EP0173962B1 - Lampe compacte à décharge à basse pression - Google Patents
Lampe compacte à décharge à basse pression Download PDFInfo
- Publication number
- EP0173962B1 EP0173962B1 EP85110874A EP85110874A EP0173962B1 EP 0173962 B1 EP0173962 B1 EP 0173962B1 EP 85110874 A EP85110874 A EP 85110874A EP 85110874 A EP85110874 A EP 85110874A EP 0173962 B1 EP0173962 B1 EP 0173962B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lamp
- base cap
- base
- pressure discharge
- compact low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 53
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 20
- 229910052753 mercury Inorganic materials 0.000 claims description 15
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000003570 air Substances 0.000 description 51
- 230000004907 flux Effects 0.000 description 12
- 238000009423 ventilation Methods 0.000 description 10
- 208000034656 Contusions Diseases 0.000 description 7
- 239000012080 ambient air Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 241000008090 Colias interior Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/52—Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/32—Special longitudinal shape, e.g. for advertising purposes
- H01J61/327—"Compact"-lamps, i.e. lamps having a folded discharge path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/32—Special longitudinal shape, e.g. for advertising purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/52—Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
- H01J61/523—Heating or cooling particular parts of the lamp
Definitions
- the invention relates to a compact low-pressure discharge lamp with a discharge vessel as a single lamp bulb, two electrodes sealed in a gas-tight manner in the ends of the discharge vessel, a filling of mercury and at least one noble gas, and with a base attached on one side, the discharge vessel having at least one cooling point for vertical operation with overhead Has base and for horizontal operation for setting the mercury vapor pressure for the discharge.
- DE-OS 31 12 878 discloses a low-pressure discharge lamp with a base on one side, in which the discharge vessel consists of a tube bent in one or more U-shaped shapes.
- the utility model application G 83 33 920.5 proposes a low-pressure discharge lamp which is likewise capped on one side and in which the discharge vessel is composed of a plurality of tubular parts bent in a U-shape.
- the U-shaped bends of the discharge vessels of both lamps have essentially rectangular corners, which have an increased heat emission. In the operating state of the lamp, such a corner of the discharge vessel, which is removed from the base and the electrodes, serves as a cooling point at which the mercury condenses.
- the temperature of this coldest point of the discharge vessel determines the mercury vapor pressure when the lamp is operating, which in turn determines the luminous flux output.
- the compact low-pressure discharge lamps of the above applications have an optimal temperature of the cooling point of about 45 ° C in vertical operation with the base at the top and in horizontal operation with the base on the side and therefore show a quiet burning behavior with a constant maximum luminous flux.
- the overhead cooling points in the tube section remote from the base receive a higher temperature which deviates from the optimum temperature, so that the luminous flux emitted by the lamp is reduced.
- the mercury condensed at the cooling points can drip down and thus fluctuations in the luminous flux output.
- the condensed mercury With a correspondingly shaped discharge vessel, it is possible for the condensed mercury to drip directly onto one of the two electrodes and, in the long run, to damage the same. In unfavorable cases, the mercury which drips off and then constantly recondenses can also cause the lamps with a phosphor coating to be removed.
- DE-OS 32 10 005 describes a compact fluorescent lamp which has a base attached on one side and an envelope bulb surrounding the discharge vessel at a certain distance.
- the discharge vessel which is arranged completely outside the base and consists of a triple U-shaped tube, has a cooling tip which is attached just above the mounting plate, which closes the base to the discharge vessel.
- Peripheral slits and an opening below the cooling tip in the mounting plate together with ventilation openings in the lower part of the base and in the end of the envelope bulb facing away from the base achieve air convection in the lamp. The air also flows past the cooling tip and condenses the mercury at this cooling point.
- the lamp listed in DE-OS 32 10 005 requires a enveloping bulb to condense the mercury in the cooling tip, because only with the aid of the enveloping bulb can a chimney effect be created in the lamp, which ensures sufficient convection of the air for the condensation.
