EP0166387B1 - Antenne pare-brise pour véhicule - Google Patents

Antenne pare-brise pour véhicule Download PDF

Info

Publication number
EP0166387B1
EP0166387B1 EP85107664A EP85107664A EP0166387B1 EP 0166387 B1 EP0166387 B1 EP 0166387B1 EP 85107664 A EP85107664 A EP 85107664A EP 85107664 A EP85107664 A EP 85107664A EP 0166387 B1 EP0166387 B1 EP 0166387B1
Authority
EP
European Patent Office
Prior art keywords
antenna
fact
primary
per
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85107664A
Other languages
German (de)
English (en)
Other versions
EP0166387A3 (en
EP0166387A2 (fr
Inventor
Heinz Prof. Dr.-Ing. Lindenmeier
Jochen Dr. Ing. Hopf
Gerhard Prof. Dr.-Ing. Flachenecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuba Hans Kolbe and Co
Original Assignee
Hans Kolbe and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Kolbe and Co filed Critical Hans Kolbe and Co
Publication of EP0166387A2 publication Critical patent/EP0166387A2/fr
Publication of EP0166387A3 publication Critical patent/EP0166387A3/de
Application granted granted Critical
Publication of EP0166387B1 publication Critical patent/EP0166387B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1278Supports; Mounting means for mounting on windscreens in association with heating wires or layers

Definitions

  • the invention relates to an antenna for transmitting and / or receiving in the rear window of a motor vehicle, consisting of the heating field and a coil, which is designed with the aid of two parallel wires as a bifilar winding and the two wires on the first side of the coil to the two DC connections of the heating field and on the second side to the poles of the DC voltage source.
  • a receiving antenna of this type is e.g. known from P 26 50 044.
  • the heating field serves as an antenna for receiving the LMK and VHF signals.
  • a particular problem here is the direct current supply for the heating field.
  • the heating currents are supplied via a bifilar choke, this choke being connected in parallel to the antenna element with respect to the high-frequency signals.
  • Another major disadvantage of this prior art antenna is the large interference coupling into the receiver input, particularly at low frequencies. These high-frequency disturbances are caused by the electrical units in the vehicle, e.g. through ignition and injection pulses and through digitally working components in the vehicle such as through digital motor electronics. Since with an antenna according to P 26 50 044 the antenna element is connected both to the receiver input and, with the rear window heating switched on, to the high-frequency disturbed DC voltage supply, screening measures in the DC voltage supply are highly effective, particularly for the low-frequency LMK range, to avoid reception interference required. The technical effort for this screening includes due to the high heating currents (up to 30 A).
  • the object of the invention is therefore to provide good reception and transmission properties within the useful reception band in an antenna according to the preamble of claim 1 and the effort required for sieving the low-frequency interference in the heating circuit as low as possible for the reception case to keep possible.
  • the coil 9 in the form of a bifilar winding forms the primary winding of a transformer 10 and the two wires on the second side of the coil are connected to the vehicle body 3 at high frequency and a magnetically coupled secondary winding 11 separate from the primary winding 9 is present. to which an antenna network 12 with the antenna connection point 20, 21 is connected.
  • FIG. 1 On the rear window 1 there is a heating field 2, which serves as an antenna element.
  • the heating currents are supplied via the two direct current connections 5 and 6 of the heating field, to which the first side 4 of the primary winding 9 is connected.
  • This consists of bifalar closely adjacent wires and together with the secondary winding 11 forms a transformer 10.
  • the other two connections on the second side 7 of the primary winding 9 are connected to the direct current source 8 for heating the heating elements. In terms of radio frequency, these connections are connected to the vehicle body 3, in the example of FIG. 1, by two capacitors 22.
  • the secondary coil 11 is magnetically coupled to the primary winding 9.
  • the number of turns of the secondary coil is suitably chosen so that a good signal-to-noise ratio for the reception frequency arises in the case of reception in the receiver 14, which is connected via an antenna network 12 and the antenna connection line 13.
  • the antenna network 12 can optionally be designed as a passive low-loss transformation network or as an active amplifier and transformation network.
  • the secondary coil 11 is suitably designed so that the best possible signal-to-noise ratio is established at the antenna connection point, that is to say at the output of the network 12 at the terminals 20 and 21, in the predetermined frequency range.
  • this network 12 and the secondary coil 11 are implemented in such a way that resistance matching is present at the input of the receiver 14. Such an arrangement can also be used for transmission.
  • a transmitter 14 takes the place of the receiver 14. The impedance matching at the transmitter output takes place here for maximum output power.
  • the mode of operation of the antenna described at low frequencies is clear from the electrical equivalent circuit diagram in FIG. 2 for the case of a passive antenna network 12.
  • the heating field 2 can be represented as a signal voltage source with the open circuit voltage E * heff and the impedance of the heating field Za between these pair of terminals 5, 6 and the vehicle body 3.
  • Za can essentially be described by the capacitance Ca. It is important to ensure that the busbars of the heating field do not come into contact with high-frequency lossy materials (rubber edging, adhesive).
  • E is the reception field strength and heff is the effective height of the heating field.
  • the bifilar primary winding 9 of the transformer 10 is connected to this pair of terminals 5, 6 and, at its other end 7, is connected to the vehicle body 3 at a low frequency with a low frequency.
  • the secondary winding 11 is carried out in such a way that the required impedance matching to the receiver or transmitter 14 is established at the end of the antenna connecting line with the least expensive, low-loss antenna network 12.
  • the choice of a suitable secondary coil 11 allows the impedance level at its output (terminals 18, 19) to be freely selected within wide limits and thus easily to the further transmitter or receiver circuit be adjusted.
  • the transformer principle is also very broadband, so that the antenna's mode of operation can also be optimized for wide frequency bands.
  • heating field 2 and transformer 10 leads to high-pass behavior at low frequencies with a resonance increase at the resonance frequency, which results from the antenna capacitance Ca and the primary inductance of the transformer and the AC load on the secondary winding 11 by the antenna network 12. If this resonance frequency is placed at the lower frequency band end of the operating frequency range, the signal transmission of the antenna is also sufficient at the lower frequency band end. This dimensioning allows the primary inductance of the transformer 10 to be minimized. This involves a minimal amount of wire, which is also accompanied by minimal losses in heating power.
  • a decisive advantage of the transformer coupling of the antenna network 12 to the heating field 2 is the fact that the high-frequency interference currents superimposed on the heating direct current source 8 of the vehicle, which also flow through the heating field, are not coupled into the receiving system and therefore cannot impair reception.
  • These high-frequency interference currents are caused by the electrical vehicle units (e.g. ignition, alternator, digital engine electronics, etc.).
  • These interference currents flow through the primary winding 9 of the transformer 10 due to the large self-inductance of the bifilar winding twice in the same size in opposite directions, so that their magnetic effects cancel each other and no signal is transmitted to the secondary winding and therefore no interference is coupled into the receiving system will.
  • the interference voltage tapped off at the heating field is only insignificantly smaller than the total interference voltage superimposed on the DC voltage source of the heater by the interfering vehicle units.
  • the capacity parallel to a capacitive antenna reduces the antenna bandwidth and thus the performance of the antenna. For this reason, the effective parallel capacitance between the pair of terminals 5, 6 and the ground connection (vehicle body 3) must be kept as small as possible.
  • the primary winding of the transformer 10 on the first side 4 of the bifilar coil 9 is connected to the DC shots 5 and 6 of the heating field via the shortest possible conductive connections 16 and 17 (FIG. 1) in order to avoid a supply capacitance.
  • frequency-selective circuits made of dummy elements with direct current separation from the body are used very advantageously.
  • Such circuits are preferably implemented by sufficiently large capacitances (FIG. 1), by series resonance circuits or by circuits having a similar effect.
  • the antenna network 12 can be implemented as a through-connection in a particularly simple case at frequencies that are not too low and within a frequency range that is not too large (e.g. for a car telephone) (FIG. 3).
  • FOG. 3 frequency range that is not too large
  • the impedance present at the connection terminals of the secondary windings 18 and 19 is transformed with a smaller deviation into the vicinity of the wave resistance of the antenna connection line.
  • the directly connected antenna network 12 additionally contains an amplifying transistor 24 (FIG. 4).
  • This is advantageously adapted on the input side for optimal signal-to-noise ratio with the aid of the low-loss transformation network 23.
  • the output impedance of this transistor is advantageously transformed with the aid of an adaptation network 25 into the characteristic impedance ZL of the antenna connecting line.
  • the impedance matching described above is not possible.
  • electronically tunable receivers car radio
  • a capacitive high-resistance input resistor with field-effect transistor with control at the gate are often used.
  • the input impedance of such receivers can be described by the input capacitance Ce (FIG. 5).
  • the antenna connection line ((13) used for such receivers is low-capacitance and, because of its short length compared to the operating wavelength, acts as a parallel capacitance CL. In these cases, the input impedance of the antenna connection line is capacitive and can be described by the capacitance Ce + CL.
  • the electrical behavior of the receiving antenna is approximately described by the electrical equivalent circuit in FIG. 6.
  • Lp is the inductance of the primary coil and ü the voltage transformation ratio ü of the transformer, which is loaded with the capacitance Cp at its output.
  • the signal voltage U across the parallel capacitance can be determined using the following formula:
  • the unavoidable coil losses dampen the signal. This drop in the signal voltage as the frequency becomes smaller can be compensated for or overcompensated for by using the resonance effect. Below the resonance frequency fr, the voltage U falls in accordance with (f / fr) 2 .
  • the inductance Lp is very advantageously chosen such that the resonance frequency fr is higher by a factor v2 than the lowest frequency fu of the reception range (FIG. 7), because in this way the voltage U does not drop below the value Um in the entire operating frequency range.
  • the self-inductance can therefore: to get voted. This dimensioning very advantageously results in the smallest possible value for Lp.
  • reception frequency ranges e.g. LMK and FM radio reception in the vehicle
  • transmit / receive frequency ranges e.g. car phone
  • Fig. 9 two bifilar windings are present as primary windings of two transformers 10, referred to below as 10a and 10b, for decoupling two different frequency ranges, the primary windings of both coils 9a and 9b due to the direct current series connection of the heating direct current and of the high-frequency interference currents are flowed through one after the other and the advantages described above with regard to the failure to couple interference from the vehicle electrical system into the receiving system for both frequency ranges are retained.
  • the connections 18a and 19a or 18b and 19b of the two secondary windings 11a and 11b of the transmitters 10a and 10b are connected to the common antenna network 12 with the antenna connection point 20, 21.
  • a crossover 32 is expediently contained in the antenna network 12 (FIG. 9).
  • the transmitter 10a is then dimensioned for the VHF frequency range, as explained above, for example, with reference to FIG. 4.
  • the high-frequency, low-impedance connection of the second side of the primary winding 9a of the transformer 10a can then be easily implemented with the aid of series resonance circuits or with circuits with the character of series resonance circuits because of the relatively small bandwidth of the FM range.
  • the resonance frequency of these series resonance circuits is appropriate moderately within the FM range and the resonance reactance of the resonance circuits is chosen so that the low impedance is sufficient in the entire FM frequency range.
  • these series resonance circuits result in a capacitive loading of the heating disc at low frequencies, here the LMK range, so that the series resonance circuit must not be unnecessarily dimensioned with low impedance.
  • the transformer 10b is provided for coupling out the low-frequency, wide LMK frequency range.
  • the low-impedance connection of the two wires on the second side of the coil 9b in the transformer 10b is then expediently carried out in the simplest manner via sufficiently large capacitances (FIG. 9).
  • the primary inductance of the coil 9a in the transmitter 10a represents a leakage inductance for the transmitter 10b, which reduces the effective coupling
  • the wire requirement for the primary windings of the transmitters can be selected to a minimum. Nevertheless, with very large heating capacities and large areas to be heated, the thermal load on the transformer can become impermissibly high, especially if the windings are applied to a ferrite core. In such cases, it is advantageous to choose the size of the area heated via the primary windings 9 with the direct heating current to be smaller than the total area to be heated (FIG. 10). and only use this part of the heating field as an antenna. The remaining part of the area to be heated can then be covered with a heating field that is not used as an antenna.

Landscapes

  • Details Of Aerials (AREA)

Claims (17)

1. Antenne pour la réception et/ou l'émission de signaux de radiofréquence incorporée dans la lunette arrière d'une voiture constituée par le panneau de chauffage et une bobine construite comme enroulement bifilaire à l'aide de deux fils en parallèle dont les deux premiers bouts sont branchés sur les deux bornes de CC de panneau de chauffage, les extrémités de l'autre côte étant branchées sur les connecteurs de la source de CC, caractérisée du fait que l'enroulement bifilaire (9) constitue le primaire d'un transformateur (10), les deux extrémités arrière de la bobine étant reliées en régime RF à la carosserie de la voiture (3), et d'un enroulement secondaire (11) de ce transformateur séparé du primaire et en couplage magnétique avec ceci auquel est connecté un réseau d'antenne (12) avec son point de connexion (20, 21).
2. Antenne selon la revendication 1, caractérisée du fait que l'enroulement (9) du transformateur (10) est connecté sur con côte avant (4) à travers de liaisons conductrices aussi courtes que possible (16,17) aux bornes CC du panneau de chauffage (5, 6).
3. Antenne selon la revendications 1 et 2, caractérisée du fait queles enroulements primaire et secondaire du transformateur (10) sont mis ensemble sur un noyau en ferrite commun (15).
4. Antenne selon la revendications 1 à 3, caractérisée du fait que la connexion RF entre les deux fils de l'extrémité arrière de la bobine (9) et la partie conductrice de la carosserie (3) est réalisée de domaine publique à sélection de fréquence par moyens de filtrage montrant une caractéristique de basse résistance dans la bande utile de l'antenne.
5. Antenne selon la revendications 1 à 4, caractérisée du fait que l'inductance de l'enroulement primaire (9) est équilibrée à la valeur le plus réduite possible, le nombre de tours de l'enroulement secondaire (11) étant choisie d'une manière à rapprocher l'impédance de cet enroulement dans une gamme de fréquences prédéterminée plus étroite à celli-ci de la ligne de transmission (13), et que le réseau d'antenne (12) est conçu comme un circuit connecteur.
6. Antenne selon la revendications 1 à 4, caractérisée du fait que l'inductance de l'enroulement primaire (9) est équilibrée à la valeur la plus réduite possible, le nombre de tours de l'enroulement secondaire (11) étant choisi d'une manière à rapprocher l'impédance de cet enroulement dans une gamme de fréquences prédéterminée plus étoite à celle-ci de la ligne de transmission (13), et que le réseau d'antenne 12 est conçu de domaine publique à l'aide d'un circuit d'adaptation à faible perte de telle manière que l'impédance sur sa sortie soit égale à celle de la ligne de transmission (13).
7. Antenne de réception selon les revendications 1 à 4, caractérisée du fait que le réseau d'antenne (12) est connecté directement à l'enroulement secondaire (11) du transformateur (10) et qu'il est muni d'un transistor de puissance.
8. Antenne de réception selon la revendication 7 caractérisée du fait que l'inductance de enroulement primaire (9) est équilibrée à la valeur la plus réduite possible, le nombre de tours de l'enroulement secondaire (11) étant choisi d'une manière à rapprocher l'impédance de cet enroulement dans une gamme de fréquences prédéterminée plus étroite à celle-ci nécessaire pour un bon rapport signal à bruit du transistor de puissance au réseau d'antenne (12).
9. Antenne de réception selon la revendication 7 caractérisée du fait que le transistor de puissance (24) est précédé d'un circuit transformateur faible perte (23) dont l'impédance est égale à celle-ci nécessaire pour un bon rapport signal à bruit du transistor de puissance.
10. Antenne de réception selon les revendications 1 à 4, caractérisée du fait que dans un réseau d'antenne dont l'impédance d'entrée peut être définie comme une capacité le taux de transformation ü du transformateur (10) soit fixé de telle manière que vers le bout supérieur d'une large bande de fréquences peu élevée comme p. e. la bande MA exist au niveau du récepteur (14) un rapport signal à bruit optimal.
11. Antenne de réception selon 1 revendication 10 caractérisée du fait que la ligne de transmission (13) est connectée directement à l'enroulement secondaire du transformateur et que l'impédance d'entrée de la ligne de transmission en coopération avec le récepteur branché sur elle est constituée par une capacité Cp et que le taux de transformation ü du transformateur (10) soit fixé de telle manière que vers le bout supérieur d'une large bande de fréquences peu élevée comme p. e. la bande MA existe au niveau du récepteur (14) un rapport signal à bruit optimal.
12. Antenne de réception selon les revendications 10 ou 11, caractérisée du fait que supposant une capacité Ca du panneau de chauffage (2) le rapport de transformation ü de la tension secondaire à la tension primaire du transformateur (10) soit environs
Figure imgb0006
** A.d.Ü: Es Könnte sein, daß in dieser Formel des Wurzelzeichen fehlt. Bitte überprüfen.
13. Antenne de réception selon les revendications 10 et 12, caractérisée du fait que la fréquence résonante comprise dans une large bande de fréquences peu élevées comme p. e. la bande MA constituée par la capacité du panneau de chauffage, celle-ci de l'enroulement primaire ainsi que la capacité d'entrée du réseau d'antenne soit fixée de telle manière qu'au niveau du récepteur le rapport signal àbruit soit environ le même vers les bouts inférieur et supérieur de la bande utile.
14. Antenne de réception selon 1 revendication 13 caractérisée du fait que la fréquence résonante soit fixée de telle manière qu'elle soit env. 2 fois la fréquence la plus basse fu de la large bande.
15. Antenne de réception selon les revendications 12 à 14, caractérisée du fait que le réseau d'antenne (12) soit muni à l'entrée d'un amplificateur large-bande linéaire de domaine publique à faible perte et haute résistance capacitive dont la capacité d'entrée sera CF.
16. Antenne de réception selon les revendications 1 à 15, caractérisée du fait qu'il y ait deux enroulement bifilaires comme bobines primaires de deux transformateurs (10a et 10b) pour le découplage de deux bandes de fréquences différentes et que l'extrémité avant de la première bobine (9a) du transformateur (10a) soit reliée aux deux bornes de CC du panneau de chauffage tandis que les deux fils de l'extrémité arrière de la première bobine (9a) soient reliés à sélection de fréquence pour la première bande utile à basse résistance à la carosserie du véhicule et que les deux fils sur l'extrémité avant de la deuxième bobine (9b) du transformateur (10b) soient reliés aux deux fils sur l'extrémité avant de la première bobine (9a) tandis que les deux fils sur l'extrémité arrière de la deuxème bobine (9b) sont reliés à sélection de fréquence et à basse résistance capacitive au moins our la deuxième bande utile à la carosserie et au bornes de la source d'énergie CC (8) et qu'il y ait pour chaqu'une des bobines primaire un enroulement secondaire (11a a et 11b) séparés de celles-ci et en couplage magnétique avec elles qui alimentent le réseau d'antenne (12).
17. Antenne de réception selon les revendications 1 à et 16, caractérisée du fait que l'extension du panneau de chauffage (2) alimenté à travers l'enroulement bifilaire soit fixée d'un tel degré que la charge thermique sur le transformateur n'excède pas la valeur admissible.
EP85107664A 1984-06-22 1985-06-21 Antenne pare-brise pour véhicule Expired - Lifetime EP0166387B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3423205 1984-06-22
DE19843423205 DE3423205A1 (de) 1984-06-22 1984-06-22 Antenne in der heckscheibe eines kraftfahrzeugs

Publications (3)

Publication Number Publication Date
EP0166387A2 EP0166387A2 (fr) 1986-01-02
EP0166387A3 EP0166387A3 (en) 1987-05-13
EP0166387B1 true EP0166387B1 (fr) 1991-01-16

Family

ID=6238979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107664A Expired - Lifetime EP0166387B1 (fr) 1984-06-22 1985-06-21 Antenne pare-brise pour véhicule

Country Status (2)

Country Link
EP (1) EP0166387B1 (fr)
DE (2) DE3423205A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216376C2 (de) * 1992-05-18 1998-11-05 Lindenmeier Heinz Fahrzeug-Antennenanordnung mit einer Empfangsschaltung für den LMK-Bereich

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918222A (ja) * 1995-06-28 1997-01-17 Nippon Sheet Glass Co Ltd 窓ガラスアンテナ装置
DE19854169A1 (de) * 1998-11-24 2000-05-25 Heinz Lindenmeier Fensterscheibenantenne mit hochfrequent hochohmig angeschlossenem Heizfeld
DE102011006269A1 (de) * 2011-02-28 2012-08-30 Infineon Technologies Ag Hochfrequenzumschaltanordnung, Sender und Verfahren

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3484584A (en) * 1968-07-23 1969-12-16 Ppg Industries Inc Combination of electrically heated transparent window and antenna
DE2115657C3 (de) * 1971-03-31 1983-12-22 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Aktive Unipol-Empfangsantenne
GB1520030A (en) * 1975-11-21 1978-08-02 Bsh Electronics Manchester Ltd Electrical device to enable the heating element of an electrically heated motor vehicle window to be used as a radio aerial
DE2554829C3 (de) * 1975-12-05 1985-01-24 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Aktive Empfangsantenne mit einer gegenkoppelnden Impedanz
DE2554828C3 (de) * 1975-12-05 1985-01-24 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Aktive Empfangsantenne mit gegengekoppeltem Verstärker
GB1600987A (en) * 1977-08-17 1981-10-21 Bsh Electronics Manchester Ltd Electrical device to enable the heating element of an electrically heated motor vehicle window to be used as a radio transmitting aerial
DE2952793C2 (de) * 1979-12-31 1983-04-28 Flachenecker, Gerhard, Prof. Dr.-Ing., 8012 Ottobrunn Abstimmbare Empfängereingangsschaltung
JPS57188102A (en) * 1981-05-15 1982-11-19 Asahi Glass Co Ltd Glass antenna for automobile
DE3406580A1 (de) * 1984-02-21 1985-08-22 Robert Bosch Gmbh, 7000 Stuttgart Heizscheibenantenne
DE3409876A1 (de) * 1984-03-17 1985-09-19 Robert Bosch Gmbh, 7000 Stuttgart Heizscheibenantenne

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216376C2 (de) * 1992-05-18 1998-11-05 Lindenmeier Heinz Fahrzeug-Antennenanordnung mit einer Empfangsschaltung für den LMK-Bereich

Also Published As

Publication number Publication date
DE3423205C2 (fr) 1987-11-05
EP0166387A3 (en) 1987-05-13
DE3423205A1 (de) 1986-01-02
DE3581321D1 (de) 1991-02-21
EP0166387A2 (fr) 1986-01-02

Similar Documents

Publication Publication Date Title
EP0155647B1 (fr) Arrangement d'antenne dans la vitre arrière d'une voiture
DE2650044C3 (de) Schaltungsanordnung zum Empfangen von hochfrequenten Rundfunksignalen
EP1406349B1 (fr) Antenne active de réception large bande avec régulation du niveau de réception
EP1337001A1 (fr) Dispositif pour la transmission sans contact des signaux électriques et/ou énergie
EP1168500A2 (fr) Commutateur d'antenne pour un émetteur-récepteur mobile
DE4007824C2 (de) Fahrzeugantenne für Funkdienste mit einem stabförmigen Antennenelement
EP1005101A2 (fr) Antenne de vitre connectée au réseau chauffant par un champs à haute fréquence et à impédance élevée
EP0166387B1 (fr) Antenne pare-brise pour véhicule
EP0524263A1 (fr) Agencement d'antennes
DE4216376C2 (de) Fahrzeug-Antennenanordnung mit einer Empfangsschaltung für den LMK-Bereich
DE102013211541A1 (de) Duplex-Antennenanordnung
DE3844541C2 (de) Antennenschaltung für eine Multiband-Antenne
EP3493324B1 (fr) Antenne multibande active pour la réception radio terrestre
DE3405113A1 (de) Hochfrequenz - verteileinrichtung
DE2310616C3 (de) Empfangsantenne für mehrere Frequenzbereiche
EP0498036A2 (fr) Transducteur à large bande pour haute fréquence
DE2311861A1 (de) Antenne in form einer leiterschleife
DE2065525C3 (de) Einrichtung zur Einspeisung einer hochfrequenten über ein Parallelkreisfilter ankommenden Signalenergie in eine durchgehende Leitung
DE3405114C2 (de) Schaltungsanordnung zur Impedanzanpassung
DE4303072A1 (de) Mehrbereichsantenne mit aktivem Übertragungsweg bei tiefen Frequenzen
DE3108993A1 (de) Hf-eingangsfilterschaltung eines tuners
DE3407020A1 (de) Autoantennenverstaerker
DE3137070C2 (fr)
DE2558862A1 (de) Aktive autoantenne
AT102483B (de) Einrichtung zum Empfang Drahtloser Signale.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870715

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HANS KOLBE & CO.

17Q First examination report despatched

Effective date: 19900628

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3581321

Country of ref document: DE

Date of ref document: 19910221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;FUBA HANS KOLBE & CO.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040608

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040701

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050620

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20