EP0169301B1 - Electrode composite, procédé pour sa fabrication et ses applications - Google Patents

Electrode composite, procédé pour sa fabrication et ses applications Download PDF

Info

Publication number
EP0169301B1
EP0169301B1 EP85102924A EP85102924A EP0169301B1 EP 0169301 B1 EP0169301 B1 EP 0169301B1 EP 85102924 A EP85102924 A EP 85102924A EP 85102924 A EP85102924 A EP 85102924A EP 0169301 B1 EP0169301 B1 EP 0169301B1
Authority
EP
European Patent Office
Prior art keywords
anode according
composite oxygen
titanium
oxygen anode
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85102924A
Other languages
German (de)
English (en)
Other versions
EP0169301A1 (fr
Inventor
Christina Modes
Heinrich Dr. Meyer
Jochen-Werner Kühn- von Burgsdorff
Ulrich Dr. Ströder
Andrea Krämer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0169301A1 publication Critical patent/EP0169301A1/fr
Application granted granted Critical
Publication of EP0169301B1 publication Critical patent/EP0169301B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the invention relates to a composite electrode made of an electrically conductive base body and partially embedded therein catalytic particles of catalyst applied to carrier particles, a process for their production and their use.
  • Anodes with the lowest possible oxygen overvoltage are required for electrolysis processes which take place under anodic oxygen development, for example for the electrolytic extraction of metal from aqueous solutions and for electrochemical reductions of organic compounds.
  • Anodes made of lead alloys with a small amount of calcium, cobalt or silver are currently used for the electrolytic extraction of copper and zinc.
  • Lead anodes are also used in organic electrosynthesis. They are relatively inexpensive and can be used for several years. Disadvantages are the relatively high oxygen overvoltage, the corrosion of the lead which leads to contamination of the electrolysis products and the weight of the anodes, which makes handling more difficult.
  • Such activated electrodes with lower overvoltage values can, as described in German Patent 1571 721, consist of a core made of film-forming metal or valve metal (titanium, tantalum, zirconium, niobium or an alloy of these metals) and an electrochemically active coating of platinum group metal oxides and optionally base metal oxides .
  • This type of electrode has found widespread use as a dimensionally stable anode in chlorine production.
  • European patent 46 448 proposes a layer of electrically conductive, insoluble polymer network between the substrate and the outer coating in order to protect the electrode substrate, which is made, for example, of titanium.
  • the polymer network can contain, as a finely divided, electrically conductive material, a catalyst composed of one or more platinum group metals, also in the form of the oxides, and is generated in situ on the electrode substrate.
  • European patent application 46 727 describes dimensionally stable anodes which are particularly suitable for the electrolytic extraction of metal from acidic solutions and have an enlarged active surface made of lead or a lead alloy with catalytic particles partially embedded in the surface.
  • the catalytic particles consist of valve metal, for example titanium, and then, in metallic or oxidic form, platinum group metal applied as a catalyst by thermal decomposition.
  • Base metal catalysts for example made of manganese oxide, are also possible.
  • European patent application 62 951 discloses electrodes made of lead plates and particles pressed into their surface made of carrier particles coated with platinum group metal (oxide) in finely divided form as plastic containing catalyst, for example made of titanium sponge.
  • European patent application 87 186 consist of lead or lead alloys and particles of titanium and / or titanium oxide (rutile) partially embedded in their surface and ruthenium oxide and possibly manganese oxide and Titanium oxide.
  • the electrodes described in the GDR patent specification 150,764 also contain metals or metal compounds with electrocatalytic properties, but applied to graphite.
  • the porous graphite base of these electrodes contains in their pores the electrochemically active metals or metal compounds and an electrochemically inert organic material, for example polystyrene, polyethylene, polymethyl methacrylate, polyvinyl chloride or polyester acrylate.