- the envelope bulb gives the compact low-pressure discharge lamp a relatively voluminous shape, as a result of which it can no longer be used in all the lights provided for compact low-pressure discharge lamps.
- the aim of the invention is to provide a universally usable compact low-pressure discharge lamp without an envelope bulb with a shape that is as slim as possible, similar to that described in utility model application G 83 33 920.5.
- the lamp should have a maximum luminous flux in every burning position, i.e. Ensure in particular in the vertical burning position with the base at the bottom.
- condensed mercury should be prevented from dripping down in the latter burning position, and thus fluctuations in the luminous flux and possibly damage to the electrodes and the phosphor layer should be avoided.
- the discharge vessel consists of a plurality of parallel longitudinal tube sections which are connected to one another, at least the ends of the longitudinal tube sections facing the base being sealed and these ends being arranged in the interior of the base.
- Such a construction very simply creates a warmer area in the base, which is required for good air convection.
- the cooling point really forms the coldest point of the discharge vessel during operation of the lamp, it must be flushed with the coldest possible air. It must therefore, as already required above, lie below the warmer areas of the "chimney", which are embodied here by the heated ends of the discharge vessel in the base.
- the cooling point is advantageously formed by a tube which is closed on one side and which is melted into one of the seals of the longitudinal tube sections.
- the creation of the discharge vessel with such a cooling tube is particularly simple if the ends of the longitudinal tube sections arranged in the base have a pinch seal and the cooling tube is also squeezed into such a pinch. Particularly suitable for this are the bruises that do not have any electrodes, since these have a lower temperature from the outset.
- the chimney effect is most effective if, in addition to an inlet air opening, the base has only one outlet air opening in its top surface facing the discharge vessel. If the exhaust air opening is in the center of the openings which are provided for receiving the ends of the longitudinal tube sections of the discharge vessel, it also remains largely invisible and inaccessible.
- the base of the compact low-pressure discharge lamp can contain a ballast. In this case, however, care must be taken to ensure that the heat generated by the ballast is largely kept away from the cooling tube and that air convection in the base is not adversely affected.
- the low-pressure discharge lamp When the low-pressure discharge lamp is inserted into a socket, the latter is advantageously incorporated into the air convection system in the base and must therefore provide an ambient air supply to the supply air opening in the base.
- the socket therefore also has an opening opposite the supply air opening in the base, which in turn is connected via one or more ducts to supply air openings on the side or in the base of the socket.
- the socket does not need to have an air supply system at low outside temperatures. At low outside temperatures there are temperatures in the luminaire that no longer require air convection to create a cooling point in the base (see curves A and B in FIG. 5).
- the socket only needs to have an air supply system for an insertion direction of the base, i.e.
- the eccentrically arranged supply air opening of the base is only opposite an opening of the air supply system in the socket in one insertion direction and thus supplies the base with the necessary ambient air. In the other direction of insertion, the air supply system is ineffective, the air convection through the base is reduced or even omitted.
- the adapter When using the lamp according to the invention in an adapter, which e.g. contains a ballast, the same conditions apply as for a version.
- the adapter therefore has, in addition to a socket for receiving the base of the lamp and a base for inserting the adapter in a standardized luminaire holder, also an opening opposite the point at which the base of the lamp has an air inlet. This opening is connected to supply air openings through one or more channels in the adapter.
- insulation measures should ensure that the heat that a ballast develops is transmitted as little as possible to the convection air in the ducts.
- FIGS. 1 to 3 A compact low-pressure discharge lamp 1 is shown in FIGS. 1 to 3.
- the discharge vessel 2 is composed of two U-shaped glass tubes 3, 4 with an outer diameter of 12 mm, each of which has two longitudinal tube sections 5, 6, 7, 8 of 105 mm in length that run parallel to one another at a distance of 3 mm.
- the free ends of the longitudinal tube sections 5, 6, 7, 8 are sealed by bruises 9, 10, 11, the two outer bruises 10, 11 delimiting the discharge vessel carrying an electrode 12, 13.
- the U-shaped glass tubes 3, 4 are arranged one behind the other so that the two bruises 10, 11 with the electrodes 12, 13 are on the same side.
- the two U-shaped glass tubes 3, 4 are connected to one another by means of a transverse fusion 14 forming a passage near the two bruises 9 without electrodes so that a simply connected discharge path is formed.
- the compact low-pressure discharge lamp 1 is provided with a plastic base 15 of the type G 24, the ends of the longitudinal tube sections 5, 6, 7, 8 sealed with the bruises 9, 10, 11 extending approximately 10 mm into the base 15 and fastened therein by means of a plastic mass are.
- a cooling tube 16 with a length of approximately 9 mm and an outer diameter of 3 mm is also squeezed into the pinch 9, which does not carry an electrode.
- the melted tip of the cooling tube 16 extends up to the base wall, the wall of the base 15 having a round supply air opening 17 of 5 mm at this point.
- an exhaust air opening 19 is kept free in the center of the upper base part 18 between the longitudinal tube sections 5, 6, 7, 8 of the discharge vessel 2 projecting into the base 15.
- one of the substantially rectangular corners 20, 21, 22 of the U-shaped glass tubes 3, 4 forms a cooling point at which the mercury condenses and thus the Mercury vapor pressure and the luminous efficacy of the lamp are determined.
- the cooling tube 16 forms the cooling point which determines the mercury vapor pressure.
- the lamp When operated at 220 V with a suitable series choke, the lamp has a lamp voltage of 98 V and a lamp current of 155 mA with a power consumption of 13 W.
- FIG. 4 shows a compact low-pressure discharge lamp 24 with a socket 25 made of plastic.
- the lamp 24 corresponds completely to the low-pressure discharge lamp shown in FIGS. 1 to 3.
- the exact internal design and contacting of the version 25 is not shown, since it is of no importance for the inventive concept.
- the socket 25 Compared to the supply air opening 26 in the base 27 for the cooling tube 28, the socket 25 also has an opening 29.
- the holder 25 also has four round supply air openings 30 of 5 mm in diameter, which are distributed uniformly over the circumference of the holder 25, as well as a supply air opening 31 in the bottom of the holder 25 of likewise 5 mm in diameter.
- FIG. 5 shows a diagram of the luminous flux temperature behavior of a 13 W low-pressure discharge lamp in accordance with FIGS. 1 to 3.
- the lamp is operated in a vertical burning position with a base at the bottom in a socket corresponding to FIG. 4.
- Curve A relates to the operation of a lamp without cooling tubes and ventilation openings in the base in a corresponding version without ventilation openings
- curve B to the operation of a lamp with cooling tubes and ventilation openings in the base also without ventilation openings
- curve C to the operation a lamp with cooling tubes and ventilation openings in the base in a version with ventilation openings.
- Interior lights for compact low-pressure discharge lamps with a cover are usually designed so that at a maximum normal room temperature from 25 ° C the temperature in the lamp is around 30 ° C.
- a low-pressure discharge lamp according to the invention with a cooling system in the base and ventilation openings in the socket, an optimal light yield can thus be achieved.
- the low-pressure discharge lamp is more suitable for luminaires without heat build-up or, as mentioned above, for use in outdoor lighting.
- FIG. 6 shows a compact low-pressure discharge lamp 33 with a base 34 made of plastic for receiving a ballast, which is not explicitly shown here, since its design is of no importance for the inventive concept.
- the discharge vessel 35 corresponds entirely to the vessel shown in FIGS. 1 to 3 and in turn has a cooling tube 36 in a pinch 37 of the vessel 35.
- the base 34 with an E 27 thread 38 for screwing the lamp 33 into a standardized luminaire holder has a round supply air opening 39 of 5 mm diameter.
- a plastic tube 40 likewise 5 mm in diameter, is attached behind the supply air opening 39 and extends to the tip of the cooling tube 36.
- FIG. 7 shows a compact low-pressure discharge lamp 43 with a G 24 base 44 made of plastic and with an adapter 45 connected thereto for receiving a ballast (not shown here).
- the adapter 45 with a plastic housing has on one side a socket 46 for receiving the G 24 base 44 of the lamp 43 and on the opposite side an E 27 base 47 for screwing the adapter 45 into a standardized luminaire holder.
- the lamp 43 corresponds to the lamp shown in FIGS. 1 to 3 and also has a cooling tube 48 and an inlet air opening 49 and an outlet air opening 50 in the base 44.
- a round opening 51 of 5 mm diameter is attached to the adapter 45, which is connected by a pipe 52 to an supply air opening 53 - both with a diameter of 5 mm - in the side wall of the adapter 45.
- This air supply system can continuously supply cold ambient air to the cooling tube 48.
- the tube 52 also has a heat-reflecting coating 54 on the outside, which largely keeps the heat produced by the ballast from the fresh air supply for the cooling system in the base 44.
- a mercury precipitate 55 which determines the vapor pressure and thus the light yield can thus form in the cooling tube 48.
Landscapes
- Discharge Lamps And Accessories Thereof (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19843432675 DE3432675A1 (de) | 1984-09-05 | 1984-09-05 | Kompakte niederdruckentladungslampe |
DE3432675 | 1984-09-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0173962A2 EP0173962A2 (fr) | 1986-03-12 |
EP0173962A3 EP0173962A3 (en) | 1988-09-28 |
EP0173962B1 true EP0173962B1 (fr) | 1990-06-27 |
Family
ID=6244728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85110874A Expired - Lifetime EP0173962B1 (fr) | 1984-09-05 | 1985-08-29 | Lampe compacte à décharge à basse pression |
Country Status (4)
Country | Link |
---|---|
US (1) | US4694215A (fr) |
EP (1) | EP0173962B1 (fr) |
KR (1) | KR930003958B1 (fr) |
DE (2) | DE3432675A1 (fr) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900009084B1 (ko) * | 1986-03-24 | 1990-12-20 | 가부시끼가이샤 한도다이 에네르기 겐꾸쇼 | 저압 수은 램프 |
US4794301A (en) * | 1986-08-19 | 1988-12-27 | Kabushiki Kaisha Toshiba | Fluorescent lamp having a convoluted discharge passage and fluorescent lamp apparatus incorporating the same |
GB8627934D0 (en) * | 1986-11-21 | 1986-12-31 | Emi Plc Thorn | Metal vapour discharge lamps |
US4934768A (en) * | 1988-06-27 | 1990-06-19 | Gte Products Corporation | Picture element lamp assembly for information display system |
JPH083997B2 (ja) * | 1988-12-12 | 1996-01-17 | 東芝ライテック株式会社 | 低圧水銀蒸気放電灯 |
US5252890A (en) * | 1989-09-12 | 1993-10-12 | Toshiba Lighting And Technology Corporation | Compact type fluorescent lamp device having crooked arc path |
US5274305A (en) * | 1991-12-04 | 1993-12-28 | Gte Products Corporation | Low pressure mercury discharge lamp with thermostatic control of mercury vapor pressure |
US5581157A (en) * | 1992-05-20 | 1996-12-03 | Diablo Research Corporation | Discharge lamps and methods for making discharge lamps |
US5717277A (en) * | 1993-04-30 | 1998-02-10 | The Regents, University Of California | Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry |
US5705883A (en) * | 1995-03-31 | 1998-01-06 | General Electric Company | Reduced length compact fluorescent lamp and method of forming same |
US5506474A (en) * | 1995-03-31 | 1996-04-09 | General Electric Company | Compact fluorescent lamp using a light reflecting adhesive material |
EP0735569B1 (fr) * | 1995-03-31 | 2003-09-24 | General Electric Company | Lampe fluorescente |
US5680005A (en) * | 1995-03-31 | 1997-10-21 | General Electric Company | Phosphor distribution for helical compact fluorescent lamp |
US5675215A (en) * | 1995-03-31 | 1997-10-07 | General Electric Company | Compact fluorescent lamp having a helical lamp envelope and an efficient mounting arrangement therefor |
DE19613358C1 (de) * | 1996-04-03 | 1997-10-09 | Heraeus Noblelight Gmbh | Optischer Strahler |
US5703440A (en) * | 1996-05-13 | 1997-12-30 | General Electric Company | Compact fluorescent lamp and ballast arrangement with inductor directly between lamp ends |
US6479931B1 (en) | 1996-06-04 | 2002-11-12 | Lockheed Martin Corporation | Extended temperature range fluorescent lamp |
US5808418A (en) * | 1997-11-07 | 1998-09-15 | Honeywell Inc. | Control mechanism for regulating the temperature and output of a fluorescent lamp |
US6252355B1 (en) | 1998-12-31 | 2001-06-26 | Honeywell International Inc. | Methods and apparatus for controlling the intensity and/or efficiency of a fluorescent lamp |
JP3324570B2 (ja) * | 1999-06-16 | 2002-09-17 | 松下電器産業株式会社 | 電球形蛍光ランプ |
US6597106B2 (en) | 2000-12-28 | 2003-07-22 | General Electric Company | Compact fluorescent lamp with a housing structure |
DE10129755A1 (de) * | 2001-06-20 | 2003-01-02 | Wilken Wilhelm | Betriebsgerät für Leuchtstoffröhren mit eingebauter Kühlstelle |
US7641364B2 (en) * | 2003-07-02 | 2010-01-05 | S. C. Johnson & Son, Inc. | Adapter for light bulbs equipped with volatile active dispenser and light emitting diodes |
US20050088076A1 (en) * | 2003-10-27 | 2005-04-28 | Chi-Jung Chu | Fluorescent lamp |
US7045959B2 (en) * | 2004-01-30 | 2006-05-16 | Shanghai Xiang Shan Industry Llc | Spiral cold electrode fluorescent lamp |
US7009335B2 (en) * | 2004-06-07 | 2006-03-07 | Mathbright Technology Co., Ltd. | Fluorescent tube structure |
CN100423171C (zh) * | 2004-07-08 | 2008-10-01 | 利胜电光源(厦门)有限公司 | 紧凑型荧光灯 |
US7279840B2 (en) * | 2004-11-17 | 2007-10-09 | Matsushita Electric Works Ltd. | Electrodeless fluorescent lamp with controlled cold spot temperature |
US7293897B2 (en) * | 2005-04-01 | 2007-11-13 | Fred Mendelsohn | Integrated fluorescent lamp device |
PL1941535T3 (pl) * | 2005-10-26 | 2010-08-31 | Skirtlight S A | Kompaktowa lampa fluorescencyjna |
DE102006037550A1 (de) * | 2006-08-10 | 2008-02-14 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Entladungslampe, insbesondere Niederdruckentladungslampe |
US7759850B2 (en) * | 2008-04-01 | 2010-07-20 | General Electric Compan | Discharge tube and lamp with cooling chambers and improved luminance |
US20110189894A1 (en) * | 2008-05-20 | 2011-08-04 | Hirsh Donald G | Compact fluorescent light fixtures and related lamp conversion kits and adapters |
EP2180503A1 (fr) * | 2008-10-21 | 2010-04-28 | Koninklijke Philips Electronics N.V. | Lampe de décharge gazeuse haute pression encastrée |
JP5849183B2 (ja) * | 2011-08-11 | 2016-01-27 | パナソニックIpマネジメント株式会社 | 放電生成物発生装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4871944A (en) * | 1979-02-13 | 1989-10-03 | North American Philips Corp. | Compact lighting unit having a convoluted fluorescent lamp with integral mercury-vapor pressure-regulating means, and method of phosphor-coating the convoluted envelope for such a lamp |
US4300073A (en) * | 1979-02-13 | 1981-11-10 | Westinghouse Electric Corp. | Screw-in type lighting unit having a convoluted tridimensional fluorescent lamp |
AU529323B2 (en) * | 1979-09-29 | 1983-06-02 | K.K. Toshiba | Fluorescent lamp |
US4375607A (en) * | 1981-03-23 | 1983-03-01 | Westinghouse Electric Corp. | Compact lamp unit having plug-in fluorescent lamp and module components |
JPS57202056A (en) * | 1981-06-05 | 1982-12-10 | Toshiba Corp | Fluorescent lamp unit |
US4503360A (en) * | 1982-07-26 | 1985-03-05 | North American Philips Lighting Corporation | Compact fluorescent lamp unit having segregated air-cooling means |
US4530710A (en) * | 1983-10-24 | 1985-07-23 | Gte Products Corporation | Low-pressure arc discharge lamp having parallel discharge tubes with an arc-containing interconnecting channel; and method of manufacturing same |
-
1984
- 1984-09-05 DE DE19843432675 patent/DE3432675A1/de not_active Withdrawn
-
1985
- 1985-08-29 DE DE8585110874T patent/DE3578484D1/de not_active Expired - Fee Related
- 1985-08-29 EP EP85110874A patent/EP0173962B1/fr not_active Expired - Lifetime
- 1985-09-03 US US06/771,986 patent/US4694215A/en not_active Expired - Fee Related
- 1985-09-05 KR KR1019850006473A patent/KR930003958B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE3432675A1 (de) | 1986-03-13 |
KR930003958B1 (ko) | 1993-05-17 |
EP0173962A2 (fr) | 1986-03-12 |
EP0173962A3 (en) | 1988-09-28 |
US4694215A (en) | 1987-09-15 |
DE3578484D1 (de) | 1990-08-02 |
KR860002860A (ko) | 1986-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0173962B1 (fr) | Lampe compacte à décharge à basse pression | |
DE3005017C2 (fr) | ||
DE69826416T2 (de) | Kompakte Leuchtstofflampe, Ballast-Leuchtstofflampe und Leuchtkörper | |
DE2835574C2 (fr) | ||
DE3111836A1 (de) | Niederdruckquecksilberdampfentladungslampe | |
DE19963278A1 (de) | Kompaktentladungslampe und Leuchtstofflampe mit Vorschaltgerät | |
DE3135874A1 (de) | Niederdruckquecksilberdampfentladungslampe | |
DE3027536A1 (de) | Niederdruckquecksilberdampfentladungslampe | |
DE4305503A1 (de) | Einseitig gesockelte elektrische Lampe | |
DE8803881U1 (de) | Kompakte Reflektorlampe | |
EP0237647A1 (fr) | Lampe à décharge pour véhicule | |
DD253510A5 (de) | Niederdruckquecksilberdampfentladungslampe | |
DE60028321T2 (de) | Elektrische glühlampe | |
DE3510156A1 (de) | Niederdruckquecksilberdampfentladungslampe | |
CH661149A5 (de) | Entladungsgefaess einer hochdruck-natriumdampflampe. | |
EP0987737A1 (fr) | Lampe fluorescente | |
DE4215674A1 (de) | Niederdruckentladungslampe | |
DE3106721A1 (de) | "niederdruckentladungslampe" | |
DE8426251U1 (de) | Kompakte Niederdruckentladungslampe | |
EP0697136B1 (fr) | Ampoule fluorescente compacte | |
EP1659617A1 (fr) | Source lumineuse | |
DE3417601A1 (de) | Kompakte niederdruckentladungslampe | |
DE19837885B4 (de) | Fluoreszenzlampe | |
DE7934879U1 (de) | Sockelhuelse fuer elektrische gluehlampen | |
DE20013717U1 (de) | Leuchte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19881026 |
|
17Q | First examination report despatched |
Effective date: 19890201 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 3578484 Country of ref document: DE Date of ref document: 19900802 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940718 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940824 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941018 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950829 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |