EP0137954B1 - Photomultiplicateur de canal - Google Patents

Photomultiplicateur de canal Download PDF

Info

Publication number
EP0137954B1
EP0137954B1 EP84109664A EP84109664A EP0137954B1 EP 0137954 B1 EP0137954 B1 EP 0137954B1 EP 84109664 A EP84109664 A EP 84109664A EP 84109664 A EP84109664 A EP 84109664A EP 0137954 B1 EP0137954 B1 EP 0137954B1
Authority
EP
European Patent Office
Prior art keywords
channel
funnel
electron multiplier
multiplier
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84109664A
Other languages
German (de)
English (en)
Other versions
EP0137954A1 (fr
Inventor
Hans Lauche
Wilhelm Barke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP0137954A1 publication Critical patent/EP0137954A1/fr
Application granted granted Critical
Publication of EP0137954B1 publication Critical patent/EP0137954B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • H01J9/125Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes

Definitions

  • the present invention relates to a channel secondary electron multiplier having a carrier body which contains an elongated, tubular multiplier channel which has a main part and an adjoining, funnel-like widening initial section, and with a coating which is on the inner wall of the multiplier channel, including the initial section is arranged and the surface of which forms a secondary emission-resistant resistance layer.
  • Channel secondary electron multipliers are e.g. B. from US-A-4 305 744, GE-B-1 964 665, DE-A-1 902 293 and GB-A-1 440 037 and the Valvo data sheet X914AL, X914BL and have long been known for electron current amplification in Detectors for electrons, ions and photons are used.
  • the commercially available channel multipliers of the type of interest here which contain a single elongated, generally curved multiplier channel (in contrast to the so-called “channel plates", which contain a large number of closely adjacent, short and mostly straight multiplier channels) consist in general a curved tube made of lead glass.
  • the initial section of the multiplier channel formed by the glass tube, which adjoins the inlet opening, can be widened in a funnel-like manner to enlarge the capture cross section for the particles to be detected.
  • the surface of the multiplier channel formed by the glass tube consists of an electrically conductive layer with a high secondary emission coefficient, which has generally been formed by reducing the lead glass.
  • the known channel multipliers consisting of a glass tube are mechanically very sensitive, as a result of which their dimensions are also limited to relatively small values.
  • This disadvantage is avoided in the channel multiplier, which is known from the above-mentioned US-A-4 305 744, by using a mechanically resistant ceramic carrier body which forms the multiplier channel.
  • the inner wall of the channel is coated with a material which is capable of secondary emissions and which is different from the material of the carrier body and which is not formed from the latter by reduction or any other chemical reaction.
  • the coating can e.g. B. consist of lead glass, which is reduced on the surface.
  • the coating and the ceramic of the carrier body should have essentially the same coefficient of thermal expansion, with differences of up to 8% being regarded as permissible.
  • the collection capacity for primary particles obviously depends on the cross section of the inlet opening of the funnel-shaped initial section.
  • a relatively large inlet opening is imperative to achieve an acceptable signal-to-noise ratio.
  • the present invention achieves the object of further developing a channel multiplier of the type mentioned at the outset in such a way that stable operation is guaranteed and that it is also produced in larger dimensions without unduly impairing the electrical properties, in that the material of the carrier body has a coefficient of thermal expansion, which is at least 10% greater than the coefficient of thermal expansion of the material of the secondary emission resistive layer, and that this has been formed at a temperature which is above the maximum operating temperature of the electron multiplier.
  • the present invention is based on the knowledge that the electrical defects which occur when the dimensions of channel multipliers of the type mentioned above are increased, are mainly due to the fact that fine cracks form in the active, secondary-emissive layer, which result in electrical discontinuities and thereby interfere with the work of the multiplier.
  • This deficiency can, as stated above, be remedied by making the coefficient of expansion of the carrier material at least 10%, preferably 15%, most suitably at least 20 to 25% greater than the coefficient of expansion of the coating forming the secondary emission layer and making it z.
  • B. forms from a glaze coating at a temperature which is substantially above the maximum temperatures to be expected during operation, so that the coating is kept under a considerable compressive stress under all operating conditions. The occurrence of cracks and discontinuities is largely prevented by this compressive stress.
  • the channel multiplier 10 shown in FIG. 1 has a single elongate, tubular, curved channel, which is formed by a carrier body 12 made of metal, in particular stainless steel.
  • the carrier body 12 has a helical main part 12a which merges into a conically widening initial section or funnel 12b at the front and into a straight piece 12c at the rear.
  • the funnel 12b forms an inlet opening 12d, in which it is connected in a vacuum-tight manner to a fastening flange 14.
  • a metallic end piece 20, which is closed at one end, is melted in a vacuum-tight manner with its open end via a ceramic intermediate piece 18, insulated from the straight channel end 12c.
  • the inner surface of the metallic carrier body 12 including the funnel 12b delimiting the channel is essentially completely covered with a coherent layer 22 (FIG. 1a) made of a lead glass glaze.
  • the free surface of the glaze layer 22 is reduced in a conventional manner to form a resistance layer 22a with a high secondary emission coefficient.
  • the thin semiconducting secondary emission-capable layer 22a forms with the metal wall of the body 12 an electrical capacitor, the dielectric of which consists of the unreduced lead glass layer 22b. This capacitor can be used as an energy store for the electron avalanche current at the end of the multiplier channel. As a result, more secondary electrons can be released with each pulse than is possible with a conventional channel multiplier.
  • the flange 14 can serve as one connection to the semiconducting multiplier layer, while the other connection is formed by the end piece 20, which serves both as an anode and as a collector and in operation at a voltage of approx. +3.0 kV can be maintained with respect to the flange 14 lying on ground.
  • the inlet opening of the funnel 12b can easily have a diameter of more than 20 mm, z. B. 25 mm.
  • An advantage of the metal construction described with reference to FIG. 1 is the relatively good thermal conductivity of the carrier body, which also contributes to stability under high loads.
  • a creamy pulp made from finely ground glass powder in a liquid carrier material in particular isopropyl alcohol, is preferably used.
  • This paste is applied by pouring, brushing or spraying. In this way, the entire layer can be distributed on the desired surface at room temperature and checked visually before baking.
  • the carrier is then slowly heated until the glaze flows smoothly, for example to about 800 ° C., and then cooled again. So far, the glaze layer has been produced by pouring and pressing a liquid glass mass, which must have a much lower toughness and thus a much higher temperature (approx. 1000 ° C) than is necessary for the glass powder layer to run, which is the case with the known methods limits the number of carrier materials that can be used, requires a considerably higher outlay and is hardly applicable especially for large funnels.
  • the glaze material is preferably degassed. Burning in should therefore be carried out in a vacuum oven followed by smooth burning in an oxidizing atmosphere.
  • the lead glass glaze layer is then reduced in the usual way, e.g. B. by heating at 370 to 400 ° C for about six hours in hydrogen from 100 to 200 kPa to produce a uniform emission layer of about 10 nm in thickness.
  • the channel resistance can thus be calculated as a function of the channel cross section and the length and optimizable.
  • the effectiveness of the individual surface areas of the funnel surface depends on the extent to which the electrons knocked out of the layer are also sucked into the beginning of the main part 12a of the channel. Since the widening of the cross section of the funnel 12b causes a reduction in the resistance in the axial direction and thus a reduction in the field strength, the funnel is basically only fully effective on the inside at the transition to the channel 12a. The sensitivity drops quickly towards the front (entry-side) edge and you soon reach a point where increasing the funnel diameter is no longer profitable.
  • the resistance and emission layer in the funnel is made by a narrow spiral separation, i.e. H. a non-conductive space, divided into a spiral strip.
  • the width of the strip is preferably at least approximately equal to the inner circumference of the channel 12a. By varying the width of the strip, it is in your hand to create a guiding field towards the center of the funnel and thus collect all the electrons from all parts of the funnel.
  • the width of the z. B. separation produced by scratches 24 should be small against the width of the spiral strip 26.
  • the separation 24 can also be produced by appropriate shaping of the carrier body 12. 1, the inner surface of the carrier can be coated with an enamel before glazing in order to achieve a high dielectric strength with a large capacity. The melting point of this enamel intermediate layer must of course be between that of the support and that of the glaze and can replace the unreduced layer 22b.
  • the embodiment of the present channel multiplier shown in FIGS. 2 and 3 contains a carrier body 112 made of insulating ceramic.
  • the carrier body 112 has a substantially cylindrical outer wall and forms a multiplier channel with a funnel-shaped starting section ("funnel") 115 and a spiral-shaped channel part 117 (see also FIG. 3), the axial center line of which lies essentially in one plane.
  • the channel part 117 is through a spiral recess, for. B. increasing depth and substantially constant width, e.g. B. formed about 2 mm in the rear flat end face of the substantially cylindrical support body 112.
  • the depth and width of the channel can be varied.
  • the channel part 117 of the multiplier channel is closed by a ceramic plate 119.
  • the curvature of the multiplier channel is as uniform as possible and in order to achieve this during the transition from the funnel 115 into the channel part 117, the plate 119 can contain a corresponding recess 121 which forms part of the channel wall and thereby enables a transition with a uniform curvature from the funnel to the spiral .
  • the first piece of the channel part 117 adjoining the funnel is preferably somewhat narrower than the rest of the channel part 117.
  • the funnel 115 and the spiral channel part 117 are provided with a glaze which forms the secondary emission layer and can also be produced as was explained above with reference to FIG. 1.
  • the secondary emission layer ends at an anode terminal A, the z. B. can consist of a metallization.
  • a collector 120 At the end of the spiral-shaped recess forming the channel part 117 there is a collector 120, which can also consist of a metallization and is separated from the anode A by an uncoated, insulating piece 124 of the spiral-shaped channel part.
  • the metallization layers forming the anode A and the collector 120 are led outwards and with suitable connections, for. B. 123 connected.
  • the actual channel multiplier is welded into the flange 129 in a vacuum-tight manner by means of a cup-shaped intermediate piece 125 made of metal which is glass-bonded or soldered onto the support body 112 and the end plate 119.
  • An overlying housing 127 carries the electrical connections for a high-voltage input 131 and for a pulse output 133. Inside the housing, electrical components such. B. an amplifier for the output signal.
  • the vacuum-tight design according to FIG. 2 allows operation under vacuum conditions, while at the same time the connections 123 and 133 as well as the anode and high-voltage input 131 are freely accessible.
  • the emission layer in the funnel 115 is advantageously divided into a spiral-shaped strip 126 by a spiral-shaped narrow interruption 124, as was explained with reference to FIG. 1.
  • the width B of the strip is preferably approximately equal to 2 d, where d is the width of the main part of the multiplier channel (FIG. 3).
  • a voltage of +2400 to +3700 V with respect to a connection 135 at the inlet of the funnel 115 can be at the anode connection A, which voltage is preferably at ground potential and z. B. is electrically connected to the flange 129 via the intermediate piece 125.
  • the collector 120 should have a voltage of approx. +10 V. /. + 150 V compared to the anode.
  • the path resistance of the multiplier channel should generally be less than or equal to 10 8 ohms.
  • the channel multiplier according to FIG. 2 can be Modify in that the surface of the ceramic carrier body 112 forming the channel is first metallized and only then coated with the glaze, so that a capacitor is also available, as in the channel multiplier with a metallic carrier body according to FIG. 1.
  • the helical or spiral strip from which the secondary emissive layer consists in the funnel-shaped initial section is expediently essentially coaxial with the funnel axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Electron Tubes For Measurement (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Claims (10)

1. Multiplicateur d'électrons secondaires à canal comportant un corps support (12, 112) qui contient un canal multiplicateur tubulaire, allongé longitudinalement lequel présente une partie principale et un tronçon d'entrée (12b, 115) se raccordant au tronçon principal et allant en s'élargissant en forme d'entonnoir jusqu'à une ouverture d'entrée, et un revêtement (22) qui est disposé sur la surface du canal multiplicateur d'électrons y compris sur celle du tronçon initial et dont la surface constitue une couche résistante (22a) à pouvoir émissif secondaire caractérisé en ce que le matériau du corps support (12, 112) a un coefficient de dilatation thermique qui est supérieur d'au moins 10 % au coefficient de dilatation thermique du matériau de la couche résistante (22a) à pouvoir émissif secondaire et en ce que ceci est établi pour une température qui est supérieure à la température de fonctionnement maximale du multiplicateur d'électrons.
2. Multiplicateur d'électrons secondaires à canal suivant la revendication 1 caractérisé en ce que le coefficient de dilatation thermique du matériau du corps support est supérieur d'au moins 15 % à celui du matériau de la couche résistante.
3. Multiplicateur d'électrons secondaires à canal suivant la revendication 1 caractérisé en ce que le coefficient de dilatation thermique du matériau du corps support est supérieur d'au moins 20-25 % à celui du matériau de la couche résistante.
4. Multiplicateur d'électrons secondaires à canal suivant l'une quelconque des revendications 1 à 3 caractérisé en ce que la couche résistante (22a) à pouvoir émissif secondaire forme, dans le tronçon initial (12b) allant en s'élargissant en forme d'entonnoir une bande hélicoïdale (26).
5. Multiplicateur d'électrons secondaires à canal suivant la revendication 4 caractérisé en ce que la largeur de la bande (26) est de l'ordre de grandeur du périmètre de la partie principale (12a) du canal du multiplicateur qui se raccorde au tronçon initial allant en s'élargissant en forme d'entonnoir.
6. Multiplicateur d'électrons secndaires à canal suivant l'une quelconque des revendications précédentes caractérisé en ce que l'ouverture d'entrée du canal multiplicateur est relié d'une manière étanche au vide à une bride de raccordement (14, 129).
7. Multiplicateur d'électrons secondaires à canal suivant l'une quelconque des revendications 1 à 6 caractérisé en ce que le corps support (12) est réalisé en métal et une couche isolante électriquement (22b) est interposée entre la couche résistante (22a) à pouvoir émissif secondaire et le corps support.
8. Multiplicateur d'électrons secondaires à canal suivant l'une quelconque des revendications 1 à 6 caractérisé en ce que le corps support (112) est réalisé en céramique, il comporte un évidement qui va en s'élargissant en forme d'entonnoir jusqu'à une ouverture d'entrée et qui forme un tronçon initial (115) d'un canal multiplicateur et il présente une surface pourvue d'une partie de canal ouvertte (117), en forme de spirale, dont le début, situé radialement vers l'intérieur est en liaison avec le tronçon initial en forme d'entonnoir, et le canal en forme de spirale est fermé par une plaque isolante (119) (figures 2 et 3).
9. Multiplicateur d'électrons secondaires à canal suivant la revndication 8 caractérisé en ce que la plaque (119) présente à la transition du canal entre le tronçon initial en forme d'entonnoir (115) et la partie de canal (117) en forme de spirale présente un creux (121) en forme d'auge qui constitue une portion de paroi courbe du canal multiplicateur.
10. Multiplicateur d'électrons secondaires à canal suivant l'une quelconque des revendications 8 ou 9 caractérisé en ce que le début de la partie de canal (117) en forme de spirale qui est en liaison avec le tronçon initial (115) en forme d'entonnoir, est plus étroit que le reste du canal (117) en forme de spirale.
EP84109664A 1983-08-18 1984-08-14 Photomultiplicateur de canal Expired EP0137954B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833329885 DE3329885A1 (de) 1983-08-18 1983-08-18 Kanal-sekundaerelektronenvervielfacher
DE3329885 1983-08-18

Publications (2)

Publication Number Publication Date
EP0137954A1 EP0137954A1 (fr) 1985-04-24
EP0137954B1 true EP0137954B1 (fr) 1988-07-20

Family

ID=6206888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109664A Expired EP0137954B1 (fr) 1983-08-18 1984-08-14 Photomultiplicateur de canal

Country Status (4)

Country Link
US (1) US4652788A (fr)
EP (1) EP0137954B1 (fr)
JP (1) JPS6084752A (fr)
DE (2) DE3329885A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817897A1 (de) * 1988-01-06 1989-07-20 Jupiter Toy Co Die erzeugung und handhabung von ladungsgebilden hoher ladungsdichte
US5148461A (en) * 1988-01-06 1992-09-15 Jupiter Toy Co. Circuits responsive to and controlling charged particles
JPH0251840A (ja) * 1988-08-11 1990-02-21 Murata Mfg Co Ltd 2次電子増倍装置
US5030878A (en) * 1989-03-06 1991-07-09 Detector Technology, Inc. Electron multiplier with replaceable rear section
FR2676862B1 (fr) * 1991-05-21 1997-01-03 Commissariat Energie Atomique Structure multiplicatrice d'electrons en ceramique notamment pour photomultiplicateur et son procede de fabrication.
GB2480451A (en) * 2010-05-18 2011-11-23 E2V Tech Electron tube rf output window
WO2011160061A2 (fr) 2010-06-17 2011-12-22 Moriarty Donald E Hélice à tourbillon

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1113273B (de) * 1959-07-30 1961-08-31 Telefunken Patent Kathodenstrahlroehre mit elektrostatischer Ablenkung und Nachbeschleunigung des Elektronenstrahls
US3341730A (en) * 1960-04-20 1967-09-12 Bendix Corp Electron multiplier with multiplying path wall means having a reduced reducible metal compound constituent
DE1464573A1 (de) * 1962-11-19 1968-11-21 Egyesuelt Izzolampa Hochempfindliche Kathodenstrahlroehren mit Spiralnachbeschleunigung
US3407324A (en) * 1967-06-21 1968-10-22 Electro Mechanical Res Inc Electron multiplier comprising wafer having secondary-emissive channels
FR2000354A1 (fr) * 1968-01-18 1969-09-05 Matsushita Electric Ind Co Ltd
DE1964665B2 (de) * 1968-12-26 1971-06-24 Sekundaerelektronen vervielfacher
US3665497A (en) * 1969-12-18 1972-05-23 Bendix Corp Electron multiplier with preamplifier
FR2158605A5 (fr) * 1971-10-25 1973-06-15 France Etat
NL7117919A (fr) * 1971-12-28 1973-07-02
DE2306644A1 (de) * 1973-02-10 1974-08-15 Leybold Heraeus Gmbh & Co Kg Sekundaerelektronenvervielfacher
JPS5025302A (fr) * 1973-07-06 1975-03-18
GB1440037A (en) * 1974-04-11 1976-06-23 Mullard Ltd Electron multipliers
GB1548560A (en) * 1975-04-12 1979-07-18 Emi Ltd Electron multiplier
US4305744A (en) * 1978-10-24 1981-12-15 Universite Laval, Cite Universitaire Method of making an electron multiplier device
JPS5751224A (en) * 1980-09-11 1982-03-26 Kawasaki Steel Corp Controlling method for pallet speed of sintering machine
JPS59543A (ja) * 1982-06-25 1984-01-05 Nissan Motor Co Ltd 気筒数制御エンジン

Also Published As

Publication number Publication date
JPS6084752A (ja) 1985-05-14
DE3329885A1 (de) 1985-03-07
EP0137954A1 (fr) 1985-04-24
US4652788A (en) 1987-03-24
DE3472859D1 (en) 1988-08-25

Similar Documents

Publication Publication Date Title
DE3785342T2 (de) Kanal-elektronenvervielfacher.
DE4341149A1 (de) Vielschicht-Multipol
EP0137954B1 (fr) Photomultiplicateur de canal
DE3207663A1 (de) Ueberspannungsableiter mit einem gasgefuellten gehaeuse
DE2928702A1 (de) Etronenkanone fuer eine kathodenstrahlroehre
DE4014377A1 (de) Hochfrequenzverstaerker mit langsamwellen-verzoegerungsleitung
DE2635289A1 (de) Traegermetallplatte fuer direkt erhitzte oxidkathode und verfahren zu deren herstellung
DE3805489C2 (de) Halbleitervorrichtung
DE69302998T2 (de) Elektronenkanone für eine Kathodenstrahlröhre
DE3407197C2 (de) Kathodenstrahlröhre
DE3425768C2 (fr)
DE1218072B (de) Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers
DE69121897T2 (de) Kanal photoelektronen vervielfacher-röhre
DE856669C (de) Elektronenquelle mit kleinen Ausmassen zur Lieferung eines hohen Spitzenstromes in Verbindung mit einer Kurzwellenroehre
DE2228536A1 (de) Hohlkathoderrohre
DE1186953B (de) Vorratskathode
DE2436622C2 (de) Bildwandler- oder Bildverstärkerröhre
DE2832735A1 (de) Stabilisierter varistor
DE1059114B (de) Kathode fuer Hochleistungs-Magnetrons und Verfahren fuer ihre Herstellung
DE1927603C3 (de) Elektronenvervielfacher
DE2321516C3 (de) Indirekt geheizte Kathode
DE737465C (de) Verfahren zur Verschiebung des Gitterstromeinsatzpunktes bei Elektronenroehren mit an und fuer sich positivem Gitterstromeinsatz nach negativeren Gitterspannungswerten hin
DE2228145C3 (de) Rohrförmiger Durchführungsisolator
DE627176C (de) Indirekt geheizte Kathode
DE3804078C2 (de) Verfahren zur Herstellung eines Widerstands

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19850904

17Q First examination report despatched

Effective date: 19870205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3472859

Country of ref document: DE

Date of ref document: 19880825

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 9

Ref country code: FR

Payment date: 19920831

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000717

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010814