  • anodes with a catalytic surface to be used are known from European patent application 90 381. They consist of an electrically conductive composite material made of carbon or graphite and plastic, especially a thermoplastic fluorine-containing polymer, the surface of which is provided with an electrocatalytic layer made of chemically inert plastic and a finely divided catalyst consisting of noble or base metal (oxide).
  • the active surface of these anodes is considerably smaller than that described in European patent application 46 727 and is intended to be increased by mechanical roughening. Relatively large amounts of catalyst are also required.
  • the active surface should consist of catalytic particles made of carrier particles with an electrochemically active catalyst applied to them.
  • the composite electrode representing the solution to this problem is characterized in accordance with the invention in that the base body consists of electrically conductive plastic.
  • the electrically conductive plastic preferably has a thickness of at least 2 mm and preferably contains finely divided carbon as the electrically conductive material.
  • the electrically conductive plastic with an electrical resistance less than 103 0 mm preferably consists of a suitable plastic and evenly distributed fine-particle carbon, for example in the form of carbon black or graphite. Its outer shape is chosen according to the purpose. Panels with a thickness of at least 2 mm have proven particularly useful.
  • thermoplastics with sufficient chemical resistance are particularly suitable as plastics.
  • plastics are polyethylene, polypropylene, polystyrene, polymethacrylates, polyester acrylates, polyamides, polyacetals, polycarbonates, polytetrafluoroethylene, copolymers of tetrafluoroethylene, such as tetrafluoroethylene-ethylene and tetrafluoroethylene-perfluoropropylene copolymer, and polytrifluorochloride, polytrifluorochloride.
  • the choice of plastic depends on the electrolysis conditions, such as electrolyte composition and current density. In 15% sulfuric acid with anodic current densities up to 1 kA / m 2 , polyethylene, polypropylene and polytetrafluoroethylene have proven particularly useful.
  • the electrically conductive plastic then preferably consists of one of these polymers and 5-80% by weight graphite with a particle size below 150 J, Lm or 7.5-25% by weight carbon black with a particle size below 0.02 ⁇ m.
  • the plastic can also contain other electrically conductive materials, such as metals or metal oxides. Electrically conductive polymers can also be used as electrically conductive plastics.
  • the composite electrode according to the invention preferably contains the platinum group metals ruthenium, iridium, palladium, platinum and / or rhodium as metal and / or oxide as the electrochemically active catalyst.
  • Catalysts made from one or more platinum group metals and / or platinum group metal oxides and one or more of the base metals titanium, zirconium hafnium, niobium, tantalum, manganese, iron, cobalt, nickel, tin, lead, antimony and bismuth as metal and / or oxide have proven particularly useful .
  • the oxidic catalysts containing several metals can be mixtures of the individual oxides and / or mixed oxides.
  • Titanium sponge especially with a particle size between 0.2 and 1.0 mm, and titanium oxides of the general formula Ti0 2 - x with 0 ⁇ x ⁇ 1, especially with a particle size between 0.03 and 0.5 mm, are used as carriers , prefers.
  • Powdered titanium, zirconium, niobium or tantalum can also be used.
  • Catalytic particles consisting of the carrier particles and the catalyst applied thereon which are suitable for the composite electrodes according to the invention can be produced by all methods known for this purpose (see, for example, European patent application 46 727).
  • the composite electrode with a metallic current distributor, for example made of an expanded metal or metal mesh.
  • the current distributor can consist, for example, of copper, iron, cobalt, nickel, alloys of these metals, aluminum, lead, titanium, zirconium, hafnium, niobium, tantalum, molybdenum or tungsten.
  • a current distributor it is advantageously first connected to the electrically conductive plastic at elevated temperature under pressure when producing the composite electrode; then the catalytic particles are applied to the plastic.
  • Electrically conductive plastic in plate or granulate form and current distributor are permanently and firmly anchored in one another by pressing the current distributor in at a temperature between 140 and 380 ° C. and under a pressure of 0.1-2 t / cm 2 for 0.5-10 minutes . Then the catalytic particles are applied evenly to the plastic and partially at a temperature between 140 and 380 ° C and under a pressure of 0.1-2 t / cm 2 , preferably 0.5-10 minutes in the surface of the plastic pressed in.
  • Figures 1, 2 and 3 represent partial sections of three embodiments of the composite electrode according to the invention.
  • the current distributor 1 is covered on one side by the electrically conductive plastic 2 with the catalytic particles 3 partially pressed into its surface. Since the current distributor comes into contact with the electrolyte in this embodiment, the current distributor here consists of chemically resistant metal. Current distributors made of expanded titanium have proven particularly useful in aqueous acidic electrolytes.
  • the current distributor 1 is covered on both sides by the electrically conductive plastic 2 with the catalytic particles 3 partially pressed into its surfaces. Since here the plastic protects the current distributor from the corrosive action of the electrolyte, in this embodiment the current distributors can consist of other, in part cheaper and more electrically conductive metals, for example copper.
  • FIG. 3 shows an embodiment similar to that shown in FIG. 2. However, only one surface of the composite electrode is covered with the catalytic particles 3.
  • the composite electrode according to the invention can be used as an oxygen anode in metal extraction electrolysis, in electroplating, in the electrochemical reduction of organic compounds and in electrocoating.
  • Examples 1 to 5 bund electrodes as oxygen anodes in an electrolysis cell with sulphate electrolyte (150 g of H 2 S0 4/1, 50 ° C) used cathode and platinum.
  • the power distributor and the disk made of Novolen KR 1682 are placed in a press die heated to 185 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.1 t / cm2. Then 0.8 g of the activated titanium sponge (catalytic particles) are evenly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 25 g.
  • the power distributor and the Lupolen 5261 Z disc are placed in a press die heated to 150 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.15 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 140 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 25 g.
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10 percent oxalic acid at 90 ° C. for 30 minutes, washed with water and dried
  • the power distributor and the Colcolor disc are placed in a press die heated to 180 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.5 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.5 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 25 g.
  • the power distributor and the disk made of Novolen KR 1682 are placed in a press die heated to 185 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.1 t / cm 2 . Then 0.3 g of the activated titanium oxide (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 185 ° C. with a pressure of 0.1 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 300 g / m 2 electrode surface with an Ru content of 15 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10 percent oxalic acid at 90 ° C. for 30 minutes, washed with water and dried
  • 2.5 g of granules of Hostaflon TF 4215 are filled into a press die, uniformly distributed and shaped into a disc (diameter 36 mm, thickness 2 mm) by pressing for 1 minute at room temperature with a pressure of 0.2 t / cm 2 .
  • the power distributor is then placed on the pane, covered with 2.5 g of Hostaflon TF 4215 granules and firmly pressed with the Hostaflon TF 4215 on both sides by pressing for 0.5 minutes at room temperature with a pressure of 0.05 t / cm 2 connected.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 25 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Titanium sponge with a grain size of 0.4-0.85 mm pickled with 10 percent oxalic acid at 90 ° C for 30 minutes, washed with water and dried
  • the power distributor and the Nololen KR 1682 disc are placed in a press die heated to 185 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.1 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are evenly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of catalytic particles corresponds to 800 g / m 2 electrode surface with a (Pt + Ir) content of 8 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10 percent oxalic acid at 90 ° C. for 30 minutes, washed with water and dried
  • the treatment with the impregnation solution and the heat treatment are repeated until a ruthenium content of 27.5 mg and a manganese content of 34.9 mg per 1 g of titanium sponge is reached.
  • the power distributor and the disk made of Novolen KR 1682 are placed in a press die heated to 185 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.1 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are evenly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 22 g and an Mn content of 27.9 g.
  • Expanded copper metal pickled with dilute nitric acid (mesh length 21 mm, mesh width 9 mm and web thickness 0.8 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Titanium sponge with a grain size of 0.4-0.85 mm pickled with 10 percent oxalic acid at 90 ° C for 30 minutes, washed with water and dried
  • the treatment with the impregnation solution and the heat treatment are repeated until an Ru content of 20 mg / 1 g titanium sponge and an Ir content of 10 mg / 1 g titanium sponge is reached.
  • the power distributor and the Lupolen 5261 Z disc are placed in a press die heated to 150 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.15 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 140 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ir content of 8 g and an Ru content of 16 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Washer (diameter 36 mm, thickness 4 mm) made of Colcolor from Degussa, Frankfurt (polypropylene with 25% by weight carbon black)
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10 percent oxalic acid at 90 ° C. for 30 minutes, washed with water and dried
  • the power distributor and the Colcolor disc are placed in a press die heated to 180 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.5 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.5 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 15 g and an Fd content of 5.5 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Titanium sponge with a grain size of 0.4-0.85 mm pickled with 10 percent oxalic acid at 90 ° C for 30 minutes, washed with water and dried
  • the Ru-containing titanium sponge is exposed to a temperature of 300 ° C, 430 ° C and 400 ° C for 10 minutes in an oven.
  • the power distributor and the Lupolen 5261 Z disc are placed in a press die heated to 150 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.15 t / cm 2 . Then 0.8 g of the activated titanium sponge (catalytic particles) are evenly distributed on the disk and pressed into the surface of the disk at 140 ° C. with a pressure of 0.2 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with an Ru content of 12.5 g.
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10 percent oxalic acid at 90 ° C. for 30 minutes, washed with water and dried
  • the disk made of Novolen KR 1682 is placed in a press die heated to 185 ° C. After 10 minutes (temperature compensation), 0.7 g of the activated titanium sponge (catalytic particles) are evenly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.2 t / cm 2 for 1 minute .
  • the amount of catalytic particles corresponds to 700 g / m 2 electrode surface with an Ru content of 20 g, a Mn content of 13.7 g and an Sn content of 5.8 g.
  • Titanium expanded metal blasted with corundum and pickled with hydrochloric acid (mesh length 10 mm, mesh width 5.7 mm and web thickness 1 mm) with a power supply made of titanium wire (diameter 2 mm)
  • Washer (diameter 36 mm, thickness 4 mm) made of Colcolor from Degussa, Frankfurt (polypropylene with 25% by weight carbon black)
  • Titanium sponge with a grain size of 0.4-0.85 mm treated with 10% oxalic acid at 90 ° C. for 30 minutes, washed with water and dried.
  • the titanium sponge is placed on a sheet and placed together with the sheet as the cathode in the 75 ° C solution for the electroplating.
  • 100 mg Pt / 1g titanium sponge are deposited within 12 minutes at a cathodic current density of 11 mA / cm2.
  • the power distributor and the Colcolor disc are placed in a press die heated to 180 ° C. After 10 minutes (temperature compensation), the power distributor and the pane are connected to one another by pressing for 1 minute at a pressure of 0.5 t / cm 2 . Then 0.2 g of the activated titanium sponge (catalytic particles) are uniformly distributed on the disk and pressed into the surface of the disk at 180 ° C. with a pressure of 0.5 t / cm 2 for 1 minute.
  • the amount of the catalytic particles corresponds to 800 g / m 2 electrode surface with a Pt content of 20 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (20)

