationsprodukte durch Vermischen der pulverisierten festen, suspendierten, dispergierten oder gelösten Oxidations­produkte mit den festen, suspendierten, dispergierten oder gelösten Veresterungskomponenten bzw. Verseifungskomponenten in fester, suspendierter, dispergierter oder gelöster Form hergestellt und in fester, suspendierter, dispergierter oder gelöster Form eingesetzt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Veresterungs- und Verseifungsprodukte Schmelzpunkte über 100°C sowie Schmelzviskositäten bei 180°C über 100 mPa s aufweisen.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Schmiermittel im Gemisch mit Mischungsbestandteilen eingesetzt wird, die ausgewählt sind aus der Gruppe, be­stehend aus Mineralölen, pflanzlichen oder tierischen Ölen, Fetten, Wachsen oder Harzen, Fettsäuren, Fettalkoholen, Seifen, synthetischen Harzen oder Ölen, Polyalkylenglykolen oder deren Derivaten, Hochdruckwirkstoffen, Pigmenten, Füllstoffen, Emulgatoren, Tensiden, Netzmitteln, Ver­dickern, Haftverbesserern, Bindemitteln, Korrosionsshutz­mitteln und Antioxidantien, sowie Mischungen von zwei oder mehr dieser Mischungsbestandteile.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Schmiermittel im Gemisch mit einem Suspensions-, Dispersions- bzw. Lösungsmittel eingesetzt wird, das aus­gewählt ist aus einer Gruppe, die besteht aus Wasser, Mineralölen, natürlichen oder synthetischen Ölen, Poly­alkylenglykolen oder Chlorkohlenwasserstoffen, sowie Mischungen von zwei oder mehr dieser Mittel.
EP86903351A 1985-05-28 1986-05-27 Verfahren zur spanlosen umformung von metallen Expired - Lifetime EP0224522B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86903351T ATE61063T1 (de) 1985-05-28 1986-05-27 Verfahren zur spanlosen umformung von metallen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3519078 1985-05-28
DE19853519078 DE3519078A1 (de) 1985-05-28 1985-05-28 Verfahren zur kaltumformung metallischer werkstuecke

Publications (2)

Publication Number Publication Date
EP0224522A1 EP0224522A1 (de) 1987-06-10
EP0224522B1 true EP0224522B1 (de) 1991-02-27

Family

ID=6271804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86903351A Expired - Lifetime EP0224522B1 (de) 1985-05-28 1986-05-27 Verfahren zur spanlosen umformung von metallen

Country Status (5)

Country Link
US (1) US4800033A (de)
EP (1) EP0224522B1 (de)
JP (1) JPS62503038A (de)
DE (2) DE3519078A1 (de)
WO (1) WO1986007087A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3640023A1 (de) * 1986-11-24 1988-05-26 Karl Prof Dr Stetter Verfahren zur spangebenden metallbearbeitung und schmiermittelzusammensetzungen fuer dieses verfahren
JP2736366B2 (ja) * 1988-11-11 1998-04-02 三井化学株式会社 水性エマルジョン
US5141659A (en) * 1990-01-11 1992-08-25 Sumico Lubricant Co., Ltd. Lubricating agent for use in warm and hot forging
IL107927A0 (en) 1992-12-17 1994-04-12 Exxon Chemical Patents Inc Oil soluble ethylene/1-butene copolymers and lubricating oils containing the same
WO1995031297A1 (en) * 1994-05-13 1995-11-23 Henkel Corporation Aqueous metal coating composition and process with reduced staining and corrosion
DE19532691C2 (de) * 1995-09-05 1999-09-02 Poly Clip System Gmbh & Co Kg Lackbeschichtete Verschlußklammer
US5801128A (en) * 1995-10-23 1998-09-01 International Refining And Manufacturing Company Hot melt lubricant and method of application
DE19810031A1 (de) * 1998-03-09 1999-09-16 Acheson Ind Inc Wasserfreie Trenn/Schmiermittel zur Behandlung der Wände einer Form zur Urformung oder Umformung
JP2006131726A (ja) * 2004-11-05 2006-05-25 Daido Chem Ind Co Ltd マグネシウム及び(又は)マグネシウム合金の温間及び熱間加工用潤滑剤組成物
JP5285218B2 (ja) * 2006-12-28 2013-09-11 出光興産株式会社 金属加工用潤滑油組成物
EP3725512A4 (de) * 2017-12-15 2021-08-11 JFE Steel Corporation Harzbeschichtete metallplatte für behälter
MY192782A (en) * 2017-12-15 2022-09-08 Jfe Steel Corp Resin-coated metal sheet for container

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000825A (en) * 1958-12-23 1961-09-19 Exxon Research Engineering Co Lubricants containing metal salts of oxonated polymers
NL272925A (de) * 1960-12-29
US3250103A (en) * 1964-01-30 1966-05-10 Shell Oil Co Metal working process
FR1426791A (fr) * 1964-03-27 1966-01-28 Standard Oil Co Lubrifiant pour le travail de métaux, et procédés pour son utilisation
JPS51257B2 (de) * 1971-08-19 1976-01-06
US3756954A (en) * 1971-09-16 1973-09-04 Lubrizol Corp Rs for lubricants degraded ethylene propylene interpolymers useful as viscosity modifie
BE794057A (fr) * 1972-01-15 1973-07-16 Hoechst Ag Procede de preparation de produits de reaction cireux de polyethylenes oxydes
CA1046047A (en) * 1973-04-27 1979-01-09 Edward F. Leary Method for improving the adherence of oil type metalworking coolants to metal surfaces
GB1507823A (en) * 1973-12-17 1978-04-19 Lee & Sons Ltd A Wire drawing
GB1438215A (en) * 1974-05-08 1976-06-03 Lonz Ltd High temperature lubricant
DE2704175A1 (de) * 1977-02-02 1978-08-10 Metallgesellschaft Ag Schmierstoff fuer die formgebung von metallen
US4372863A (en) * 1977-04-13 1983-02-08 Exxon Research & Engineering Co. Oil compositions containing oil-soluble, oxidatively and mechanically degraded ethylene copolymers
JPS5946555B2 (ja) * 1977-08-30 1984-11-13 出光興産株式会社 絞り加工用潤滑油
DE2909517A1 (de) * 1979-03-10 1980-09-18 Bayer Ag Metallbearbeitungs-schmieroele
DE3066715D1 (en) * 1979-11-02 1984-03-29 Hoechst Ag Oxidation products of ethylene copolymers and their use
ZA817287B (en) * 1980-10-21 1983-05-25 Orobis Ltd Method for oxidatively shearing an olefinic polymer
DE3047915A1 (de) * 1980-12-19 1982-07-15 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung heller, harter, sauerstoffhaltiger waschprodukte sowie die nach diesem verfahren enthaltenen substanzen
US4455244A (en) * 1982-06-07 1984-06-19 Standard Oil Company (Indiana) Oxidized mannich condensation product
DE3227102A1 (de) * 1982-07-20 1984-02-02 Special'noe konstruktorsko-technologičeskoe bjuro analitičeskogo priborostroenija, Gomel' Schmiermittel fuer das kaltverformen von metallen
JPS59227985A (ja) * 1983-06-10 1984-12-21 Kao Corp 金属加工油組成物

Also Published As

Publication number Publication date
WO1986007087A1 (en) 1986-12-04
EP0224522A1 (de) 1987-06-10
DE3519078A1 (de) 1986-12-04
US4800033A (en) 1989-01-24
DE3677723D1 (de) 1991-04-04
JPS62503038A (ja) 1987-12-03

Similar Documents

Publication Publication Date Title
DE69930628T2 (de) Zusammensetzung und verfahren zur beschichtung von metallen mit schmierkunststoffen
EP0718396B1 (de) Schmiermittel für die Metallumformung
DE2043885C3 (de) Schmiermittel für die spanende und spanlose Bearbeitung von Metallwerkstoffen
EP0224522B1 (de) Verfahren zur spanlosen umformung von metallen
EP2247701B1 (de) Verfahren zur beschichtung von metallischen oberflächen mit einer wachse enthaltenden schmierstoffzusammensetzung
EP2238227B1 (de) Verfahren zur beschichtung von metallischen oberflächen mit einer phosphatschicht und danach mit einer polymeren schmierstoffschicht
EP2238228B1 (de) Verfahren zur beschichtung von metallischen oberflächen mit einer schmierstoffzusammensetzung
US7414012B2 (en) Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
US20030130137A1 (en) Aqueous lubricant for plactic working of metallic material and method of lubricant film processing
EP0251192B1 (de) Schmiermittel für die Metallumformung
DE1627741C3 (de) Auf umzuformende Stahlbleche aufgebrachte Feststoffschmiermittelschicht und Verfahren zu ihrer Herstellung
DE2310590A1 (de) Schmierfette
EP0143964A2 (de) Verfahren zur Erleichterung der Kaltverformung
EP0200167B1 (de) Verfahren zur Erleichterung der Kaltumformung
EP0334977B1 (de) Schmiermittel für die Umformung metallischer Werkstoffe
DE2748319A1 (de) Verfahren zum schmieren eines metallischen werkstoffs fuer dessen bearbeitung und schmiermittel zur durchfuehrung des verfahrens
CA1106829A (en) Cold forming lubrication
DE3640023A1 (de) Verfahren zur spangebenden metallbearbeitung und schmiermittelzusammensetzungen fuer dieses verfahren
JPH02117993A (ja) Di缶用加工油組成物
EP0301120A1 (de) Schmiermittel für die Kaltumformung metallischer Werkstoffe und Verfahren zu seiner Herstellung
DD257359A3 (de) Schmiermittel fuer die kaltumformung metallischer werkstoffe
DE2429528A1 (de) Verfahren zur kaltformung von metallen und hierfuer verwendbare schmierstoffzusammenstellung
DD224046A1 (de) Verfahren zur kaltumformung von schwer umformbaren metallen und metallegierungen
DD263072A1 (de) Schmierstoff fuer die kaltumformung metallischer werkstoffe
DEM0016011MA (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19881214

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STETTER, KARL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910227

Ref country code: SE

Effective date: 19910227

Ref country code: NL

Effective date: 19910227

Ref country code: BE

Effective date: 19910227

Ref country code: GB

Effective date: 19910227

REF Corresponds to:

Ref document number: 61063

Country of ref document: AT

Date of ref document: 19910315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3677723

Country of ref document: DE

Date of ref document: 19910404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910531

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920401

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920618

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930531

Ref country code: CH

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST