EP0205116A2 - Plieuse - Google Patents

Plieuse Download PDF

Info

Publication number
EP0205116A2
EP0205116A2 EP86107676A EP86107676A EP0205116A2 EP 0205116 A2 EP0205116 A2 EP 0205116A2 EP 86107676 A EP86107676 A EP 86107676A EP 86107676 A EP86107676 A EP 86107676A EP 0205116 A2 EP0205116 A2 EP 0205116A2
Authority
EP
European Patent Office
Prior art keywords
rollers
folding
roller
folding device
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86107676A
Other languages
German (de)
English (en)
Other versions
EP0205116B1 (fr
EP0205116A3 (en
Inventor
Rudolf Stäb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albert Frankenthal AG
Original Assignee
Albert Frankenthal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Frankenthal AG filed Critical Albert Frankenthal AG
Publication of EP0205116A2 publication Critical patent/EP0205116A2/fr
Publication of EP0205116A3 publication Critical patent/EP0205116A3/de
Application granted granted Critical
Publication of EP0205116B1 publication Critical patent/EP0205116B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/18Oscillating or reciprocating blade folders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/54Auxiliary folding, cutting, collecting or depositing of sheets or webs
    • B41F13/56Folding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/02Folding limp material without application of pressure to define or form crease lines
    • B65H45/04Folding sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/14Buckling folders
    • B65H45/142Pocket-type folders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/28Folding in combination with cutting

Definitions

  • the invention relates to a folder attached to a web-fed rotary printing press with a cross-cutting device arranged on the input side and at least one cross-folding device arranged downstream of the latter.
  • each cross-folding device is designed as an upset folding device, each having three rollers driven at the same circumferential speed, of which the two outer rollers, which are in turn spaced apart, are set against the middle roller to form transport gaps and between them receive the entrance of a compression shaft extending over the entire length of the roll, which consists of spaced apart guide walls facing the outer rolls and an adjustable stop that bridges their distance.
  • the upsetting device or devices are assemblies driven at a continuous speed.
  • the upsetting shaft forms a stationary component that does not require any drive at all.
  • the measures according to the invention therefore result in a simple and clear structure and a high level of robustness and thus also a high level of maintenance and ease of use.
  • the measures according to the invention also ensure comparatively low-noise operation.
  • Another advantage of the measures according to the invention can be seen in the fact that not only any format can be processed here, but also that any desired position of the transverse fold can also be realized without further notice. For this purpose, only the stop web of the compression shaft has to be adjusted. This is advantageously also possible during running operation, so that a simple correction of the fold position is also possible.
  • the technical progress achievable with the measures according to the invention can therefore be seen in particular in avoiding the disadvantages of the known arrangements.
  • the upsetting device or devices can advantageously be loaded by means of upstream tape guides, which results in a high degree of freedom of movement with regard to the spatial arrangement of the individual units.
  • These tape guides can also be simply formed in several parts to form an acceleration or deceleration device.
  • d. H. have a plurality of mutually toothed sections which are driven at speeds which are stepped against one another in the desired manner.
  • a sheet acceleration device driven with a slight advance in relation to the speed of the paper web to be processed can be provided between the cross-cutting device and the upset folding device directly downstream of this.
  • this measure leads to gaps between the sheets cut from the paper web by means of the cross-cutting device, which, when processing a non-split sheet stream, advantageously avoids collisions between successive sheets in the region of the first upsetting folder and thus advantageously achieves a completely trouble-free Way of working can impact.
  • a particularly simple and expedient embodiment of the acceleration device can consist in the fact that the cross-cutting device has a cutting groove cylinder which is driven at a speed exceeding the web speed, the circumferential region leaving the cutting gap of a set of belts resting thereon with a transport plane in the transport gap between the rollers of the cross-cutting device facing the Cross cutting device downstream band folding device incoming belt guide is included.
  • At least one second cross fold device designed as a compression fold device can be provided to produce a second cross fold, the compression shaft of which has a larger internal width than the compression shaft of the respectively upstream first compression fold device to produce a first cross fold and which is connected to the upstream first upset folding device by means of a belt guide which with its transport plane into the transport gap between the two rolls of the upstream upstream folding device facing the upstream first upset folding device and out of the sports gap between the two rolls of the upstream facing the second upset folding device first crimping device runs out.
  • the corresponding band guide can simply be designed as a multi-part band guide.
  • rollers of the upset folding device or devices are designed as deflection rollers for the tapes of the incoming or outgoing tape guides, with the set of tapes guided around the central roller on the inlet side and outlet side each with one around the adjacent outer one Interacted roller set interacts.
  • At least the middle roller of the upsetting folding device or devices and the outlet-side outer roller with the belts running around them can expediently be used assigned grooves. This results in smooth surfaces in the area of the outlet gap, which ensures a clean fold formation.
  • Another expedient measure can consist in that the two outer rollers of the upset folding device or devices are offset from one another by approximately 90 ° on the circumference of the middle roller. This measure advantageously results in a clear, compact structure of the upset folding device or devices, which promotes trouble-free entry of the front sheet end into the upset shaft and a position of the upset shaft that supports the formation of folds.
  • each upsetting device can expediently be adjustable in relation to the middle roller in order to ensure exact gap widths.
  • the upset folding device downstream of the first transverse folding device, which is interspersed with a set of belts running on its central roller, the outer roller on the outlet side while removing the transport gap on the outlet side from the middle roller can be swung out and the entrance of the upsetting shaft can be swung out of the transport plane of the belt guide serving the inlet-side transport gap.
  • outlet-side outer roller and the compression shaft are accommodated on bearing plates pivotable about the axis of the inlet-side outer roller.
  • the entire assembly can be adjusted in a simple manner by means of an actuator in the form of a cylinder-piston unit or a spindle, etc.
  • the inlet of the compression shaft can be closed when the transport gap on the outlet side is lifted by tongues which can be releasably received on the pivotable end shields and bridges the two outer rollers.
  • the folder 1, indicated by dash-dotted outline lines in each case, is arranged in a manner known per se on the front end of a web-fed rotary printing press 2, also indicated by a dash-dotted outline.
  • a paper web 3 printed in the web-fed rotary printing press or a strand of several superimposed webs is drawn over a funnel 4 fastened to the machine frame of the web-fed rotary printing press 2 to form a longitudinal fold.
  • the train follows by means of pull rollers 5 forming the folder inlet.
  • the paper web 3 is divided into sheet-shaped products. These are provided with one or two parallel cross folds and then laid out in the form of a shingled stream.
  • the paper web 3 is subdivided by means of a cross-cutting device 6, which is known per se and consists of a knife cylinder and a grooved cylinder, which is connected to a downstream first cross-folding device 8 via a belt guide 7.
  • the first: Cross-folding device 8 is arranged by a belt guide 9 with a post Neten second transverse folding device 10 connected.
  • the transverse folding devices 8 and 10 are designed as upsetting folding devices, each of which, as can best be seen from FIG. 2, consists of a practically a cul-de-sac for the upset shaft 11 arriving via the respective upstream belt guide 7 or 9, and three each with the same Circumferential speed driven rollers 12, 13, 14 exist, which are arranged and placed against each other in such a way that on the circumference of the middle roller 13 are offset by less than 180 °, here by 90 °, transport gaps 15 or opposite the input cross section of the compression shaft 11.
  • the rollers 12, 13, 14 are driven such that a transport gap, here the transport gap 15 facing the upstream cross cutter or the upstream cross folding device, acts as a feed gap between the rollers 12 and 13, into which the transport plane of the belt guide 7 or 9 enters .
  • the two outer rollers 12 and 14 are to adjust the clear width of the transport gaps 15 and 16 and thus to adapt the transport gaps 15 and 16 to below Different product thicknesses can be adjusted relative to the middle roller 13, as indicated by double arrows in FIG. The same applies to the clear width of the compression shaft 11.
  • the diameter of the rollers 12, 13, 14 placed against each other in the area of the transport gaps 15, 16 is dimensioned such that between the two outer, on the circumference of the middle roller 13 by 90 ° offset rollers 12 and 14 results in a larger, the passage window 17 forming distance.
  • the passage window 17 forms the entrance to the compression shaft 11, which is behind it and is open towards the middle roller 13 and accommodated between the two outer rollers 12 and 14.
  • the compression shaft 11 which extends across the entire width of the machine, is inclined out of the belt guide transport plane entering the transport gap 15. In the illustrated embodiment, this inclination is approximately 45 °, i.e. H. the upsetting shaft 11 is arranged with its central plane continuing the belt guide transport plane approximately perpendicular to the plane containing the axes of the two outer rollers 12, 14. The upsetting shaft 11 can be arranged exactly in the middle between the two outer rollers 12 and 14. In the exemplary embodiment shown, the upsetting shaft 11 is offset slightly from such a central arrangement in relation to the outer roller 14 assigned to the transport gap 16 acting as a pull-out gap, in order to ensure a good entry and exit of the products.
  • the upsetting shaft 11 results as the interior of a configuration which is approximately U-shaped in longitudinal section and is open towards the middle roller 13, the guide walls 18, 19, which are spaced apart from one another and extend over the entire width of the machine, and form a distance between the guide walls 18, due to the parallel legs. 19 bridging, limiting the depth of the compression shaft 11, also extending over the entire width of the machine impact web 20 is formed.
  • the parallel guide walls 18, 19 are spaced apart from one another by an interposed spacer bar 21 which is arranged in the region of their ends remote from the roller and are received on a crossmember 22 fastened to the folder machine frame.
  • the clear width between the guide walls 18, 19 is adapted to the thickness of the products entering the upsetting shaft 11.
  • the clear width of the upsetting shaft 11 in the area of the second transverse folding devices 10 is approximately twice as high as in the area of the first transverse folding devices 8.
  • the spacer bar 21 can be replaced, which makes it possible to adapt the clear width of the upsetting shaft 20 to the respective product thickness.
  • the guide walls 18, 19 are tapered and bent to form a V-shaped inlet or outlet gap opening towards the middle roller 13.
  • the rollers 13 and 14 delimiting the transport gap 16 This is carried along by the rollers 13 and 14 delimiting the transport gap 16, the product section pushed over the transport gap 15 laying down on the product section running out again from the compression shaft 11, forming a transverse fold.
  • the position of this transverse fold depends on the depth of the upsetting shaft 11.
  • the stop web 20 delimiting the depth of the compression shaft 11 is accordingly adjustable over the length of the compression shaft 11. Normally, the stop bar 20 is set so that the transverse fold occurs in the middle of the product, that is to say that the center of the product is above the transport gap 16, which acts as a pull-out gap, when the front product edge in the transport direction hits the stop bar 20.
  • the spacing bar 21 which specifies the clear width of the upsetting shaft 11 is dimensioned such that within the upsetting shaft 11 there is likewise no evasion perpendicular to the transport direction tion is possible. As a result of the interchangeability of the spacer bar 21, this is readily possible.
  • a further adaptation to the different conditions that result in products of different thickness is possible by pivoting or displacing the entire upsetting shaft 11.
  • the traverse 22 accommodating the compression shaft 11 can simply be arranged so as to be pivotable or adjustable.
  • the guide walls 18, 19, which extend over the entire width of the machine, can be designed as plate-shaped elements.
  • the guide walls 18, 19, as can best be seen in FIG. 3, consist of tongues 25 which are arranged next to one another with a lateral spacing and which extend with their roller-side ends into the region of the two outer rollers 12 and 14, as shown in FIG. 2 best shows.
  • the stop web 20 has between the tongues 25 engaging tabs 26 which are fastened to a bar 27 which is adjustably fixable on one of the guide walls 18 and 19.
  • the tabs 26 engaging between the tongues 25 are simply designed as bent claws of the strip 27 in the exemplary embodiment shown.
  • the tongues 25 of the guide wall near the truss, here the lower guide wall 19, can be attached individually to the crossmember 22, which in turn can be fixed on the machine frame of the folder 1.
  • the tongues 25 of the opposite guide wall, here the upper guide wall 18, can be combined to ensure a simple and quick interchangeability of the spacer bar 21 to form a continuous rake across the entire width of the machine be sane.
  • the arcuate products produced in each case by means of the cross-cutting device 6 initially have no spacing.
  • gaps are generated between the sheets.
  • these gaps are generated by means of an acceleration device 28 arranged between the cross-cutting device 6 and the first cross-folding device 8 and having a corresponding advance over the speed of the paper web 3.
  • This is formed here by the cutting groove cylinder 6a of the cross-cutting device 6 and the tape guide 7 leading to the first cross-folding device 8, which run at an advance compared to the speed of the paper web 3.
  • the cutting groove cylinder 6a does not have any puncture needles or grippers for grasping the respective path start, but is surrounded in the area of its circumferential area leaving the cutting gap by a band set 7a of the band guide 7 of the same speed resting thereon.
  • the products produced by means of the cross-cutting device 6 run with their product front edge into the wedge between the cutting groove cylinder 6a and the band set 7a of the band guide 7 which comprises this.
  • a certain amount of sheet tensioning takes place due to the advance of the cutting groove cylinder 6a and the band guide 7. After the cut has been made, the desired acceleration is obtained.
  • the band set 7a is adjustable compared to the cutting groove cylinder 6a and is adjusted so that there is no damage to the usually printed surface of the sheet due to the relative speed between the incoming product beginnings and the cutting groove cylinder 6a driven with advance or the belt set 7a running with the same advance.
  • the rolls of the upset folding device forming the first transverse folding device 8 serve as deflection rolls for the belts of the belt guides 7 and 9 and are accordingly driven at a peripheral speed corresponding to the desired belt speed.
  • the belt set 7a comprising the cutting groove cylinder 6a is guided around the central roller 13 and thus passes through both transport gaps 15 and 16.
  • the belt set 7a has a further belt set deflected in the area of a guide device 29 employed on the cutting groove cylinder 6 assigned, which is deflected around the inlet-side outer roller 12 as another deflecting roller.
  • Guide 9 is assigned to the section of the belt set 7a running from the middle roll 13, a further belt set deflected via the outer roll 14 on the outlet side.
  • the band guide 9 arranged downstream of the first transverse folding device 8 leads directly to a delivery device.
  • the belt guide 9 runs with its transport plane into the upset folding device forming the two transverse folding device 10.
  • a branch 30 branching off from the belt guide 9 in the region of a switch 30 downstream of the first cross-folding device is provided, by means of which the once cross-folded products are thrown into a paddle wheel 32 arranged below it able to place the products in the form of a shingled stream on an assigned delivery belt.
  • a deflection roller 33 is provided which returns the belt set 7a which is guided around the middle roller 13 to the cutting groove cylinder 6a and which cooperates with tongues etc. forming the switch 30.
  • the section of the belt set 7a deflected via the deflection roller 33 interacts with another belt set deflected in the region of the tongues forming the switch 30 to form the extension branch 31.
  • the band set of the band guide 9 leading to the second transverse folding device 10 and deflected via the outlet-side outer roller 14 of the first transverse folding device passes over the tongues forming the switch 30 and interacts in the area behind the tongues with another band set also deflected in the area of the tongues.
  • the band guide 9 passes through a longitudinal folding device 34 of known type, which is provided in a manner known per se with a folding sword and associated folding rollers, and a parallel blade device 34 which cooperates with a delivery belt.
  • a longitudinal folding device 34 of known type, which is provided in a manner known per se with a folding sword and associated folding rollers, and a parallel blade device 34 which cooperates with a delivery belt.
  • the extension arm 31 and the longitudinal folding device 34 are passivated.
  • the products are accordingly introduced through the band guide 9 into the second transverse folding device 10.
  • the construction of the upset folding device forming the second transverse folding device 10 corresponds to the construction of the upset folding device forming the first transverse folding device 8.
  • There is only one larger clear width of the compression shaft 11 that takes into account the thickening of the products that occurred due to the first transverse fold.
  • the once folded products can run into the second transverse folding device 10 at a speed corresponding to the pull-out speed in the area of the first transverse folding device 8.
  • the once folded products are to be delayed in the area in front of the second transverse folding device 10 to such an extent that the gaps between the successive products after the first transverse fold except for a small remainder are of the order of magnitude of the gaps created by the acceleration device 28, i.e. of about 3 to 5 mm disappear.
  • the rollers of the second cross folder Tension folding device forming device 10 are accordingly driven with a speed reduced by almost 50% compared to the speed of the rollers of the compression folding device forming the first transverse folding device 8.
  • a delay device 35 is provided in the area of the belt guide 9.
  • the belt guide 9 simply has two successive sections 9a, 9b which are toothed to one another in the region of their mutually facing ends and which run at mutually graded speeds.
  • the tapes of the two tape guide sections 9a, 9b are laterally offset from one another and set to a gap, so that a mutual interlocking of the two tape guide sections is possible.
  • the belts of the rear belt guide section 9a run at the roller speed of the first transverse folding device 8.
  • the belts of the front belt guide section 9b run here at the roller speed of the second transverse folding device 10 and can therefore similar to the belts of the first belt guide: 7 around the inlet-side rollers 12, 13 of the assigned transverse folding device, here the second transverse folding device 10, are deflected.
  • the belts which are guided around the middle roller 13 run over a further deflection roller 36 arranged below the roller 13 and act to form an ejection path 38 leading to a bucket wheel 37 with belts which are guided around the outlet-side outer roller 14 and which also have an underneath the deflecting roller arranged to form its upper deflecting roller forming outer roller 14.
  • the rollers of the first or second transverse folding device 8 or 10 which serve as strip deflection rollers, can be provided with the grooves assigned to the strips which are guided around them in order to achieve a smooth working surface.
  • the rollers 13 and 14 which delimit the transport gap 16 on the outlet side are provided with the grooves 40 associated with the belts which are guided around them, so that in the region of the transport gap 16 on the outlet side, in the region of which the fold is formed, gives a smooth work surface.
  • the rollers 12, 13, 14 of the upset folding units provided for forming the first and second transverse folding devices 8 and 10 are driven. This also drives the belts around these rollers. As further shown in FIG.
  • the rollers 12, 13, 14 are provided with drive wheels 12a, 13a, 14a which are arranged in the region of a machine side and are designed here as toothed wheels and which engage with a toothed belt 41 toothed on both sides.
  • the toothed belt 41 is driven by means of a pinion 42 arranged on a driven shaft.
  • Such belts which are not deflected over a roller of an upsetting folder and have to be driven at different speeds, such as in the embodiment according to FIG. 1, the belts interacting with the belt set 7a to form the ejection fastener 31 or the lower belt set of the rear belt guide section 9a also by means of a toothed belt 43 and an adjacent to the pinion 42 drive wheel 44 are driven, as shown in Figure 2 further.
  • the embodiment according to FIG. 4 offers the possibility of laying out cross-folded products only once after the second cross-folding device 10.
  • the upset fold device arranged downstream of the first transverse fold device 8 can be passivated.
  • the upset fold device designed here as the second transverse fold device 10 is penetrated by the lower set of belts 50 of the front band guide section 9b running on its middle roll 13.
  • the belt set 50 interacts on the inlet side with belts which are guided around the inlet-side outer roller 12 and on the outlet side with belts which are guided around the outlet-side outer roller 14.
  • the outlet-side outer roller 14 and the upsetting shaft 11 are accommodated here on common bearing plates 51 which can be pivoted about the axis 55 of the inlet-side outer roller 12.
  • the outlet-side outer roller 14 is pivoted to the stationary middle roller 13 and interacts with it to form the outlet-side transport gap, which is offset by approximately 90 ° with respect to the inlet-side transport gap 24.
  • the end shields 51 are pivoted up into the position on which FIG.
  • the pivoting position of the pivotable assembly is selected so that the belt set 50 traveling under the compression shaft entrance 17 is not deflected in the area of the middle roller 13, that is to say that the transport plane of the belt guide 9b is deflected in the area of the middle roller 13 under the two outer rollers 12 and 14 stretched away.
  • the adjustment of the adjustable assembly can be effected by actuators acting on the end shields 51, for example in the form of a cylinder-piston unit 52 or a spindle drive. respectively.
  • a guide device 53 bridging the distance between the two outer rollers 12 and 14 which are adjacent to one another and which can be designed in the form of a rake consisting of adjacent tongues and detachably fixable on the pivotable end shields 51.
  • a deflection roller 54 is provided which is arranged downstream of the outlet-side outer roller 14 and which, together with the adjacent outer roller 14 and the upset shaft 11, on the axis 55 of the input side outer roller 12 pivotable end shields 51 is included and in which the Compression-folding device exiting, formed by the belt set 50 running on the middle roller 13 and the belt set guided around the outlet-side outer roller 14, engages with the formation of a band kink 56, by means of which the conveyed products are stabilized.
  • the deflection roller 54 in cooperation with a downstream stationary deflection roller 57 and the two outer rollers 12 and 14 of the upsetting folding device only one comparatively flat ribbon kink formed. This becomes ever sharper when the pivotable assembly is swiveled in the direction of arrow 58 and, in the desired working position, which can be defined by stops, reaches the largest belt wrap, which results in particularly reliable transport.
  • the distance of the deflecting roller 54 from the adjacent outer roller 14 is selected so that the length of the belt guide section delimited by the deflecting roller 54 and the adjacent outer roller 14 corresponds at least to the depth of the compression shaft 11.
  • the first upsetting device 8 of the arrangement according to FIG. 1 could additionally or alternatively be passivatable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
EP86107676A 1985-06-12 1986-06-05 Plieuse Expired - Lifetime EP0205116B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3520965 1985-06-12
DE19853520965 DE3520965A1 (de) 1985-06-12 1985-06-12 Falzapparat

Publications (3)

Publication Number Publication Date
EP0205116A2 true EP0205116A2 (fr) 1986-12-17
EP0205116A3 EP0205116A3 (en) 1988-03-30
EP0205116B1 EP0205116B1 (fr) 1991-05-08

Family

ID=6273014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107676A Expired - Lifetime EP0205116B1 (fr) 1985-06-12 1986-06-05 Plieuse

Country Status (2)

Country Link
EP (1) EP0205116B1 (fr)
DE (2) DE3520965A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374917A2 (fr) * 1988-12-23 1990-06-27 Heidelberger Druckmaschinen Aktiengesellschaft Dispositif pour convoyer des signatures
US5042788A (en) * 1986-05-14 1991-08-27 Strachan Henshaw Machinery Ltd. Processing paper and other webs
EP0606559A2 (fr) * 1992-12-16 1994-07-20 Heidelberger Druckmaschinen Aktiengesellschaft Système de sortie de produits pour des appareils de pliage de machines à imprimer rotatives
CN107032164A (zh) * 2017-05-26 2017-08-11 苏州盛达织带有限公司 织带机的导带装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34483E (en) * 1986-05-14 1993-12-21 Strachan Henshaw Machinery Limited Processing paper and other webs
DE3618921A1 (de) * 1986-06-05 1987-12-10 Frankenthal Ag Albert Falzapparat
DE3904074A1 (de) * 1989-02-11 1990-08-16 Frankenthal Ag Albert Falzapparat
EP3160887A1 (fr) * 2014-06-30 2017-05-03 The Procter & Gamble Company Procédé de pliage d'articles absorbants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891791A (en) * 1955-12-19 1959-06-23 Miehle Goss Dexter Inc Jaw folding mechanism
GB1036778A (en) * 1964-01-28 1966-07-20 Ernest Arthur Timson Improvements in or relating to sheet folding apparatus
US3975009A (en) * 1974-12-23 1976-08-17 Brown Frank H Machine for folding flexible sheets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE40520C (de) * FIRMA KOENIG & BAUER in Kloster-Oberzell b. Würzburg Neuerung an dem unter Nr. 37640 patentirten Falz- und Bogenleit-Apparat
DE524643C (de) * 1926-08-15 1931-05-09 Camco Machinery Ltd Falzmaschine
DE548284C (de) * 1930-07-03 1932-04-20 Gutberlet & Co A Falzmaschine mit zwei Bogenanlegern
DE566502C (de) * 1931-05-24 1932-12-17 Roto Und Debego Werke A G Vereinigte Stauch- und Messerfalzmaschine
DE1561124B2 (de) * 1966-04-29 1971-03-18 Mathias Bauerle GmbH, 7742 St Ge orgen Stauchfalzmaschine mit falztasche
DE6802168U (de) * 1968-10-14 1969-02-06 Griesser & Kunzmann Kg Maschine zum falzen von folienmaterialabschnitten, insbesondere papierblaettern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891791A (en) * 1955-12-19 1959-06-23 Miehle Goss Dexter Inc Jaw folding mechanism
GB1036778A (en) * 1964-01-28 1966-07-20 Ernest Arthur Timson Improvements in or relating to sheet folding apparatus
US3975009A (en) * 1974-12-23 1976-08-17 Brown Frank H Machine for folding flexible sheets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042788A (en) * 1986-05-14 1991-08-27 Strachan Henshaw Machinery Ltd. Processing paper and other webs
EP0374917A2 (fr) * 1988-12-23 1990-06-27 Heidelberger Druckmaschinen Aktiengesellschaft Dispositif pour convoyer des signatures
EP0374917A3 (en) * 1988-12-23 1990-07-25 Harris Graphics Corporation Conveyors for signatures
EP0606559A2 (fr) * 1992-12-16 1994-07-20 Heidelberger Druckmaschinen Aktiengesellschaft Système de sortie de produits pour des appareils de pliage de machines à imprimer rotatives
EP0606559A3 (fr) * 1992-12-16 1994-11-17 Heidelberger Druckmasch Ag Système de sortie de produits pour des appareils de pliage de machines à imprimer rotatives.
CN107032164A (zh) * 2017-05-26 2017-08-11 苏州盛达织带有限公司 织带机的导带装置

Also Published As

Publication number Publication date
EP0205116B1 (fr) 1991-05-08
DE3520965A1 (de) 1986-12-18
DE3679107D1 (de) 1991-06-13
DE3520965C2 (fr) 1989-07-13
EP0205116A3 (en) 1988-03-30

Similar Documents

Publication Publication Date Title
EP0256333B2 (fr) Dispositif de pliage
EP0498068B1 (fr) Plieuse, dans laquelle le transport d'exemplaires pliés est realisé en passant par des moyens de transport, des galets partiels et des cordons
WO1998055313A1 (fr) Procede pour la separation transversale d'une bande de papier en defilement
DE2823247C2 (de) Einrichtung zur Umlenkung eines aus bogenförmigen Produkten bestehenden Produktstroms
DE3321811A1 (de) Falzapparat mit einer verzoegerungsstrecke
EP0055405B1 (fr) Courroies transporteuses pour transporter et ralentir des articles pliés
DE2750792A1 (de) Falzapparat
EP0205116B1 (fr) Plieuse
CH687245A5 (de) Einrichtung zum Foerdern und Trennen von gefalteten Druckprodukten.
DE10107275A1 (de) Vorrichtung zum Verlangsamen von Signaturen
DE19940535A1 (de) Vorrichtung zum Umlenken von Signaturen
EP0820949A1 (fr) Dispositif de guidage de cahiers à la sortie d'un groupe de deux cylindres coupeurs d'une plieuse
EP0068340B1 (fr) Dispositif de pliage
EP0205115B1 (fr) Plieuse
WO1998023517A1 (fr) Dispositif pour la repartition d'un flux de cahiers
EP2128062A2 (fr) Dispositif de séparation
EP0248347B1 (fr) Plieuse
EP0244761B1 (fr) Dispositif de pliage et de coupe de produits de petit format pliés en ligne
DE10235897A1 (de) Bedruckstoff verarbeitende Maschine mit einer Transportbandeinrichtung
DE10059587A1 (de) Verfahren und Vorrichtung zum Falzen von Materialbogen
DE3143242C1 (de) Falzapparat mit einer Bandleitung zur Bogenfuehrung
DE4035106A1 (de) Falzmaschine
DE10020153A1 (de) Vorrichtung und Verfahren zum Umlenken von Bedruckstoffbogen
EP0503530A1 (fr) Dispositif pour former une suite d'objets se chevauchant par le dessous
DE3737139C1 (en) Device for folding and cutting small-size in-line products to be folded

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19880421

17Q First examination report despatched

Effective date: 19891013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3679107

Country of ref document: DE

Date of ref document: 19910613

ITF It: translation for a ep patent filed

Owner name: DR. ING. AUSSERER ANTON

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86107676.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950420

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990525

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990624

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990708

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000605

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86107676.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050605