1. Anode composite à oxygène constituée d'un corps de base non poreux conducteur de l'électricité et de particules catalytiques, partiellement enrobées dans sa surface, d'un catalyseur déposé sur des particules de support, caractérisée en ce que le corps de base consiste en une matière plastique conductrice de l'électricité.
2. Anode composite à oxygène selon la revendication 1, caractérisée en ce que la matière plastique conductrice de l'électricité a une épaisseur d'au moins 2 mm.
3. Anode composite à oxygène selon la revendication 1 ou 2, caractérisée en ce que la matière plastique conductrice de l'électricité contient comme matière conductrice de l'électricité du carbon en fines paticules.
4. Anode composite à oxygène selon la revendication 3, caractérisée en ce que la matière plastique conductrice de l'électricité consiste en une matière thermoplastique et en du carbone en fines particules.
5. Anode composite à oxygène selon l'une des revendications 1 à 4, caractérisée en ce que le catalyseur contient un ou plusierus des métaux du groupe du platine: ruthénium, iridium, palladium, platine et rhodium, sous forme de métal et/ou d'oxyde.
6. Anode composite à oxygène selon la revendication 5, caractérisée en ce que le catalyseur consiste en un ou plusieurs des métaux du groupe du platine à l'état de métal et/ou d'oxyde et en un ou plusieurs métaux non nobles à l'état de métal et/ou d'oxyde.
7. Anode composite à oxygène selon la revendication 6, caractérisée en ce que le métal non noble est le titane, le zirconium, le hafnium, le niobium, le tantale, le manganèse, le fer, le cobalt, le nickel, l'étain, le plomb, l'antimoine et/ou le bismuth.
8. Anode composite à oxygène selon la revendication 6 ou 7, caractérisée en ce que le catalyseur consiste en oxyde de ruthénium-titane.
9. Anode composite à oxygène selon l'une des revendications 1 à 8, caractérisée en ce que les particules de support consistent en titane, zirconium, niobium ou tantale.
10. Anode composite à oxygène selon la revendication 9, caractérisée en ce que les particules de support consistent en éponge de titane.
11. Anode composite à oxygène selon la revendication 10, caractérisée en ce que la dimension des particules de l'éponge de titane est comprise entre 0,2 et 1,0 mm.
12. Anode composite à oxygène selon l'une des revendications 1 à 8, caractérisée en ce que les particules de support consistent en oxyde de titane de formule générale Ti02-x, dans laquelle 0<x< 1.
13. Anode composite à oxygène selon la revendication 12, caractérisée en ce que la dimension des particules d'oxyde de titane est comprise entre 0,03 et 0,5 mm.
14. Anode composite à oxygène selon l'une des revendications 1 à 13, caractérisée en ce qu'un répartiteur de courant métallique est noyé dans la matière plastique conductrice de l'électricité.
15. Anode composite à oxygène selon la revendication 14, caractérisée en ce que le répartiteur de courant consiste en un métal déployé ou en un treillis métallique.
16. Anode composite à oxygène selon la revendication 14 ou 15, caractérisée en ce que le répartiteur de courant consiste en titane.
17. Anode composite à oxygène selon la revendication 14 ou 15, caractérisée en ce que le répartiteur de courant consiste en cuivre ou en aluminium.
18. Procédé de fabrication d'une anode composite à oxygène selon l'une des revendications 1 à 17, caractérisée en ce que les particules catalytiques sont distribuées uniformément sur la matière plastique conductrice de l'électricité et sont partiellement enfoncées dans la surface de la matière plastique conductrice de l'électricité sous pression à température élevée.
19. Procédé de fabrication d'une anode composite à oxygène selon la revendication 18, caractérisée en ce que la matière plastique conductrice de l'électricité est pressée avec un répartiteur de courant métallique sons pression à température élevée.
20. Utilisation de l'anode composite à oxygène selon l'une des revendications 1 à 17 dans l'électrolyse de récupération des métaux dans des solutions acides avec une densité de courant anodique de 0,3 - 1 kA/m2.
EP85102924A 1984-06-27 1985-03-14 Electrode composite, procédé pour sa fabrication et ses applications Expired - Lifetime EP0169301B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3423605 1984-06-27
DE19843423605 DE3423605A1 (de) 1984-06-27 1984-06-27 Verbundelektrode, verfahren zu ihrer herstellung und ihre anwendung

Publications (2)

Publication Number Publication Date
EP0169301A1 EP0169301A1 (fr) 1986-01-29
EP0169301B1 true EP0169301B1 (fr) 1990-02-21

Family

ID=6239226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102924A Expired - Lifetime EP0169301B1 (fr) 1984-06-27 1985-03-14 Electrode composite, procédé pour sa fabrication et ses applications

Country Status (7)

Country Link
US (1) US4765874A (fr)
EP (1) EP0169301B1 (fr)
JP (1) JPS6130690A (fr)
AU (1) AU573855B2 (fr)
CA (1) CA1274805A (fr)
DE (2) DE3423605A1 (fr)
FI (1) FI78738C (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040835A1 (de) * 1990-01-31 1991-08-01 Intevep Sa Elektrokatalysator fuer die oxidation von methan und elektrolytisches verfahren

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296167B1 (fr) 1986-03-03 1993-06-02 Ppg Industries, Inc. Procede de depot electrolytique cationique utilisant des anodes resistant a la dissolution
US4886572A (en) * 1987-12-14 1989-12-12 Ricoh Company, Ltd. Composite electrode comprising a bonded body of aluminum and electroconductive polymer and electric cell using such a composite electrode
WO1991002359A1 (fr) * 1989-08-04 1991-02-21 Drexler Technology Corporation Accumulateur reparti de conversion d'energie
GB8927377D0 (en) * 1989-12-04 1990-01-31 Univ Edinburgh Improvements in and relating to amperometric assays
DE19534534A1 (de) 1995-09-18 1997-03-20 Basf Lacke & Farben Verfahren zur Entfernung der bei der kathodischen Elektrotauchlackierung freigesetzten Säure
DE19629154C2 (de) * 1996-07-19 2000-07-06 Dornier Gmbh Bipolare Elektroden-Elektrolyt-Einheit
US6808845B1 (en) * 1998-01-23 2004-10-26 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6368489B1 (en) * 1998-05-06 2002-04-09 Eltech Systems Corporation Copper electrowinning
US6376708B1 (en) * 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
DE10026540A1 (de) * 2000-05-27 2001-11-29 Gfe Met & Mat Gmbh Gegenstand, insbesondere Implantat
US6281159B1 (en) 2000-06-08 2001-08-28 Howard A. Fromson Method of forming catalyst structure with catalyst particles forged into substrate surface
US6580598B2 (en) 2001-02-15 2003-06-17 Luxon Energy Devices Corporation Deionizers with energy recovery
CA2463776A1 (fr) 2001-10-18 2003-04-24 Monsanto Technology Llc Processus et catalyseur permettant la deshydrogenation d'alcools primaires pour fabriquer des sels d'acide carboxylique
WO2003064318A1 (fr) * 2002-01-29 2003-08-07 Honda Giken Kogyo Kabushiki Kaisha Appareil generant de l'hydrogene, systeme generateur d'hydrogene et utilisation correspondante
DE10208188B4 (de) * 2002-02-20 2006-05-24 Amaxa Gmbh Behälter mit zumindest einer Elektrode
EP1594656B1 (fr) * 2003-02-18 2007-09-12 Parker-Hannifin Corporation Article de polissage pour polissage mecanique electrochimique
ATE324926T1 (de) * 2003-10-24 2006-06-15 Amaxa Gmbh Verfahren zur herstellung eines elektrisch kontaktierbaren bereichs auf einem dotierten polymer und nach dem verfahren herstellbarer formkörper
JP3912377B2 (ja) * 2003-12-25 2007-05-09 日産自動車株式会社 排ガス浄化用触媒粉末の製造方法
JP4547930B2 (ja) * 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP4547935B2 (ja) * 2004-02-24 2010-09-22 日産自動車株式会社 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
ATE376454T1 (de) * 2004-03-15 2007-11-15 Amaxa Ag Behältnis und vorrichtung zur erzeugung von elektrischen feldern in einzelnen reaktionsräumen
DE102004032260B4 (de) * 2004-03-19 2006-04-27 Perma-Tec Gmbh & Co Kg Zelle zur Gaserzeugung
JP4513372B2 (ja) * 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
JP4513384B2 (ja) * 2004-03-31 2010-07-28 日産自動車株式会社 高耐熱性排ガス浄化用触媒及びその製造方法
WO2006006046A2 (fr) * 2004-07-08 2006-01-19 Nissan Motor Co., Ltd. Catalyseur, catalyseur de purification de gaz d'echappement et sa methode de fabrication
JP5200315B2 (ja) * 2004-12-22 2013-06-05 日産自動車株式会社 排気ガス浄化触媒、及び排気ガス浄化触媒の製造方法
JP2009536689A (ja) * 2006-05-08 2009-10-15 シーメンス ウォーター テクノロジース コーポレイション ポリマー電極を有する電解装置並びに調製方法及び使用方法
CN102424989A (zh) * 2011-12-07 2012-04-25 常熟市东涛金属复合材料有限公司 一种复合金属电解棒
JP6086873B2 (ja) * 2012-01-24 2017-03-01 Jxエネルギー株式会社 電気化学還元装置および、芳香族炭化水素化合物の水素化体の製造方法
ITMI20120873A1 (it) * 2012-05-21 2013-11-22 Industrie De Nora Spa Elettrodo per evoluzione di prodotti gassosi e metodo per il suo ottenimento
ITMI20122035A1 (it) * 2012-11-29 2014-05-30 Industrie De Nora Spa Elettrodo per evoluzione di ossigeno in processi elettrochimici industriali
CN105565580B (zh) * 2014-10-09 2018-07-03 中国石油化工股份有限公司 石化废碱液低成本处理方法及其装置
EP3465808B1 (fr) 2016-06-07 2021-09-22 Cornell University Composés d'oxydes métalliques mixtes et compositions électrocatalytiques, dispositifs et procédés les utilisant
FI129761B (en) * 2020-04-28 2022-08-15 3R Cycle Oy Method and apparatus for metal recovery
JP2022020222A (ja) * 2020-07-20 2022-02-01 デノラ・ペルメレック株式会社 酸素発生用電極
DE102021205458A1 (de) * 2021-05-28 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Elektrolyseur, Bipolarplatte und Verfahren zu ihrer Herstellung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051440A1 (fr) * 1980-10-31 1982-05-12 Eltech Systems Corporation Cellule pour la production d'alkali et de chlore ayant une électrode résistant au dégorgement

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128866C (fr) * 1965-05-12
GB1195871A (en) * 1967-02-10 1970-06-24 Chemnor Ag Improvements in or relating to the Manufacture of Electrodes.
JPS516339B1 (fr) * 1971-02-03 1976-02-27
DE2150411B2 (de) * 1971-10-09 1974-08-15 Rheinisch-Westfaelisches Elektrizitaetswerk Ag, 4300 Essen Chemisch inerte Elektrode
DE2533822C3 (de) * 1975-07-29 1979-10-25 Basf Ag, 6700 Ludwigshafen Anode für die kathodische Elektrotauchlackierung
US4039409A (en) * 1975-12-04 1977-08-02 General Electric Company Method for gas generation utilizing platinum metal electrocatalyst containing 5 to 60% ruthenium
US4118294A (en) * 1977-09-19 1978-10-03 Diamond Shamrock Technologies S. A. Novel cathode and bipolar electrode incorporating the same
US4135995A (en) * 1978-02-17 1979-01-23 Ppg Industries, Inc. Method of electrolysis, and electrode for the electrolysis
US4278525A (en) * 1978-04-24 1981-07-14 Diamond Shamrock Corporation Oxygen cathode for alkali-halide electrolysis cell
US4457823A (en) * 1978-08-08 1984-07-03 General Electric Company Thermally stabilized reduced platinum oxide electrocatalyst
CA1175387A (fr) * 1979-01-17 1984-10-02 Rene Muller Electrode d'electrolyse constituee de graphite, de polytetrafluoroethylene, et d'oxydes de platine
IT1122385B (it) * 1979-08-01 1986-04-23 Oronzio De Nora Impianti Elettrodo per celle elettrochimiche ad elettrolita solido
US4293396A (en) * 1979-09-27 1981-10-06 Prototech Company Thin carbon-cloth-based electrocatalytic gas diffusion electrodes, and electrochemical cells comprising the same
DD150764A1 (de) * 1980-04-18 1981-09-16 Alexandr T Sklyarov Elektrode fuer elektrochemische prozesse und verfahren zur herstellung
US4472257A (en) * 1980-04-29 1984-09-18 Sklyarov Alexandr T Electrode for electrochemical processes and process for producing same
CA1190185A (fr) * 1980-08-18 1985-07-09 Michael Katz Electrode enrobee avec couche protectrice intermediaire en polymere conducteur sur assise conductrice
GB2085031B (en) * 1980-08-18 1983-11-16 Diamond Shamrock Techn Modified lead electrode for electrowinning metals
US4337140A (en) * 1980-10-31 1982-06-29 Diamond Shamrock Corporation Strengthening of carbon black-teflon-containing electrodes
US4431567A (en) * 1980-10-31 1984-02-14 Diamond Shamrock Corporation Process for preparing electrodes using precious metal-catalyst containing partially fluorinated active carbon
US4382904A (en) * 1980-10-31 1983-05-10 Diamond Shamrock Corporation Electrode backing layer and method of preparing
CA1214753A (fr) * 1980-10-31 1986-12-02 Frank Solomon Obtention d'une couche pour electrode a partir de particules de charbon actif et de carbon-black avec revetement de polytetrafluoroethylene fibrille
US4357262A (en) * 1980-10-31 1982-11-02 Diamond Shamrock Corporation Electrode layer treating process
US4440617A (en) * 1980-10-31 1984-04-03 Diamond Shamrock Corporation Non-bleeding electrode
US4379772A (en) * 1980-10-31 1983-04-12 Diamond Shamrock Corporation Method for forming an electrode active layer or sheet
US4354950A (en) * 1980-12-29 1982-10-19 Texaco Inc. Mannich base derivative of hydroxyaryl succinimide and hydrocarbon oil composition containing same
DE3106587C2 (de) * 1981-02-21 1987-01-02 Heraeus Elektroden GmbH, 6450 Hanau Elektrode und deren Verwendung
GB2096640A (en) * 1981-04-09 1982-10-20 Diamond Shamrock Corp Catalytic particles and process for their manufacture
AU8278982A (en) * 1981-04-09 1982-11-04 Diamond Shamrock Chemicals Company Cathode coating with hydrogen-evolution catalyst and semi- conducting polymer
CA1208601A (fr) * 1982-02-18 1986-07-29 Diamond Chemicals Company Fabrication d'une electrode a substrat en plomb
IT1151365B (it) * 1982-03-26 1986-12-17 Oronzio De Nora Impianti Anodo per procedimenti elettrilitici
US4414092A (en) * 1982-04-15 1983-11-08 Lu Wen Tong P Sandwich-type electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051440A1 (fr) * 1980-10-31 1982-05-12 Eltech Systems Corporation Cellule pour la production d'alkali et de chlore ayant une électrode résistant au dégorgement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040835A1 (de) * 1990-01-31 1991-08-01 Intevep Sa Elektrokatalysator fuer die oxidation von methan und elektrolytisches verfahren

Also Published As

Publication number Publication date
FI78738C (fi) 1989-09-11
EP0169301A1 (fr) 1986-01-29
FI852524L (fi) 1985-12-28
CA1274805A (fr) 1990-10-02
FI78738B (fi) 1989-05-31
FI852524A0 (fi) 1985-06-26
JPS6257717B2 (fr) 1987-12-02
AU573855B2 (en) 1988-06-23
DE3576082D1 (de) 1990-03-29
AU4419485A (en) 1986-01-02
JPS6130690A (ja) 1986-02-12
DE3423605A1 (de) 1986-01-09
US4765874A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
EP0169301B1 (fr) Electrode composite, procédé pour sa fabrication et ses applications
DE2113795C3 (de) Elektrode für elektrolytische Verfahren als Sauerstoffanode
DE2636447C2 (de) Mangandioxidelektroden
DE2403573C2 (de) Verfahren zur Herstellung von Anoden
DE2927566C2 (de) Diaphragma für alkalische Elektrolyse, Verfahren zur Herstellung desselben und dessen Verwendung
DE69115213T2 (de) Elektrode.
DE2630398B2 (de) Kathode für die Elektrolyse in alkalischem Medium
DE2752875C2 (de) Elektrode für elektrochemische Prozesse und Verfahren zu deren Herstellung
DE2220247A1 (de) Beschichtungsmaterial zur elektrolytischen verwendung bei elektroden sowie damit versehene elektroden
DE2720291C3 (de) Akkumulator mit einem wäßrigen Bromid-Elektrolyt
DD243718A5 (de) Elektrode fuer elektrochemiesche prozesse, verfahren zur herstellung derselben
DE2657979A1 (de) Elektrode fuer elektrochemische verfahren und verfahren zu deren herstellung
DE2113676C2 (de) Elektrode für elektrochemische Prozesse
DE2652152A1 (de) Elektrode fuer elektrolytische reaktionen und verfahren zu deren herstellung
DD253648A1 (de) Verfahren zur herstellung einer kathode mit niedriger wasserstoffueberspannung
DE3003819A1 (de) Elektroden
DE69901201T2 (de) Elektrode für Elektrolyse und deren Herstellungsverfahren
DE3322169C2 (fr)
DE2723406C2 (de) Titananode zur elektrolytischen Herstellung von Mangandioxid und Verfahren zu deren Herstellung
EP0033363B1 (fr) Procédé de revêtement d&#39;une électrode poreuse
DE3780075T2 (de) Niedrigueberspannungs-elektroden fuer alkalische elektrolyte.
DE4232958C1 (fr)
EP0245201B1 (fr) Anode pour l&#39;électrolyse
DE3731285C2 (fr)
DE3125173C2 (de) Verwendung einer Kathode, die aus einer Einlagerungsverbindung besteht, zum Elektrolysieren von Alkalichloridsole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850322

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A.

EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19870505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3576082

Country of ref document: DE

Date of ref document: 19900329

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940309

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950306

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950413

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951228

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 728V

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960331

REG Reference to a national code

Ref country code: GB

Ref legal event code: 7281

BERE Be: lapsed

Owner name: W.C. HERAEUS G.M.B.H.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST