EP0213283B1 - Einrichtung zur Münzenprüfung - Google Patents

Einrichtung zur Münzenprüfung Download PDF

Info

Publication number
EP0213283B1
EP0213283B1 EP86107405A EP86107405A EP0213283B1 EP 0213283 B1 EP0213283 B1 EP 0213283B1 EP 86107405 A EP86107405 A EP 86107405A EP 86107405 A EP86107405 A EP 86107405A EP 0213283 B1 EP0213283 B1 EP 0213283B1
Authority
EP
European Patent Office
Prior art keywords
coin
amplifier
signal
coils
coins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86107405A
Other languages
English (en)
French (fr)
Other versions
EP0213283A1 (de
Inventor
Bernhard Trummer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascom Autelca AG
Original Assignee
Ascom Autelca AG
Autelca AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascom Autelca AG, Autelca AG filed Critical Ascom Autelca AG
Priority to AT86107405T priority Critical patent/ATE50654T1/de
Publication of EP0213283A1 publication Critical patent/EP0213283A1/de
Application granted granted Critical
Publication of EP0213283B1 publication Critical patent/EP0213283B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/005Testing the surface pattern, e.g. relief
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the invention relates to a device for coin testing (see e.g. GB-A 2 045 500).
  • the object is achieved to create a device of this type, which makes it possible to test several coin properties precisely within narrow tolerances, has a low, short-term power consumption, takes up little space, so It is feasible that it corrects the influence of changes in the properties of its components on the test results itself, and requires little adjustment work in their manufacture and maintenance.
  • the advantages achieved by the invention are essentially to be seen in the fact that all oscillators are formed with one and the same amplifier, so that only one amplifier has to be compared when manufacturing the device and when maintaining it, and only when checking several coin properties the feed current of this single amplifier flows.
  • the supply current duration can be very short in that the switching device, after a part of a test signal of a coin characteristic that is sufficient for evaluation, connects the oscillation circuit provided for the subsequent test of a further coin characteristic to the amplifier, if the evaluation of the test signal does not already result in a coin return signal.
  • the switching device automatically follows the chronological sequence in which the coin to be tested influences different coils one after the other, so that these coils can be arranged very close to one another.
  • the coils of oscillation circuits for testing the same or different coin properties can also be arranged in such a way that the coin to be tested influences them at the same time, the oscillation circuits with these coils being periodically excited alternately, i.e. being briefly connected to the amplifier several times by the switching device.
  • the simultaneous influence is made possible by the fact that each oscillation circuit has only one coil, on the end face of which the coin passes.
  • These measures can e.g. a test duration of less than 100 ms with an energy consumption of 200 mWs per coin can be achieved with a coin speed of 0.5 m / s.
  • test signals for the different coin properties are formed from the oscillator vibrations by one and the same demodulator with a subsequent analog-digital converter
  • changes (drift) in the properties of the components of the demodulator and the analog component which in the long run are unavoidable and have an undesirable influence on the test signals have Digital converter has the same effect on all test signals. This enables an automatic correction in the evaluation device, so that the drift when measuring the tolerance ranges of the test criteria (if the evaluation device triggers or exceeds a coin return signal) is ignored. This enables a very critical and nevertheless reliable test.
  • a particularly stable amplifier circuit for the oscillator in which neither feedback coils nor coil taps are necessary, together with an embodiment of the switching device in which, despite the use of semiconductor switches, the entire resonant circuit voltage is at the amplifier input, a rapidly responding, threshold-free demodulator, the type of Correction of drift phenomena, a special coil arrangement for checking the minting of the coin, with which the minting pattern can also be checked in addition to the embossing depth, and a special coil arrangement and signal evaluation for checking the diameter of the coin, thanks to which a high resolution capability in a large diameter range is achieved.
  • the evaluation device 22 and the control device 28 are combined to form a data processing device (microprocessor CPU) to which the read-only memory (EPROM) 23 is assigned.
  • microprocessor CPU microprocessor CPU
  • EPROM read-only memory
  • the coin guide according to FIGS. 2 and 3 has a steep guide surface 31, on which the coins rolling on a runway 32 with a gradient slide with their entire front and rear sides, so that a certain, small distance between the coin and the one behind it Guide surface 31 arranged resonance circuit coils 7-11 is ensured.
  • the oscillation circles 1 to 6 are intended for the testing of several coin properties as follows: the oscillation circles 1 and 2 with the coils 7 and 8 for the minting, the oscillation circles 3 and 4 with the coils 9 and 10 for the diameter, the oscillation circuit 5 with the Coil 11 for the alloy and the oscillation circuit 6 with the coil 12 for the thickness of the coin.
  • the resonant circuit coils 7-12 are arranged in such a way that the coin to be tested first influences the coils 7 and 8 simultaneously, then the coil 9 individually and then the coils 10, 11 and 12 simultaneously.
  • the coil 10 is arranged on the guide surface 31 above the coil 11 and the coil 12 coaxially to the coil 11 opposite this.
  • the switching device 16, 17 first connects the oscillating circuits 1 and 2 (coils 7 and 8) periodically alternately (for example 0.5 to 1 ms each) when checking the coin properties.
  • the oscillating circuits 1, 2 and 6 In the absence of a coin, the oscillating circuits 1, 2 and 6 have a natural frequency of 247 kHz, the oscillating circuits 3 and 4 have a natural frequency of 230 kHz and the oscillating circuit 5 has a lower natural frequency of 120 kHz, at which the field of the coil 11 goes deeper into the coin body penetrates, whereby the influence of the electrical and magnetic properties of the coin alloy on the test signal is greater and the influence of the embossing depth is smaller.
  • the damping of the oscillation circuits 1-6 are on resistors, e.g. 36, adjusted so that the high frequency voltage of the oscillator has the same amplitude with each of the oscillation circuits 1-6 in the absence of a coin, e.g. Peak-to-peak value 2.5 V.
  • the amplifier 14 is a non-inverting amplifier with a gain of one.
  • the switching device 16, 17 has two jointly controllable semiconductor switches for each of the oscillation circuits 1-6, through which one the input 39 and through the other the output 40 of the amplifier 14 can be individually connected to each of the oscillation circuits 1-6.
  • the oscillation circuit 1 can be connected to the amplifier input 39 by the semiconductor switch 42 and to the amplifier output 40 by the semiconductor switch 43.
  • the amplifier 14 is a stabilized differential amplifier with a first and a second transistor 51 and 52 in an emitter circuit.
  • the same partial voltages of two DC voltage dividers 57, 58 and 59, 60 are present at the inputs 54 and 55 of this amplifier circuit.
  • Relative to the output 62 (collector of the second transistor 52), 54 (base of the first transistor 51) is the non-inverting input.
  • the resonant circuit voltage is superimposed on this input in that the oscillating circuit 1 is connected to this input 54 through the semiconductor switch 43 and a capacitor 63 bridging the resistor 57.
  • the output 62 is also connected to the oscillation circuit 1 by the semiconductor switch 42.
  • a pulse shaper 64 which delivers pulses with the frequency of the oscillator vibrations to the evaluation device 22, which these pulses as an additional test signal, in particular e.g. used in checking the coin alloy, is connected to the other output 66 (collector of the first transistor 51) in order to influence the oscillator as little as possible.
  • a constant current source 67 is used to stabilize the amplifier in conjunction with a current mirror 68 which is connected between the interconnected emitters of transistors 51 and 52 and a fixed negative reference potential (e.g. -5V).
  • a resistor 69 in series with the constant current source 67 supplies a constant (negative) reference voltage, which is amplified and inverted by an amplifier 71, the voltage Uref at the output 72 of this amplifier 71 being practically independent of the load.
  • the amplitude demodulator 19 has a first constant current source 75, which has a charging current represented by an arrow 76 of e.g. 0.33 mA in the forward direction of a diode 77 to a capacitor 78.
  • the constant current source 75 is controlled by a comparator 79 such that the charging current 76 flows when the instantaneous value of the high-frequency voltage is greater than the capacitor voltage.
  • a second constant current source 82 supplies a discharge current of e.g. 0.004 mA directly to the capacitor 78.
  • the second constant current source 82 is controlled by a second comparator 84 so that the discharge current 83 flows when the capacitor voltage has the polarity corresponding to the charging current 76.
  • the comparator 84 can also be omitted, so that the discharge current 83 flows continuously. If the instantaneous value of the high-frequency voltage is less than the voltage at the capacitor 78, the current of the constant current source 75 opposite to the direction of the arrow 76 flows through the diode 85.
  • the currents 76 and 83 of the constant current sources 75 and 82 are possibly by means of two transistors 87 and 88 Changes in the reference voltage on the output line 72 of the amplifier 71 (FIG.
  • the output signal (voltage of the capacitor 78) of the demodulator 19 is amplified in an amplifier 89 and converted in the analog-digital converter 20 into a corresponding digital signal.
  • the semiconductor switches 45 and 46 are temporarily closed in succession before the coin check (immediately after a coin detector responds).
  • a first voltage Uref 1 and then a second voltage Uref 2 are applied to the input of the amplitude demodulator 19.
  • These voltages are obtained by one or two voltage dividers, not shown, from the voltage Uref on the output line of the amplifier 71 (FIG.
  • U ref 1 to a first digital signal in a lowermost part of the signal range of the analog-to-digital converter 20 and Uref 2 leads to a second digital signal in an uppermost part of the signal range of the analog-to-digital converter 20.
  • U ref 2 is somewhat smaller than the oscillator amplitude with an oscillation circuit not influenced by a coin, and U ref 1 is on the order of magnitude smaller than U ref 2 .
  • the evaluation device 22 (data processing device, microprocessor CPU), not shown in detail, has a subtractor, a divider and an adder and a multiplier, and in the memory 23 (EPROM) there are a first setpoint for the first and a second setpoint for the second of these two digital Signals saved.
  • the subtractor forms the difference between the value of the first signal and the first setpoint.
  • the dividing unit forms the quotient of the value of the second signal and the second setpoint.
  • the first of these corrections corrects a shift in the digital values, and the second corrects a change in the analog-digital range of the analog-digital converter 20.
  • the coils 7 and 8 for checking the embossing of the coin are pot core coils whose pot core end face is significantly smaller than the area of the small one most acceptable coin. They are arranged in succession at such a distance from the runway 32 of the coin guide and at such a mutual distance in the direction of coin movement 34 (FIG. 7) that they are influenced by all of the coins to be accepted for a time sufficient to generate an evaluable test signal.
  • the test signal for the coinage consists of two partial signals P i and P 2 interleaved with one another as in the time-division multiplex method (FIG 6), of which Pi is based on influencing the coil 7 and P 2 on influencing the coil 8. Because the coils 7 and 8 are influenced by different, small surface parts (different circular ring sectors) of the coin surface, the test signal Pi, P 2 contains considerably more information about the coinage than a test signal which is usually produced by influencing a single coil.
  • the limits of the range between which the signal maxima and minima lie are stored in the memory 23 for each coin to be accepted as test criteria for the depth of the coinage.
  • the evaluation device 22 checks whether the area in which the minima and maxima of the test signal parts P 1 and P 2 lie corresponds to one of the areas stored as criteria for one of the coins to be accepted. If this is the case, the coin being tested has the embossing depth of this coin to be accepted.
  • the greater information content of the test signal P 1 , P 2 obtained with the two coils 7 and 8, which is characteristic of the embossing, also makes it possible to store criteria for the coins to be accepted, which are typical of the embossing pattern (lettering, numbering and image embossing), and for testing , for example in addition to the depth of the embossing. These criteria must be saved for both sides of each coin because they are different for the two sides of the coin and it is not possible to predict which side of the coin will face the coils 7 and 8 when it is checked. It may be expedient to arrange the coils 7 and 8 at different distances from the runway 32 of the coin guide.
  • the coils 9 and 10 for checking the diameter of the coin have pot cores, the diameter of which is considerably larger than the diameter of the coils 7 and 8. At the pot cores of the coils 9 and 10, two segments lying opposite one another are cut off in order to reduce their dimension in the direction of coin movement 34 and thus the duration of their influence and the length of the measuring section on the coin guide. These coils 9 and 10 are arranged in succession in the direction of coin movement 34 such that the highest point of the pole core of the coil 9 and the lowest point of the pole core of the coil 10 are at the same distance from the runway 32 of the coin guide.
  • the test signal consists of two consecutive partial signals di and d 2 for coins in a lower part of the diameter range or D i and D 2 for coins in an upper part of the diameter range, di and Di being influenced by the coil 9, d 2 or D 2 are based on influencing the coil 10.
  • d 1 has a pronounced minimum that is clearly related to the coin diameter (great slope of the signal value as a function of the diameter of the coin), while d 2 has a much less pronounced, less meaningful minimum (small slope of the signal value as a function of the diameter of the coin).
  • the minimum of d 1 is evaluated for the test.
  • Di has a wide range of a minimum which is only insignificantly influenced by the coin diameter, while D 2 has a pronounced minimum which is much more influenced by the coin diameter. The minimum of D 2 is evaluated for the test.
  • the memory 25 contains the criteria for the minimum of the first partial signal di for each of the coins to be accepted, the diameter of which lies in the lower partial diameter range, and the criteria for the minimum of the second partial signal D 2 for each of the coins to be accepted, the diameter of which lies in the upper partial diameter range saved.
  • the evaluation device 22 determines the minima of these test signals by differentiating them. Criteria for the coin diameter are. for each of the coins to be accepted, an upper and a lower limit of the minimum of the first and second partial signals. If the first or second partial signal di or D 2 of the coin to be checked lies between the limits stored for one of the coins to be accepted, then the coin has the diameter of this coin to be accepted.
  • the coil 11 intended for checking the coin alloy and the coil 12 provided for checking the coin thickness are pot core coils, the pot core diameter of which are dimensioned and are arranged at such a distance from the runway 32 that they also differ from that of the coins to be accepted, which has the smallest diameter, being influenced in its entire pole area for a sufficient time to generate an evaluable test signal.
  • the distance of the coil 12 from the guide surface 31 of the coin track is only slightly larger than the thickness of the thickest of the coins to be accepted.
  • the test signal L obtained for the alloy of the coin metal when the coil 11 is influenced by the coin to be tested has a constant signal part between two minima.
  • the criteria for each of the coins to be accepted are stored in the memory 23.
  • One of these two minima arises when the edge of the coin enters the field of the coil 11, and the other arises when the edge of the coin emerges again from the field of the coil 11, one edge of the coin being a conductor which is moved (limited in the field) in the high-frequency field of the coil 11 works. If the coin has an edge zone made of one and a middle part made of another alloy, this affects the two minima and the constant, middle signal part.
  • these minima and this central signal part can be used as distinguishing features of different coins of this type and of coins made of only one alloy and of coins with a central hole, by storing corresponding criteria in the memory 23 and comparing them with these parts of the signal L.
  • the oscillation circuit 5 must be excited not only while the entire pole region of its coil 11 is being influenced by the coin to be tested, but also be connected to the amplifier 14 when the coin edge reaches or leaves the pole region.
  • the oscillation circuit 3 is only excited in a region of maximum influence on its coil 9. It would also suffice to excite the oscillation circuit 4 only in an area of maximum influence on its coil 10 and at the same time to excite the oscillation circuit 6.
  • the test signal S for the thickness of the coin obtained when the coil 12 is influenced by the coin to be tested also has a constant signal part between two minima, for which the criteria with which this signal part is evaluated during the evaluation are stored in the memory 23 for each of the coins to be accepted of the signal S is compared.
  • the two minima are irrelevant.
  • the minima mentioned also occur with the signals Pi and P 2 , but because of the small ratio of the diameter of the coils 7 and 8 to the coin diameter (eg 4 mm) and the coin speed (eg 0.5 m / s) only valid for a very short time, but could also be used in the minting test.
  • the oscillation circuits 3 and 4 are not yet or no longer excited when the coin edge enters and exits the field of the coil 9 or 10, as further below in connection with the switching of the analog switches 16 and 17 from the oscillation circuits 1 and 2 to the oscillation circuit 3 from the oscillation circuit 3 to the oscillation circuits 4, 5 and 6.
  • the evaluation device 22 determines the minimum of di or D 2 , which is decisive for the signal evaluation, and possibly the minima of, for example, L by differentiating these signals.
  • the middle, constant part of the signals L and S runs in a range in the middle of which is the minimum of D 2 (time ts). Accordingly, the amount that these signals have at this point in time (or shortly thereafter) is evaluated in the evaluation device 22.
  • Criteria for the alloy and for the thickness of the coin are an upper and a lower limit of the constant, middle signal part of L and S (and possibly the minima of the signal L). If the signal part in question lies between the limits stored for the alloy or thickness of one of the coins to be accepted, the coin to be tested has the alloy or thickness of this coin to be accepted.
  • the oscillation circles 1 and 2 or 4, 5 and 6 P i , P 2 , D 2 , L and S consist of short, as in time division multiplexed with each other with the coils 7 and 8 or 10, 11 and 12 in continuous successive repetition briefly excited by connection to the amplifier 14 Signal parts.
  • the switching of the device from one test process to the next test process or to the following simultaneous test processes is triggered by the coin to be tested itself.
  • a part of the test signal (part signal) Pi of the oscillation circuit 1 (coil 7) sufficient for evaluation is present (this is the case at the time t 1 , in which the rising edge of the part signal Pi shows that no further information is to be expected)
  • Its oscillating circuit coil 9 is now influenced by the coin to be checked.
  • this partial signal rises to a minimum, that is at time t 2 , it contains all the necessary information, and the evaluation device 22 now causes the oscillation circuits 4, 5 and 6 to be repeatedly repeatedly connected individually to the amplifier 14 to form an oscillator .
  • the coin influences the coils 10, 11 and 12 of these oscillation circles 4, 5 and 6 simultaneously. Influencing the coil 10 results in the second partial signal d 2 or D 2 for checking the diameter, influencing the coil 11 produces the signal L for checking the alloy, and influencing the coil 12 produces the signal S for checking the thickness of the Coin.
  • the device could also be designed in such a way that the analog switches 16 and 17 connect the oscillation circuits 1 to 6 to the amplifier 14 in a cycle which is repeated over and over again during the coin check in order to form an oscillator.
  • this leads to a longer test duration - just like a possible sequence of the test procedures according to a fixed time program, which requires a certain coin speed.
  • the evaluation device 22 determines that a test signal or partial signal of a test signal does not correspond to any of the criteria stored for the relevant coin characteristic of the coins to be accepted, or several signals (obtained from one and the same coin) do not correspond to the signals to be accepted for the relevant characteristics of one and the same If the coin meets stored criteria, it triggers the coin return signal on line 26. If all of the test signals obtained for the different coin properties correspond to the criteria stored for these properties of one and the same, acceptable coin, the evaluation device 22 triggers the coin acceptance signal on the line 25. After a coin acceptance or coin return signal, the device returns to its idle state. In the case of a coin return signal at time ti or t 2 , a control signal for switching to the next or the next test processes is omitted.
  • the device can also be designed such that the frequency response determines the test signals.
  • the exemplary embodiment can also be expanded such that when checking at least one of the coin properties, e.g. of the alloy, it is checked whether the frequency of the oscillator vibrations influenced by the coin corresponds to the criteria stored therefor.
  • the design of the coils 8 to 12, the arrangement of the coils 8 and 9 as well as the arrangement of the coils 9 and 10 with respect to one another, the test signals, their evaluation and the criteria used here can also be used without the time-division multiplex principle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Detergent Compositions (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

  • Die Erfindung bezieht sich auf eine Einrichtung zur Münzenprüfung (siehe z.B. GB-A 2 045 500).
  • Durch die Erfindung, wie sie in den Patentansprüchen gekennzeichnet ist, wird die Aufgabe gelöst, eine Einrichtung dieser Art zu schaffen, die es ermöglicht, mehrere Münzeigenschaften genau innerhalb enger Toleranzen zu prüfen, einen niedrigen, nur kurzzeitigen Stromverbrauch hat, wenig Raum beansprucht, so ausführbar ist, dass sie den Einfluss von Aenderungen der Eigenschaften ihrer Bauteile auf die Prüfergebnisse selbst korrigiert, und bei ihrer Herstellung und ihrem Unterhalt wenig Abgleicharbeit erfordert.
  • Die durch die Erfindung erzielten Vorteile sind im wesentlichen darin zu sehen, dass alle Oszillatoren mit ein und demselben Verstärker gebildet werden, so dass bei der Herstellung der Einrichtung und bei deren Unterhalt nur ein einziger Verstärker abgeglichen werden muss, und bei der Prüfung mehrerer Münzeigenschaften nur der Speisestrom dieses einzigen Verstärkers fliesst. Dabei kann die Speisestromdauer sehr kurz sein, indem die Schaltvorrichtung nach einem zur Auswertung ausreichenden Teil eines Prüfsignals einer Münzeigenschaft, den für die anschliessende Prüfung einer weiteren Münzeigenschaft vorgesehenen Schwingungskreis mit dem Verstärker verbindet, falls die Auswertung des Prüfsignals nicht bereits zu einem Münzrückgabesignal führt. Dabei folgt die Schaltvorrichtung automatisch der zeitlichen Folge, in der die zu prüfende Münze verschiedene Spulen nacheinander beeinflusst, so dass diese Spulen sehr dicht aufeinander folgend angeordnet werden können. Dies ermöglicht eine sehr kurze Prüfzeit und eine sehr kurze Prüfstrecke der Münzführung. Auch können die Spulen von Schwingungskreisen für die Prüfung derselben oder verschiedener Münzeigenschaften so angeordnet werden, dass die zu prüfende Münze sie gleichzeitig beeinflusst, wobei die Schwingungskreise mit diesen Spulen periodisch abwechselnd erregt, d.h durch die Schaltvorrichtung mehrmals kurzzeitig mit dem Verstärker verbunden werden. Die gleichzeitige Beeinflussung wird ermöglicht, indem jeder Schwingungskreis nur eine Spule hat, an deren Stirnfläche die Münze vorbeigeht. Durch diese Massnahmen kann z.B. mit einer Münzgeschwindigkeit von 0,5 m/s eine Prüfdauer von weniger als 100 ms bei einem Energieverbrauch von 200 mWs pro Münze erzielt werden. Indem die Prüfsignale für die verschiedenen Münzeigenschaften aus den Oszillatorschwingungen durch ein und denselben Demodulator mit anschliessendem Analog-Digital-Wandler gebildet werden, haben die auf die Dauer unvermeidbaren, die Prüfsignale unerwünscht beeinflussenden Aenderungen (Drift) von Eigenschaften der Bauteile des Demodulators und des Analog-Digital-Wandlers auf alle Prüfsignale dieselbe Wirkung. Dies ermöglicht eine automatische Korrektur in der Auswertevorrichtung, so dass der Drift bei der Bemessung der Toleranzbereiche der Prüfkriterien (bei deren Ueber-oder Unterschreitung die Auswertevorrichtung ein Münzrückgabesignal auslöst), unbeachtet bleiben kann. Dies ermöglicht eine sehr kritische und trotzdem zuverlässige Prüfung. Vorteilhaft sind auch eine besonders stabile Verstärkerschaltung für den Oszillator, bei der weder Rückkopplungsspulen noch Spulenabgriffe nötig sind, zusammen mit einer Ausführung der Schaltvorrichtung, bei der trotz Verwendung von Halbleiterschaltern die ganze Schwingkreisspannung am Verstärkereingang liegt, ein schnell ansprechender, schwellenfreier Demodulator, die Art der Korrektur von Drifterscheinungen, eine besondere Spulenanordnung für die Prüfung der Prägung der Münze, mit der ausser der Prägungstiefe auch das Prägungsmuster geprüft werden kann, und eine besondere Spulenanordnung und Signalauswertung für die Prüfung des Durchmessers der Münze, durch die ein grosses Auflösungsvermögen in einem grossen Durchmesserbereich erzielt wird. Weitere Vorteile und Lösungen von im Zusammenhang mit der Erfindung stehenden Einzelaufgaben gehen aus der folgendden, detaillierten Beschreibung einer erfindungsgemässen Einrichtung zur Münzenprüfung hervor. Insgesamt zeichnet sich die Einrichtung durch Einfachheit, niedrigen, kurzzeitigen Stromverbrauch, kleinen Raumbedarf und zuverlässige, genaue Prüfergebnisse innerhalb enger Toleranzen aus.
  • Im folgenden wird die Erfindung anhand von Zeichnungen, die lediglich einen Ausführungsweg darstellen, näher beschrieben. Es zeigen:
    • Fig. 1 einen Uebersichtsschaltplan einer Einrichtung zur Münzenprüfung,
    • Fig. 2 eine Seitenansicht eines Abschnittes der Münzführung der Einrichtung,
    • Fig. 3 einen Schnitt nach der Linie 111-111 in Fig. 2,
    • Fig. 4 den Stromlaufplan des Verstärkers der Einrichtung nach Fig. 1,
    • Fig. 5 einen Stromlaufplan des Amplitudendemodulators der Einrichtung nach Fig. 1,
    • Fig. 6 ein Zeitablaufdiagramm der Prüfsignale und deren Teilsignale, die infolge einer Beeinflussung verschiedener Schwingungskreise der Einrichtung nach Fig. 1 durch die geprüft werdende Münze teils nacheinander und teils gleichzeitig auftreten.
  • In Fig. 1 ist ein Uebersichtsschaltplan einer Einrichtung zur Münzenprüfung dargestellt, die in ihrem grundsätzlichen Aufbau aus folgenden Baugruppen besteht:
    • sechs Schwingungskreise 1-6, deren Schwingkreisspulen 7-12 an einer Münzführung (Fig. 2 und 3) so angeordnet sind, dass sie für die Prüfung mehrerer Münzeigenschaften teils gleichzeitig und teils einzeln nacheinander von der zu prüfenden Münze beeinflusst werden;
    • ein Verstärker 14 (Fig. 4) und eine Schaltvorrichtung z.B. 42, 43, durch die jeder der Schwingungskreise 1-6 einzeln mit dem Verstärker 14 zur Bildung eines Oszillators verbindbar ist, der entsprechend der Beeinflussung der jeweiligen Schwingkreisspule, z.B. 7, durch die zu prüfende Münze amplitudenmodulierte (und auch in ihrer Frequenz beeinflusste) hochfrequente Prüfsignale liefert. ein Amplitudendemodulator 19 für die hochfrequenten Prüfsignale, der ein für die Beeinflussung der jeweiligen Schwingkreisspule durch die zu prüfende Münze und damit für die betreffende Münzeigenschaft charakteristisches, analoges Prüfsignal liefert, das in einem Analog-Digital-Wandler 20 in ein digitales Prüfsignal umgewandelt wird;
    • eine Auswertevorrichtung 22 mit Festwertspeicher 23, in welcher die digitalen Prüfsignale mit im Festwertspeicher 23 gespeicherten Prüfkriterien verglichen werden, und ein Münzannahmesignal an einer Leitung 25 ausgelöst wird, wenn alle von einer Münze erhaltenen Prüfsignale den für eine der anzunehmenden Münzen gespeicherten Kriterien entsprechen, und ein Münzrückgabesignal an einer Leitung 26 ausgelöst wird, wenn nicht alle Prüfsignale ein und derselben Münze den für eine der anzunehmenden Münzen gespeicherten Kriterien entsprechen;
    • eine Steuervorrichtung 28, welche die Schaltvorrichtung 16, 17 so steuert, dass die Schwingungskreise 1-6 in der Reihenfolge, in der ihre Spulen 7-12 durch die zu prüfende Münze beeinflusst werden, einzeln nacheinander, und Schwingungskreise (1, 2 bzw. 4, 5, 6), deren Spulen (7, 8 bzw. 10, 11, 12) gleichzeitig beeinflusst werden, wiederholt miteinander abwechselnd mit dem Verstärker 14 verbunden werden, bis die Auswertevorrichtung 22 ein Münzannahme- oder -rückgabesignal an der Leitung 25 bzw. 26 auslöst.
  • Die Auswertevorrichtung 22 und die Steuervorrichtung 28 sind zu einer Datenverarbeitungseinrichtung (Mikroprozessor CPU) zusammengefasst, welcher der Festwertspeicher (EPROM) 23 zugeordnet ist.
  • Die Münzführung nach Fig. 2 und 3 hat eine steile Führungsfläche 31, an der die auf einer Rollbahn 32 mit Gefälle rollenden Münzen mit ihrer ganzen Vorder- bzw. Rückseite gleiten, so dass ein bestimmter, kleiner Abstand zwischen der Münze und den dicht hinter der Führungsfläche 31 angeordneten Schwingkreisspulen 7-11 sichergestellt ist. Die Schwingungskreise 1 bis 6 sind wie folgt für die Prüfung mehrerer Münzeigenschaften vorgesehen: Die Schwingungskreise 1 und 2 mit den Spulen 7 und 8 für die Prägung, die Schwingungskreise 3 und 4 mit den Spulen 9 und 10 für den Durchmesser, der Schwingungskreis 5 mit der Spule 11 für die Legierung und der Schwingungskreis 6 mit der Spule 12 für die Dicke der Münze. Die Schwingkreisspulen 7-12 sind so angeordnet, dass die zu prüfende Münze zuerst die Spulen 7 und 8 gleichzeitig, dann die Spule 9 einzeln und anschliessend die Spulen 10, 11 und 12 gleichzeitig beeinflusst. Dazu ist die Spule 10 an der Führungsfläche 31 oberhalb der Spule 11 und die Spule 12 koaxial zur Spule 11 dieser gegenüber angeordnet. Entsprechend der teils gleichzeitigen und der teils aufeinander folgenden Beeinflussung der Spulen 7 bis 12 verbindet die Schaltvorrichtung 16, 17 bei der Prüfung der Münzeigenschaften zuerst die Schwingungskreise 1 und 2 (Spulen 7 und 8) periodisch abwechselnd (z.B. jeweils 0,5 bis 1 ms), dann den Schwingungskreis 3 (Spule 9) und anschliessend in dauernder Wiederholung nacheinander die Schwingungskreise 4, 5 und 6 (Spulen 10, 11 und 12) mit dem Verstärker 14 zur Bildung eines Oszillators. Die konstruktive Ausführung und Einzelheiten der Anordnung der Schwingkreisspulen 7 bis 12, die bei ihrer Beeinflussung durch die zu prüfende Münze auftretenden Prüfsignale, deren Auswertung und die Auslösung der Steuersignale für die-Schaltvorrichtung 16, 17 werden weiter unten näher beschrieben.
  • Bei Abwesenheit einer Münze haben die Schwingungskreise 1, 2 und 6 eine Eigenfrequenz von 247 kHz, die Schwingungskreise 3 und 4 eine Eigenfrequenz von 230 kHz und der Schwingungskreis 5 eine niedrigere Eigenfrequenz von 120 kHz, bei der das Feld der Spule 11 tiefer in den Münzkörper eindringt, wobei der Einfluss der elektrischen und magnetischen Eigenschaften der Münzlegierung auf das Prüfsignal grösser und der Einfluss der Prägungstiefe kleiner ist. Die Dämpfungen der Schwingungskreise 1-6 sind an Widerständen, z.B. 36, so abgeglichen, dass die Hochfrequenzspannung des Oszillators mit jedem der Schwingungskreise 1-6 in Abwesenheit einer Münze dieselbe Amplitude hat, z.B. Spitze-Spitze-Wert 2,5 V.
  • Um Rückkopplungsspulen oder Spulenabgriffe und eine entsprechend aufwendige Schaltvorrichtung zu vermeiden, ist der Verstärker 14 ein nicht invertierender Verstärker mit dem Verstärkungsgrad Eins. Die Schaltvorrichtung 16, 17 hat für jeden der Schwingungskreise 1-6 zwei gemeinsam ansteuerbare Halbleiterschalter, durch deren einen der Eingang 39 und durch deren anderen der Ausgang 40 des Verstärkers 14 mit jedem der Schwingungskreise 1-6 einzeln verbindbar ist. Beispielsweise ist der Schwingungskreis 1 durch den Halbleiterschalter 42 mit dem Verstärkereingang 39 und durch den Halbleiterschalter 43 mit dem Verstärkerausgang 40 verbindbar. Zwecks Verwendung integrierter Bauelementeinheiten sind sowohl diese, je einem der Schwingungskreise 1-6 zugeordneten Halbleiterschalter, z.B. 42 und 43, als auch die weiter unten erwähnten Halbleiterschalter 45 und 46 Teile zweier Analogschalter 16 und 17 der für das Zeitmultiplexverfahren der Uebertragungstechnik üblichen Art, deren Ansteuerlogik mit 48 bzw. 49 bezeichnet ist. Die Verwendung zweier, getrennter Schalter, z.B. 42 und 43, hat folgenden Grund: Bei Verwendung eines einzigen Halbleiterschalters wäre die Verstärkereingangsspannung nicht gleich der Schwingkreisspannung, sondern von dem temperaturabhängigen und wegen Drift-Erscheinungen veränderlichen Durchlassspannungsabfall an diesem Schalter beeinflusst. Dadurch würde die Stabilität (insbesondere Amplitudenstabilität) des Oszillators beeinträchtigt. Bei Verwendung der beiden Halbleiterschalter ist die Verstärkereingangsspannung jedoch praktisch genau gleich der Schwingkreisspannung; denn der Durchlassspannungsabfall an demjenigen, z.B. 42, dieser beiden Halbleiterschalter, der den Schwingungskreis, z.B. 1, mit dem Verstärkereingang 39 verbindet, ist wegen des sehr schwachen Verstärkereingangsstromes vernachlässigbar. Dabei wird trotz des nicht konstanten Durchlasswiderstands der Halbleiterschalter eine hohe Stabilität des Oszillators erzielt.
  • Fig. 4 zeigt den Verstärker 14 in dem Zustand der Analogschalter 16, 17 in dem er mit dem Schwingungskreis 1 einen Oszillator bildet. Der Verstärker 14 ist ein stabilisierter Differenzverstärker mit einem ersten und einem zweiten Transistor 51 und 52 in Emitterschaltung. An den Eingängen 54 und 55 dieser Verstärkerschaltung liegen gleiche Teilspannungen zweier Gleichspannungsteiler 57, 58 und 59, 60. Bezogen auf den Ausgang 62 (Kollektor des zweiten Transistors 52) ist 54 (Basis des ersten Transistors 51) der nicht invertierende Eingang. Diesem Eingang ist die Schwingkreisspannung überlagert, indem der Schwingungskreis 1 durch den Halbleiterschalter 43 und einen den Widerstand 57 überbrückenden Kondensator 63 mit diesem Eingang 54 verbunden ist. Der Ausgang 62 ist durch den Halbleiterschalter 42 ebenfalls mit dem Schwingungskreis 1 verbunden. Ein Impulsformer 64, der Impulse mit der Frequenz der Oszillatorschwingungen an die Auswertevorrichtung 22 liefert, welche diese Impulse als zusätzliches Prüfsignal, inbesondere z.B. bei der Prüfung der Münzlegierung verwendet, ist, um den Oszillator möglichstwenig zu beeinflussen, an den anderen Ausgang 66 (Kollektor des ersten Transistors 51) angeschlossen. Zur Stabilisierung des Verstärkers dienen eine Konstantstromquelle 67 in Verbindung mit einem Stromspiegel 68, der zwischen die miteinander verbundenen Emitter der Transistoren 51 und 52 und ein festes negatives Bezugspotential (z.B. -5V) geschaltet ist. Ein in Reihe mit der Konstantstromquelle 67 liegender Widerstand 69 liefert eine konstante (negative) Referenzspannung, die durch einen Verstärker 71 verstärkt und invertiert wird, wobei die Spannung Uref am Ausgang 72 dieses Verstärkers 71 praktisch belastungsunabhängig ist.
  • Der Amplitudendemodulator 19 hat nach Fig. 5 eine erste Konstantstromquelle 75, die einen durch einen Pfeil 76 dargestellten Ladestrom von z.B. 0,33 mA in Durchlassrichtung einer Diode 77 an einen Kondensator 78 liefert. Die Konstantstromquelle 75 ist von einem Komparator 79 so gesteuert, dass der Ladestrom 76 fliesst, wenn der Augenblickswert der Hochfrequenzspannung grösser als die Kondensatorspannung ist. Eine zweite Konstantstromquelle 82 liefert einen durch einen Pfeil 83 dargestellten Entladestrom von z.B. 0,004 mA unmittelbar an den Kondensator 78. Die zweite Konstantstromquelle 82 ist von einem zweiten Komparator 84 so gesteuert, dass der Entladestrom 83 fliesst, wenn die Kondensatorspannung die dem Ladestrom 76 entsprechende Polarität hat. Da der Entladestrom 83 sehr viel schwächer als der Ladestrom 76 ist, kann der Komparator 84 auch weggelassen werden, so dass der Entladestrom 83 dauernd fliesst. Wenn der Augenblickswert der Hochfrequenzspannung kleiner als die Spannung am Kondensator 78 ist, fliesst der dann zur Pfeilrichtung 76 entgegengesetzte Strom der Konstantstromquelle 75 durch die Diode 85. Die Ströme 76 und 83 der Konstantstromquellen 75 und 82 sind mittels zweier Transistoren 87 und 88 von evtl. Aenderungen der Referenzspannung an der Ausgangsleitung 72 des Verstärkers 71 (Fig. 4) derart beeinflusst, dass bei einer durch eine Aenderung des Speisestromes des Verstärkers 14 bewirkten Aenderung der Hochfrequenzspannung des mit diesem und jeweils einem der Schwingungskreise 1-6 gebildeten Oszillators der Ladestrom 76 (und mit dem Komparator 84 auch der Entladestrom 83) des Kondensators 78 im Demodulator 19 ebenso ändert, so dass diese Aenderung der Hochfrequenzspannung keinen Einfluss auf das analoge Signal hat. Dies ermöglicht es, eng tolerierte Prüfkriterien zu verwenden. Das Ausgangssignal (Spannung des Kondensators 78) des Demodulators 19 wird in einem Verstärker 89 verstärkt und im Analog-Digital-Wandler 20 in ein entsprechendes digitales Signal umgewandelt.
  • Zur Korrektur der Wirkungen allmählicher Aenderungen (Drift) derjenigen Eigenschaften von Bauelementen der Einrichtung, welche die Prüfsignale beeinflussen, werden vor der Münzprüfung (unmittelbar nach dem Ansprechen eines Münzdetektors) die Halbleiterschalter 45 und 46 (Fig. 1) nacheinander vorübergehend geschlossen. Dadurch wird eine erste Spannung Uref 1 und danach eine zweite Spannung Uref 2 an den Eingang des Amplitudendemodulators 19 gelegt. Diese Spannungen sind durch einen oder zwei nicht dargestellte Spannungsteiler aus der Spannung Uref an der Ausgangsleitung des Verstärkers 71 (Fig. 4) erhalten und so bemessen, dass Uref 1 zu einem ersten Digitalsignal in einem untersten Teil des Signalbereichs des Analog-Digital-Wandlers 20 und Uref 2 zu einem zweiten Digitalsignal in einem obersten Teil des Signalbereichs des Analog-Digital-Wandlers 20 führt. Dazu ist Uref 2 etwas kleiner als die Oszillatoramplitude bei nicht durch eine Münze beeinflusstem Schwingungskreis und Uref 1 grössenord- nungsmässig kleiner als Uref 2. Die im einzelnen nicht dargestellte Auswertevorrichtung 22 (Datenverarbeitungseinrichtung, Mikroprozessor CPU) hat ein Subtrahierwerk, ein Dividierwerk sowie ein Addierwerk und ein Multiplizierwerk, und im Speicher 23 (EPROM) sind ein erster Sollwert für das erste und ein zweiter Sollwert für das zweite dieser beiden digitalen Signale gespeichert. Das Subtrahierwerk bildet die Differenz zwischen dem Wert des ersten Signals und dem ersten Sollwert. Das Dividierwerk bildet den Quotienten aus dem Wert des zweiten Signals und dem zweiten Sollwert. Bevor bei der anschliessenden Münzprüfung die Prüfsignale mit den gespeicherten Prüfsignal-Kriterien verglichen werden, wird jedes Prüfsignal vom Addierwerk durch Addition der Differenz und vom Multiplizierwerk durch Multiplikation mit dem Quotienten korrigiert. Dadurch werden Aenderungen (Drift) der Eigenschaften von Bauelementen des Demodulators 19 und insbesondere des Analog-Digital-Wandlers 20 so kompensiert, dass mit sehr eng tolerierten Prüfkriterien gearbeitet werden kann. Durch die erste dieser Korrekturen wird eine Verschiebung der Digitalwerte, durch die zweite wird eine Aenderung des Analog-Digital-Bereichs des Analog-Digital-Wandlers 20 berichtigt.
  • Die Spulen 7 und 8 zur Prüfung der Prägung der Münze sind Topfkernspulen, deren Topfkernstirnfläche wesentlich kleiner als die Fläche der kleinsten, anzunehmenden Münze ist. Sie sind in einem solchen Abstand von der Rollbahn 32 der Münzführung und in einem solchen gegenseitigen Abstand in Münzlaufrichtung 34 (Fig. 7) aufeinander folgend angeordnet, dass sie von allen anzunehmenden Münzen während einer zur Erzeugung eines auswertbaren Prüfsignals ausreichenden Zeit gleichzeitig beeinflusst werden. Da die Schwingungskreise 1 und 2 mit den Spulen 7 und 8 periodisch abwechselnd mit dem Verstärker 14 zur jeweiligen Bildung eines Oszillators verbunden sind, besteht das Prüfsignal für die Prägung der Münze aus zwei, wie beim Zeitmultiplexverfahren miteinander verschachtelten Teilsignalen Pi und P2 (Fig. 6), von denen Pi auf einer Beeinflussung der Spule 7 und P2 auf einer Beeinflussung der Spule 8 beruht. Weil die Spulen 7 und 8 dabei von verschiedenen, kleinen Flächenteilen (verschiedener Kreisringsektoren) der Münzoberfläche beeinflusst sind, enthält das Prüfsignal Pi, P2 wesentlich mehr Information über die Prägung als ein in üblicherweise durch Beeinflussung einer einzigen Spule entstandenes Prüfsignal. Als Prüfkriterien für die Tiefe der Prägung der Münze sind im Speicher 23 für jede anzunehmende Münze die Grenzen des Bereichs gespeichert, zwischen denen die Signalmaxima und -minima liegen. Die Auswertevorrichtung 22 prüft, ob der Bereich, in dem die Minima und Maxima der Prüfsignalteile P1 und P2 liegen, einem der als Kriterien je für eine der anzunehmenden Münzen gespeicherten Bereiche entspricht. Trifft dies zu, so hat die geprüft werdende Münze die Prägungstiefe dieser anzunehmenden Münze.
  • Der grössere Informationsinhalt des mit den beiden Spulen 7 und 8 erhaltenen, für die Prägung charakteristischen Prüfsignals P1, P2 ermöglicht es auch, für das Prägungsmuster (Schrift- bzw. Zahlen- und Bildprägung) typische Kriterien der anzunehmenden Münzen zu speichern und zur Prüfung, z.B. zusätzlich zur Tiefe der Prägung heranzuziehen. Diese Kriterien sind für beide Seiten jeder Münze zu speichern, weil sie für die beiden Seiten der Münze verschieden sind und nicht voraussehbar ist, welche Seite der Münze bei ihrer Prüfung den Spulen 7 und 8 zugewandt ist. Dabei kann es zweckmässig sein, die Spulen 7 und 8 in verschiedenen Abständen von der Rollbahn 32 der Münzführung anzuordnen.
  • Die Spulen 9 und 10 für Prüfung des Durchmessers der Münze haben Topfkerne, deren Durchmesser wesentlich grösser als der Durchmesser der Spulen 7 und 8 ist. An den Topfkernen der Spulen 9 und 10 sind zwei einander gegenüberliegende Segmente abgeschnitten, um ihre Abmessung in Münzlaufrichtung 34 und damit die Dauer ihrer Beeinflussung und die Länge der Messstrecke an der Münzführung herabzusetzen. Diese Spulen 9 und 10 sind in Münzlaufrichtung 34 aufeinander folgend so angeordnet, dass die höchste Stelle des Polkerns der Spule 9 und die tiefste Stelle des Polkerns der Spule 10 denselben Abstand von der Rollbahn 32 der Münzführung haben. Damit wird die Prüfung des Münzendurchmessers in zwei einander teilweise überlappenden Durchmesserbereichen durchgeführt, was im Vergleich mit der Beeinflussung nur einer Spule wesentlich differenziertere Prüfsignale in einem grösseren Durchmesserbereich ergibt, die enger tolerierte Prüfkriterien für die Durchmesserprüfung ermöglichen. Dabei besteht das Prüfsignal aus zwei aufeinander folgenden Teilsignalen di und d2 für Münzen in einem unteren Teil des Durchmesserbereichs bzw. Di und D2 für Münzen in einem oberen Teil des Durchmesserbereichs, wobei di bzw. Di auf einer Beeinflussung der Spule 9, d2 bzw. D2 auf einer Beeinflussung der Spule 10 beruhen. Bei einer Münze im unteren Durchmesserteilbereich hat d1 ein ausgeprägtes Minimum, das in einer eindeutigen Beziehung zum Münzdurchmesser steht (grosse Steilheit des Signalwertes in Funktion des Durchmessers der Münze), während d2 ein viel weniger ausgeprägtes, wenig aussagekräftiges Minimum (kleine Steilheit des Signalwertes in Funktion des Durchmessers der Münze) hat. Das Minimum von d1 wird für die Prüfung ausgewertet. Bei einer Münze im oberen Durchmesserteilbereich hat Di einen breiten Bereich eines Minimums, das nur unwesentlich vom Münzdurchmesser beeinflusst ist, während D2 ein ausgeprägtes, viel stärker vom Münzdurchmesser beeinflusstes Minimum hat. Das Minimum von D2 wird für die Prüfung ausgewertet. Im Speicher 25 sind für jede der anzunehmenden Münzen, deren Durchmesser im unteren Durchmesserteilbereich liegt, die Kriterien für das Minimum des ersten Teilsignals di und für jede der anzunehmenden Münzen, deren Durchmesser im oberen Durchmesserteilbereich liegt, die Kriterien für das Minimum des zweiten Teilsignals D2 gespeichert.
  • Die Auswertevorrichtung 22 ermittelt die Minima dieser Prüfsignale, indem sie diese differenziert. Kriterien für den Münzdurchmesser sind. für jede der anzunehmenden Münzen eine obere und eine untere Grenze des Minimums des ersten bzw. zweiten Teilsignals. Liegt das erste bzw. zweite Teilsignal di bzw. D2 der zu prüfenden Münze zwischen den für eine der anzunehmenden Münzen gespeicherten Grenzen, so hat die Münze den Durchmesser dieser anzunehmenden Münze.
  • Die für die Prüfung der Münzlegierung vorgesehene Spule 11 und die für die Prüfung der Münzdicke vorgesehene Spule 12 sind Topfkernspulen, deren Topfkerndurchmesser so bemesen und die in einem solchen Abstand von der Rollbahn 32 angeordnet sind, dass sie auch von derjenigen der anzunehmenden Münzen, die den kleinsten Durchmesser hat, während einer zur Erzeugung eines auswertbaren Prüfsignals ausreichenden Zeit in ihrem ganzen Polbereich beeinflusst werden. Der Abstand der Spule 12 von der Führungsfläche 31 der Münzlaufbahn ist nur wenig grösser als die Dicke der dicksten der anzunehmenden Münzen. Dadurch wird ein möglichst grosser Einfluss der Münzdicke auf die Amplitude (und Frequenz) der Schwingungen des Schwingungskreises 6 mit der Spule 12 erzielt, wenn dieser zusammen mit dem Verstärker 14 einen Oszillator bildet.
  • Das bei Beeinflussung der Spule 11 durch die zu prüfende Münze erhaltene Prüfsignal L für die Legierung des Münzmetalls hat zwischen zwei Minima einen konstanten Signalteil. Zu diesem Signalteil sind im Speicher 23 für jede der anzunehmenden Münzen die Kriterien gespeichert. Eines dieser beiden Minima entsteht, wenn der Münzrand in das Feld der Spule 11 eintritt, und das andere entsteht, wenn der Münzrand wieder aus dem Feld der Spule 11 austritt, wobei eine Münzrandzone als im Hochfrequenzfeld der Spule 11 bewegter (im Feld begrenzter) Leiter wirkt. Hat die Münze eine Randzone aus einer und einen mittleren Teil aus einer anderen Legierung, so beeinflusst dies die beiden Minima und den konstanten, mittleren Signalteil. Deshalb können diese Minima und dieser mittlere Signalteil als Unterscheidungsmerkmale von verschiedenen Münzen dieser Art und von Münzen aus nur einer Legierung sowie von Münzen mit einem zentralen Loch benutzt werden, indem entsprechende Kriterien im Speicher 23 gespeichert und mit diesen Teilen des Signals L verglichen werden. Dazu muss der Schwingungskreis 5 nicht nur während der Beeinflussung des ganzen Polbereiches seiner Spule 11 durch die zu prüfende Münze sondern auch dann erregt, d.h. mit dem Verstärker 14 verbunden sein, wenn der Münzrand den Polbereich erreicht oder verlässt. Im Gegensatz dazu genügt es, dass der Schwingungskreis 3 nur in einem Bereich maximaler Beeinflussung seiner Spule 9 erregt ist. Auch würde es genügen, den Schwingungskreis 4 nur in einem Bereich maximaler Beeinflussung seiner Spule 10 und gleichzeitig den Schwingungskreis 6 zu erregen.
  • Das bei Beeinflussung der Spule 12 durch die zu prüfende Münze erhaltene Prüfsignal S für die Dicke der Münze hat ebenfalls zwischen zwei Minima einen konstanten Signalteil, zu dem im Speicher 23 für jede der anzunehmenden Münzen die Kriterien gespeichert sind, mit denen dieser Signalteil bei der Auswertung des Signals S verglichen wird. Dabei haben die beiden Minima keine Bedeutung.
  • Die erwähnten Minima treten aus dem erwähnten Grunde auch bei den Signalen Pi und P2 auf, kommen aber wegen des kleinen Verhältnisses des Durchmessers der Spulen 7 und 8 zum Münzdurchmesser (z.B. 4 mm) und zur Münzgeschwindigkeit (z.B. 0,5 m/s) nur sehr kurzzeitig zur Geltung, könnten jedoch bei der Prägungsprüfung zusätzlich herangezogen werden. Die Schwingungskreise 3 und 4 sind, wenn der Münzrand in das Feld der Spule 9 bzw. 10 eintritt und aus diesem austritt, noch nicht bzw. nicht mehr erregt, wie weiter unten im Zusammenhang mit dem Weiterschalten der Analogschalter 16 und 17 von den Schwingungskreisen 1 und 2 zum Schwingungskreis 3 vom Schwingungskreis 3 zu den Schwingungskreisen 4, 5 und 6 beschrieben. Das für die Signalauswertung massgebende Minimum von di bzw. D2 und gegebenenfalls die Minima von z.B. L ermittelt die Auswertevorrichtung 22 durch Differentiation dieser Signale. Der mittlere, konstante Teil der Signale L und S verläuft in einem Bereich, in dessen Mitte das Minimum von D2 (Zeitpunkt ts) liegt. Demgemäss wird der Betrag, den diese Signale in diesem Zeitpunkt (oder kurz danach) haben, in der Auswertevorrichtung 22 ausgewertet.
  • Kriterien für die Legierung und für die Dicke der Münze sind eine obere und eine untere Grenze des konstanten, mittleren Signalteils von L bzw. S (und gegebenenfalls die Minima des Signals L). Liegt der betreffende Signalteil zwischen den für die Legierung bzw. Dicke einer der anzunehmenden Münzen gespeicherten Grenzen, so hat die zu prüfende Münze die Legierung bzw. Dicke dieser anzunehmenden Münze.
  • Da zur gleichzeitigen Erzeugung der Teilsignale P1 und P2 für die Prägung, des Teilsignals D2 für den Durchmesser, des Signals L für die Legierung und des Signals S für die Dicke der Münze die Schwingungskreise 1 und 2 bzw. 4, 5 und 6 mit den Spulen 7 und 8 bzw. 10, 11 und 12 in dauernd aufeinander folgender Wiederholung jeweils kurzzeitig durch Verbindung mit dem Verstärker 14 erregt werden, bestehen Pi, P2, D2, L und S aus kurzen, wie beim Zeitmultiplex miteinander verschachtelten Signalteilen. Die Zuordnung dieser miteinander verschachtelten Signalteile zu den Signalen bereitet in der Auswertevorrichtung 22 keine besonderen Schwierigkeiten, weil dieselbe Auswertevorrichtung 22 (des Mikroprozessors CPU) auch die Steuervorrichtung 28 für die Analogschalter 16 und 17 steuert, durch welche die Schwingungskreise 1 und 2 bzw. 4, 5 und 6 jeweils mit dem Verstärker 14 verbunden und dabei erregt sind.
  • Die Weiterschaltung der Einrichtung von einem Prüfvorgang zum folgenden Prüfvorgang bzw. zu den folgenden gleichzeitigen Prüfvorgängen wird jeweils von der zu prüfenden Münze selbst ausgelöst. Sobald ein zur Auswertung ausreichender Teil des Prüfsignals (Teilsignals) Pi des Schwingungskreises 1 (Spule 7) vorliegt (das ist im Zeitpunkt t1 der Fall, in dem die ansteigende Flanke des Teilsignals Pi erkennen lässt, dass keine weitere Information zu erwarten ist), veranlasst die Auswertevorrichtung 22 (mittels der Steuervorrichtung 28) ein Signal an die Ansteuerlogik 48 und 49 der Analogschalter 16 und 17, durch das deren dem Schwingungskreis 3 mit der Spule 9 zugeordnete Halbleiterschalter geschlossen werden, so dass der Verstärker 14 mit dem Schwingungskreis 3 einen Oszillator bildet. Dessen Schwingkreisspule 9 wird nun von der zu prüfenden Münze beeinflusst. Dadurch entsteht dann das erste Teilsignal d1 bzw. D2 des Prüfsignals für den Münzdurchmesser. Sobald dieses Teilsignal nach einem Minimum ansteigt, das ist im Zeitpunkt t2, enthält es alle erforderliche Information, und nun veranlasst die Auswertevorrichtung 22, dass die Schwingungskreise 4, 5 und 6 dauernd wiederholt je einzeln mit dem Verstärker 14 zur Bildung eines Oszillators verbunden werden. Die Münze beeinflusst die Spulen 10, 11 und 12 dieser Schwingungskreise 4, 5 und 6 gleichzeitig. Dabei entstehen durch Beeinflussung der Spule 10 das zweite Teilsignal d2 bzw. D2 für die Prüfung des Durchmessers, durch Beeinflussung der Spule 11 das Signal L für die Prüfung der Legierung und durch Beeinflussung der Spule 12 das Signal S für die Prüfung der Dicke der Münze.
  • Die Einrichtung könnte auch so ausgeführt werden, dass die Analogschalter 16 und 17 die Schwingungskreise 1 bis 6 in einem während der Münzprüfung dauernd wiederholten Zyklus mit dem Verstärker 14 zur Bildung eines Oszillators verbinden. Dies führt jedoch - ebenso wie eine ebenfalls mögliche Aufeinanderfolge der Prüfvorgänge nach einem festen Zeitprogramm, die eine bestimmte Münzgeschwindigkeit voraussetzt - zu einer längeren Prüfungsdauer.
  • Sobald die Auswertevorrichtung 22 feststellt, dass ein Prüfsignal oder Teilsignal eines Prüfsignals keinen der für die betreffende Münzeigenschaft der anzunehmenden Münzen gespeicherten Kriterien entspricht, oder mehrere, solche (von ein und derselben Münze erhaltene) Signale nicht den für die betreffenden Eigenschaften ein und derselben, anzunehmenden Münze gespeicherten Kriterien entsprechen, löst sie das Münzrückgabesignal an der Leitung 26 aus. Entsprechen alle für die verschiedenen Münzeigenschaften erhaltenen Prüfsignale den für diese Eigenschaften ein und derselben, annehmbaren Münze gespeicherten Kriterien, so löst die Auswertevorrichtung 22 das Münzannahmesignal an der Leitung 25 aus. Nach einem Münzannahme- oder Münzrückgabesignal nimmt die Einrichtung wieder ihren Ruhezustand an. Im Falle eines Münzrückgabesignals im Zeitpunkt ti oder t2 unterbleibt dabei ein Steuersignal für das Weiterschalten zum nächsten bzw. zu den nächsten Prüfvorgängen.
  • Da jede zu prüfende Münze sowohl die Amplitude als auch die Frequenz der Oszillatorschwingungen beeinflusst, kann die Einrichtung auch so ausgeführt werden, dass der Frequenzverlauf die Prüfsignale bestimmt. Auch kann das Ausführungsbeispiel so erweitert werden, dass bei Prüfung wenigstens einer der Münzeigenschaften, z.B. der Legierung, geprüft wird, ob die durch die Münze beeinflusste Frequenz der Oszillatorschwingungen dafür gespeicherten Kriterien entspricht.
  • Die Ausführung der Spulen 8 bis 12, die Anordnung der Spulen 8 und 9 sowie die Anordnung der Spulen 9 und 10 in bezug aufeinander, die Prüfsignale, deren Auswertung und die dabei benutzten Kriterien sind sinngemäss auch ohne das Zeitmultiplex-Prinzip anwendbar.

Claims (15)

1. Einrichtung zur Münzenprüfung, gekennzeichnet durch nacheinander und/oder gleichzeitig durch die zu prüfende Münze beeinflussbare Schwingungskreise (1-6); eine Schaltvorrichtung (16, 17), durch welche jeder der Schwingungskreise (1-6) einzeln mit ein und demselben Verstärker (14) zur Bildung eines Oszillators verbindbar ist; einen Amplitudendemodulator (19) und/oder Frequenzdemodulator oder Frequenzmesser für die Oszillatorschwingungen, welcher (19) der Beeinflussung des jeweiligen Oszillator-Schwingungskreises (1-6) durch die zu prüfende Münze entsprechende Prüfsignale (P1, P2, di, d2, L, S ) für verschiedene Münzeigenschaften liefert; und eine Auswertevorrichtung (22) zum Vergleich dieser Prüfsignale mit für jede dieser Eigenschaften der anzunehmenden Münzsorten in einem Speicher (23) gespeicherten Kriterien.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Schwingungskreise (1-6) während der Münzenprüfung in der zeitlichen Aufeinanderfolge ihrer Beeinflussung durch die zu prüfende Münze, bei gleichzeitiger Beeinflussung zyklisch wiederholt mit dem Verstärker (14) verbunden sind, oder alle Schwingungskreise (1-6) unabhängig von der Aufeinanderfolge bzw. Gleichzeitigkeit ihrer Beeinflussung dauernd zyklisch wiederholt mit dem Verstärker (14) verbunden sind.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schaltvorrichtung (16, 17) von einer von der Auswertevorrichtung (22) gesteuerten, vorzugsweise mit dieser zu einer Datenverabeitungseinrichtung (CPU) vereinigten Steuervorrichtung (28) so gesteuert ist, dass nach wenigstens einem auswertbaren Teil des Prüfsignals (P1; d1 oder 01) eines von der geprüft werdenden Münze beeinflussten Schwingungskreises (1; 3) der nachfolgend einzeln beeinflussbare Schwingungskreis (3) mit dem Verstärker (14) verbunden wird, bzw. mehrere nachfolgend gleichzeitig beeinflussbare Schwingungskreise (3; 4, 5, 6) zyklisch wiederholt mit dem Verstärker verbunden werden, und zwar vorzugsweise nur dann, wenn die Auswertung des Prüfsignals (P1; di oder D1), gegebenenfalls zusammen mit wenigstens einem vorangegangenen Prüfsignal (Pi) nicht bereits für ein Münzrückgabesignal ausreicht.
4. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dämpfungen der Schwingungskreise (1-6) so abgeglichen sind, dass die Schwingkreisspannung im einzeln mit dem Verstärker (14) verbundenen und nicht durch eine Münze beeinflussten Zustand für alle Schwingungskreise (1-6) dieselbe ist.
5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine erste und eine zweite, stabilisierte Gleichspannung (Uref 1 und Uref 2) durch von einem Münzanwesenheitssignal vor der Prüfung einer Münze beaufschlagbare Schaltmittel (45, 46) einzeln nacheinander an den Eingang des Demodulators (19) anlegbar sind, und dass diese Spannungen so bemessen sind, dass am Eingang der Auswertevorrichtung (22) die erste dieser Spannungen ein erstes Signal bewirkt, dessen Wert an der unteren Grenze des Wertebereiches der an diesem Eingang auftretenden Prüfsignale anzunehmender Münzen liegt, und die zweite dieser Spannungen ein zweites Signal bewirkt, das dicht unter der oberen Grenze dieses Bereiches liegt; und dass die Auswertevorrichtung (22) die Differenz aus dem Wert des ersten Signals und eines diesem zugeordneten, ersten Sollwertsignals und den Quotienten aus dem Wert des zweiten Signals und eines diesem zugeordneten, zweiten Sollwertsignals bildet und jedes Prüfsignal vor seiner Auswertung durch Addition der Differenz und Multiplikation mit dem Quotienten korrigiert.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schaltvorrichtung (16, 17) für jeden (z.B. 1) der Schwingungskreise (1-6) zwei, durch die Auswertevorrichtung (22) gemeinsam ansteuerbare Halbleiterschalter (z.B. 42, 43) aufweist, durch deren einen (42) der Eingang (39) und durch deren anderen (43) der Ausgang des Verstärkers (14) mit dem Schwingungskreis (z.B. 1) verbindbar ist, und dass der Verstärker (14) ein nicht invertierender Verstärker mit dem Verstärkungsgrad Eins ist.
7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Verstärker ein Differenzverstärker mit Transistoren (51; 52) ist, an dessen Eingängen (54, 55) übereinstimmende Gleichspannungen liegen, dass der Gleichspannung am in bezug auf den Ausgang (62) nicht invertierenden Eingang (54) die Schwingkreisspannung überlagert ist, und dass der durch die Transistoren (51, 52) fliessende Gleichstrom stabilisiert ist, vorzugsweise mittels einer Konstantstromquelle (67) und eines Stromspiegels (68).
8. Einrichtung nach einem der Ansprüche 1 bis 7, mit einem Amplitudendemodulator (19) für die Oszillatorschwingungen, dadurch gekennzeichnet, dass ein Ladestrom (76) eines das demodulierte Signal liefernden Kondensators (78) fliesst, wenn der Momentanwert der Oszillatorspannung grösser als die Kondensatorspannung ist, und dass gleichzeitig oder solange die Polarität der Kondensatorspannung der Ladestromrichtung (76) entspricht, ein wesentlich schwächerer Entladestrom (83) fliesst, wobei der Ladestrom (76) oder der Lade- und der Entladestrom (76 und 83) zweckmässig vom Spannungsabfall (Uref) eines konstanten Speisestromes des Verstärkers (14, Fig. 4) an einem Widerstand (69) beeinflusst sind.
9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zur Prüfung der Münzprägung die Spulen (7, 8) mindestens zweier, periodisch abwechselnd mit dem Verstärker (14) verbundener Schwingungskreise (1, 2) in einem solchen Abstand angeordnet sind, dass ihre Felder durch jede der anzunehmenden Münzen gleichzeitig beeinflussbar sind, und dass die Polfläche jeder dieser Spulen (7, 8) wesentlich kleiner als die Fläche der kleinsten der anzunehmenden Münzen ist.
10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Auswertevorrichtung (22) das infolge der Beeinflussung der für die Prüfung der Münzprägung vorgesehenen Spulen (7, 8) erhaltene Prüfsignal (P1, P2) mit für die Bild- bzw. Zahlenprägung charakteristischen Kriterien vergleicht, die im Speicher (23) für mit ihrer Vorderseite und für mit ihrer Rückseite diesen Spulen (7, 8) zugewandte Münzen anzunehmender Art gespeichert sind.
11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zur Prüfung des Münzdurchmessers die Spulen (9, 10) wenigstens zweier Schwingungskreise (3, 4) in Münzlaufrichtung (34) aufeinander folgend in solchen Abständen von einer Bahn (32), auf der die Münzen rollen, angeordnet sind, dass jede der anzunehmenden Münzen eine der Spulen nur in einem für die Prüfsignalbildung wesentlichen Teil ihres Polbereichs und die andere bzw. anderen Spulen entweder nur geringfügig oder im gesamten Polbereich beeinflusst.
12. Einrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Auswertevorrichtung wenigstens ein Differenzierwerk zur Feststellung des Minimums von Prüfsignalen hat, und dass als Kriterien für diese Minima die Grenzen von Bereichen gespeichert sind, zwischen denen diese Minima bei einer anzunehmenden Münze liegen.
13. Einrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass ein für die Prüfung der Münzlegierung vorgesehener Schwingungskreis (5) am Anfang und/oder Ende sowie während der Beeinflussung seiner Spule (11) durch die zu prüfende Münze mit dem Verstärker (14) verbunden ist, wobei das Prüfsignal (L) von diesem Schwingungskreis (5) am Anfang bzw. Ende ein Minimum und während der Beeinflussung des ganzen Polbereichs der Spule (11) einen konstanten Wert hat, und dass zur Unterscheidung von Münzen einheitlicher Legierung von Münzen mit einer Randzone aus einer und einer mittleren Zone aus einer anderen Legierung und von Münzen mit einem zentralen Loch als Kriterien Grenzen, zwischen denen die Minima liegen, und Grenzen, zwischen denen der konstante Wert liegt, für jede anzunehmende Münze im Speicher (23) gespeichert sind.
14. Einrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass an einer Münzführung (Fig. 2, 3) mit einer steilen Führungsfläche (31), an der die auf einer Rollbahn (32) rollenden Münzen mit ihrer ganzen Vorder- oder Rückseite gleiten, Spulen (7 bis 9) nacheinander zu beeinflussender Schwingungskreise (1 bis 3) in Münzlaufrichtung (34) aufeinander folgend dicht hinter der Führungsfläche (31) angeordnet sind, wobei Spulen (10, 11, 12) gleichzeitig zu beeinflussender Schwingungskreise (4, 5, 6) übereinander (10, 11) oder einander gegenüber (11, 12), eine (11) dicht hinter der Führungsfläche (31) und die andere (12), vorzugsweise eine Spule (12) eines für die Prüfung der Dicke der Münze vorgesehenen Schwingungskreises (6), in einem Abstand von der Führungsfläche (31) angeordnet ist, der wenig grösser als die Dicke der dicksten der anzunehmenden Münzen ist.
EP86107405A 1985-07-26 1986-05-31 Einrichtung zur Münzenprüfung Expired - Lifetime EP0213283B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86107405T ATE50654T1 (de) 1985-07-26 1986-05-31 Einrichtung zur muenzenpruefung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3254/85A CH667546A5 (de) 1985-07-26 1985-07-26 Einrichtung zur muenzenpruefung.
CH3254/85 1985-07-26

Publications (2)

Publication Number Publication Date
EP0213283A1 EP0213283A1 (de) 1987-03-11
EP0213283B1 true EP0213283B1 (de) 1990-02-28

Family

ID=4251994

Family Applications (3)

Application Number Title Priority Date Filing Date
EP86107405A Expired - Lifetime EP0213283B1 (de) 1985-07-26 1986-05-31 Einrichtung zur Münzenprüfung
EP86904067A Ceased EP0231219A1 (de) 1985-07-26 1986-07-25 Einrichtung zur münzenprüfung
EP86904068A Pending EP0231220A1 (de) 1985-07-26 1986-07-25 Einrichtung zur münzenprüfung

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP86904067A Ceased EP0231219A1 (de) 1985-07-26 1986-07-25 Einrichtung zur münzenprüfung
EP86904068A Pending EP0231220A1 (de) 1985-07-26 1986-07-25 Einrichtung zur münzenprüfung

Country Status (8)

Country Link
US (2) US4742903A (de)
EP (3) EP0213283B1 (de)
AT (1) ATE50654T1 (de)
CA (1) CA1250919A (de)
CH (1) CH667546A5 (de)
DE (1) DE3669215D1 (de)
WO (2) WO1987000661A1 (de)
YU (1) YU128886A (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786939B2 (ja) * 1988-05-27 1995-09-20 株式会社日本コンラックス 硬貨識別装置
US4936435A (en) * 1988-10-11 1990-06-26 Unidynamics Corporation Coin validating apparatus and method
CH676162A5 (de) * 1988-11-07 1990-12-14 Ascom Autelca Ag
JP2767278B2 (ja) * 1989-04-10 1998-06-18 株式会社日本コンラックス 硬貨選別装置
GB2234619B (en) * 1989-07-28 1993-04-14 Mars Inc Coin validators
GB2243238B (en) * 1990-04-20 1994-06-01 Tetrel Ltd Coin validators
DE4101157A1 (de) * 1991-01-14 1992-07-16 Trenner D Wh Muenzpruefer Vorrichtung zur pruefung von muenzen oder dergleichen metallischen scheiben
EP0500367A3 (en) * 1991-02-20 1993-07-21 Telkor (Proprietary) Limited Coil arrangement and static measuring device
US5220614A (en) * 1991-02-22 1993-06-15 Professional Coin Grading Service, Inc. Automated coin grading system
GB2253297B (en) * 1991-02-27 1994-11-16 Mars Inc Coin validation
US5361886A (en) * 1991-04-11 1994-11-08 Act Gesellschaft Fuer Soft- Und Hardware-Systeme Gmbh Method and apparatus for examining coins
US5615760A (en) * 1991-04-18 1997-04-01 Mars Incorporated Method and apparatus for validating money
DE4121033C2 (de) * 1991-06-26 1994-10-27 Nat Rejectors Gmbh Elektronischer Münzprüfer
US5568854A (en) * 1991-06-28 1996-10-29 Protel, Inc. Coin discrimination method
US5191957A (en) * 1991-06-28 1993-03-09 Protel, Inc. Coin discrimination method
US5293979A (en) * 1991-12-10 1994-03-15 Coin Acceptors, Inc. Coin detection and validation means
GB2266804B (en) * 1992-05-06 1996-03-27 Mars Inc Coin validator
US5379875A (en) * 1992-07-17 1995-01-10 Eb Metal Industries, Inc. Coin discriminator and acceptor arrangement
JP3170147B2 (ja) * 1993-08-19 2001-05-28 ローレルバンクマシン株式会社 硬貨判別装置
US5433310A (en) * 1994-01-04 1995-07-18 Coin Mechanisms, Inc. Coin discriminator with offset null coils
CA2113492A1 (en) * 1994-01-14 1995-07-15 Donald W. Church Apparatus and method for identifying metallic tokens and coins
ES2109795T3 (es) * 1994-09-21 1998-01-16 Landis & Gyr Tech Innovat Dispositivo para la verificacion de la autenticidad de monedas, fichas u otros objetos metalicos planos.
US5630494A (en) * 1995-03-07 1997-05-20 Cummins-Allison Corp. Coin discrimination sensor and coin handling system
CA2173428A1 (en) 1995-04-06 1996-10-07 Donald W. Church Electronic parking meter
US5579887A (en) * 1995-06-15 1996-12-03 Coin Acceptors, Inc. Coin detection apparatus
DE19548233C2 (de) * 1995-12-21 1998-03-12 Nat Rejectors Gmbh Elektronischer Münzprüfer
US6065582A (en) * 1996-03-19 2000-05-23 Electrowatt Technology Innovation Ag Coin-checking arrangement
EP0923767B1 (de) * 1996-07-29 2002-06-19 QVEX, Inc. Vorrichtung und verfahren zum prüfen von münzen
AU4742097A (en) * 1996-09-30 1998-04-24 Coin Mechanisms, Inc. Method and apparatus for discriminating different coins
GB2323200B (en) 1997-02-24 2001-02-28 Mars Inc Coin validator
KR100296694B1 (ko) 1997-05-21 2001-08-07 오까다 마사하루 화폐선별방법및장치
GB2331614A (en) * 1997-11-19 1999-05-26 Tetrel Ltd Inductive coin validation system
JP2000242823A (ja) * 1999-02-24 2000-09-08 Nippon Conlux Co Ltd 硬貨選別方法および装置
CA2407095C (en) * 2001-02-20 2006-12-05 Cubic Corporation Inductive coin sensor with position correction
JP4022583B2 (ja) * 2002-03-11 2007-12-19 旭精工株式会社 コインセレクタ
AU2003900636A0 (en) * 2003-02-13 2003-02-27 Microsystem Controls Pty Ltd Identification of coins, including magnetic characteristics
US20050224313A1 (en) * 2004-01-26 2005-10-13 Cubic Corporation Robust noncontact media processor
US8184019B2 (en) 2008-04-25 2012-05-22 J.J. Mackay Canada Limited Data collection system for electronic parking meters
WO2010071972A1 (en) 2008-12-23 2010-07-01 J.J.Mackay Canada Limited Low power wireless parking meter and parking meter network
CA2756489C (en) 2011-03-03 2023-09-26 J.J. Mackay Canada Limited Parking meter with contactless payment
US9329650B2 (en) 2012-03-14 2016-05-03 Accenture Global Services Limited Customer-centric demand side management for utilities
CA145137S (en) 2012-04-02 2013-07-22 Jj Mackay Canada Ltd Single space parking meter
EP2912639A1 (de) * 2012-10-25 2015-09-02 MEI, Inc. System zum klassifizieren von wertgegenständen
CA2894350C (en) 2015-06-16 2023-03-28 J.J. Mackay Canada Limited Coin chute with anti-fishing assembly
USRE48566E1 (en) 2015-07-15 2021-05-25 J.J. Mackay Canada Limited Parking meter
CA3176773A1 (en) 2015-08-11 2017-02-11 J.J. Mackay Canada Limited Single space parking meter retrofit
USD813059S1 (en) 2016-02-24 2018-03-20 J.J. Mackay Canada Limited Parking meter
US10957445B2 (en) 2017-10-05 2021-03-23 Hill-Rom Services, Inc. Caregiver and staff information system
CA3031936A1 (en) 2019-01-30 2020-07-30 J.J. Mackay Canada Limited Spi keyboard module for a parking meter and a parking meter having an spi keyboard module
US11922756B2 (en) 2019-01-30 2024-03-05 J.J. Mackay Canada Limited Parking meter having touchscreen display

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL131067C (de) * 1963-06-04
FR1401488A (fr) * 1964-05-09 1965-06-04 Compteurs De Geneve Soc D Dispositif pour contrôler le versement de pièces de monnaie dans un automate
US3328720A (en) * 1965-07-15 1967-06-27 Westinghouse Electric Corp Dual mode oscillator circuits
CH503338A (fr) * 1969-02-04 1971-02-15 Sodeco Compteurs De Geneve Dispositif d'identification de pièces de monnaie
US3738469A (en) * 1969-08-22 1973-06-12 G Prumm Tester for different types of coins
DE2014023A1 (de) * 1970-03-24 1971-10-07 Nat Rejectors Gmbh Vorrichtung zum Prüfen der Eigen schäften von Metallscheiben
DE2146184A1 (de) * 1971-09-15 1973-03-22 Standard Elektrik Lorenz Ag Muenzpruefer
US3749220A (en) * 1971-10-06 1973-07-31 Anritsu Electric Co Ltd Coin discriminating apparatus
US3918565B1 (en) * 1972-10-12 1993-10-19 Mars, Incorporated Method and apparatus for coin selection utilizing a programmable memory
GB1453283A (en) * 1973-10-03 1976-10-20 Mars Inc Apparatus for identifying coins
FR2275829A1 (fr) * 1974-06-19 1976-01-16 Automatisme Cie Gle Dispositif pour la reconnaissance d'une categorie de pieces de monnaie
JPS5611181Y2 (de) * 1975-12-02 1981-03-13
DE2636922A1 (de) * 1976-08-17 1978-02-23 Nat Rejectors Gmbh Schaltungsanordnung zur ueberwachung einer muenzpruefeinrichtung
FR2408183A1 (fr) * 1977-11-03 1979-06-01 Signaux Entr Electriques Controleur de pieces metalliques, et notamment de pieces de monnaie
US4254857A (en) * 1978-09-15 1981-03-10 H. R. Electronics Company Detection device
US4323148A (en) * 1979-03-12 1982-04-06 Matsushita Electric Industrial Co., Ltd. Coin selector for vending machine
DE2916123A1 (de) * 1979-04-19 1980-10-30 Walter Hanke Mechanische Werks Schaltungsanordnung zur pruefung der groesse von materialzusammensetzung von muenzen
GB2093620B (en) * 1981-02-11 1985-09-04 Mars Inc Checking coins
EP0060392B1 (de) * 1981-03-06 1985-12-18 Sodeco-Saia Ag Vorrichtung zum Prüfen von Münzen
GB2141277B (en) * 1983-06-06 1986-05-08 Coin Controls Electronic coin validator
GB8500220D0 (en) * 1985-01-04 1985-02-13 Coin Controls Discriminating between metallic articles

Also Published As

Publication number Publication date
EP0231219A1 (de) 1987-08-12
WO1987000662A1 (en) 1987-01-29
CA1250919A (en) 1989-03-07
YU128886A (en) 1989-12-31
US4742903A (en) 1988-05-10
WO1987000661A1 (en) 1987-01-29
DE3669215D1 (de) 1990-04-05
CH667546A5 (de) 1988-10-14
US4819780A (en) 1989-04-11
EP0213283A1 (de) 1987-03-11
ATE50654T1 (de) 1990-03-15
EP0231220A1 (de) 1987-08-12

Similar Documents

Publication Publication Date Title
EP0213283B1 (de) Einrichtung zur Münzenprüfung
DE3546245C2 (de)
DE2441421A1 (de) Verfahren und vorrichtung zur ausrichtung von elektronenstrahlen
EP0071873A2 (de) Schaltungsanordnung zum Wahrnehmen von Gegenständen mit einer Leiterschleife
DE2530874A1 (de) Verfahren und einrichtung zur fokussierung eines optischen systems
DE2853927B2 (de) Fernsehempfänger mit einer Horizontal-Synchronschaltung
DE3026827C2 (de) Münzprüfer
DE3107580C2 (de)
EP0886247B1 (de) Verfahren und Schaltungsanordnung zur Prüfung von Münzen
EP0380937A1 (de) Induktiver Durchflussmesser
DE2249082C3 (de) Dreieckspannungsgenerator
DE2726890B2 (de) Speise- und Regelschaltungsanordnung für eine gasgefüllte Neutronenröhre und Verfahren zum Speisen und Regeln der Neutronenröhre
DE3737774C2 (de)
EP1318623B1 (de) Verfahren zur Gewinnung einer Feldstärkeinformation
DE3108755C2 (de)
DE2511260C3 (de) Schaltungsanordnung in einer Strickmaschine
DE3118240C2 (de) Blinkgeber
EP0190100A1 (de) Sensoranordnung für Lichtbogen-Bearbeitungsmaschinen
DE1296254B (de) Anordnung zum Eichen der Pegelanzeige eines selektiven Pegelmessers
DE3610996C2 (de) Gleichspannungswandler
DE1765139A1 (de) Verfahren und Geraet zum Widerstandsschweissen
DE3342334C2 (de)
DE2209083C3 (de) Schaltungsanordnung zum Messen der Geschwindigkeit eines sich entlang einer vorgegebenen Spur bewegenden Objektes
DE1122157B (de) Gyromagnetische Magnetometerschaltung
DE3612182C2 (de) RC-Oszillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870413

17Q First examination report despatched

Effective date: 19890508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASCOM AUTELCA AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 50654

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3669215

Country of ref document: DE

Date of ref document: 19900405

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO APRA' BREVETTI

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910429

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910522

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910722

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920531

Ref country code: GB

Effective date: 19920531

Ref country code: CH

Effective date: 19920531

Ref country code: AT

Effective date: 19920531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531