EP0134059B1 - Farbbildröhre - Google Patents

Farbbildröhre Download PDF

Info

Publication number
EP0134059B1
EP0134059B1 EP84201127A EP84201127A EP0134059B1 EP 0134059 B1 EP0134059 B1 EP 0134059B1 EP 84201127 A EP84201127 A EP 84201127A EP 84201127 A EP84201127 A EP 84201127A EP 0134059 B1 EP0134059 B1 EP 0134059B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
focusing lens
apertures
aperture
outermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84201127A
Other languages
English (en)
French (fr)
Other versions
EP0134059A2 (de
EP0134059A3 (en
Inventor
Hans Georg Gerlach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Gloeilampenfabrieken NV
Publication of EP0134059A2 publication Critical patent/EP0134059A2/de
Publication of EP0134059A3 publication Critical patent/EP0134059A3/de
Application granted granted Critical
Publication of EP0134059B1 publication Critical patent/EP0134059B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4886Aperture shape as viewed along beam axis polygonal

Definitions

  • the invention relates to a color picture tube with an evacuated piston, which is composed of a neck, a cone and an image window, in which neck an electron beam generating system is arranged, with which three electron beams with their axes are generated, which are applied with a focusing lens field a screen attached to the inside of the image window.
  • a focusing lens field is formed between two electrodes of the electron gun, which lie one behind the other on the axes, which electrodes are provided with mutually extending outer edges and in these edges in a deeper part which extends substantially perpendicular to the axes, three symmetrically with respect to the plane openings are made through which the electron beams pass.
  • the invention is therefore based on the object of specifying measures to improve the impact leak quality and to obtain smaller impact leak dimensions than in the known tubes with comparable jet currents.
  • this object is achieved in that the central opening in at least one of the electrodes is elongated and is designed such that a four-pole component and a compensating eight-pole component are produced in the focusing lens field at the location of the central electron beam, and the outer ones Openings in at least one of the electrodes are shaped such that a four-pole component and a compensating six-pole component are generated in the focusing lens field at the location of the outer electron beams.
  • the invention is based on the knowledge obtained on a trial basis and by calculations that, since the three electron beams lie with their axes in one plane and in outer edges that extend towards one another, not only is there a different focusing in the horizontal and vertical directions, but also in intermediate directions .
  • an eight-pole component arises around the central beam and a visual pole component around the outer beams in the focusing lens field. These multipole components must be compensated for at least for the most part.
  • the openings in the electrodes between which the focusing lens field is generated are given a shape which deviates from a round opening such that, in addition to the four-pole component, a compensating eight-pole component for the middle beam and a compensating one for the outer beams Six-pole component is obtained.
  • the horizontal / vertical astigmatism can be essentially compensated for by the four-pole component in the lens field.
  • a preferred first embodiment of a color picture tube according to the invention is therefore characterized in that the outer edge protrudes a distance beyond the deeper part, which is equal to 10 to 25% of the largest diameter of the deeper part in the outer edge.
  • the electrodes have an oval cross section perpendicular to the longitudinal axis of the electron gun. However, the electrodes can also have a round vertical cross section.
  • a compensating eight-pole component in the focusing lens field can be produced by giving the central opening in the lower part of the first and / or the second electrode essentially an octagonal shape in addition to an elongated shape for producing a four-pole component.
  • a compensating six-pole component in the focusing lens field can be produced by essentially giving the outer openings a pear shape.
  • a second preferred embodiment of the color picture tube according to the invention is therefore characterized in that when viewed in the direction of propagation of the electron beams, the central opening is elongated in at least the first of the two electrodes between which the focusing lens field is formed, the long axis of which is perpendicular to the plane mentioned and the Edge of this opening in the we forms an octagon and the outer openings are pear-shaped, the edges of which converge towards the outside when viewed from the central opening.
  • a focusing lens formed between two electrodes can be considered to be composed of two lens parts, namely a positive lens part (equipotential lines convex towards the low potential electrode) and a weaker negative lens part (equipotential lens convex towards the electrode) high potential). The strength of the positive lens part is always greater than that of the negative lens part, so that the two lens parts together have a positive lens effect.
  • the influence of the openings in the first electrode on the positive lens part is weakened by the influence of the openings in the second electrode on the negative lens part. This is explained in more detail below.
  • a third preferred embodiment of the color picture tube according to the invention is characterized in that seen in the direction of propagation of the electron beams in the second of the two electrodes, between which the focusing lens field is formed, the central opening is elongated, the long axis of which lies in the plane mentioned and the The edge of this opening essentially forms an octagon, and the outer openings are essentially pear-shaped, the edges of which, as seen from the central opening, diverge outwards.
  • the desired correction can also be obtained by this configuration of the openings in the second electrode.
  • the desired correction can also be carried out by combining the first and second preferred embodiments. It is clear that the desired eight-pole and six-pole components can also be created by, for example, making an elongated, essentially octagonal central opening in the first electrode with the long axis of the opening perpendicular to the plane mentioned and two outwardly diverging, essentially pear-shaped outer openings in the second electrode of the focusing lens can be obtained. It is also possible to obtain the desired eight-pole and six-pole components by e.g.
  • the pear-shaped openings are obtained in a simple manner in that they are composed of isosceles trapezoids converging outwards or inwards from the central opening, which are closed on the outside and / or inside with circular arcs.
  • a color picture tube of the so-called "in-line” type is shown in longitudinal section.
  • a glass bulb 1 which consists of an image window 2, a cone 3 and a neck 4, an integrated electron beam generation system 5 is arranged in this neck, which generates three electron beams 6, 7 and 8, which lie with their axes in the plane of the drawing.
  • the axis of the middle electron beam 7 initially coincides with the tube axis 9.
  • the image window 2 is provided on the inside with a large number of fluorescent triplets. Each triple contains a line of blue phosphor, a line of green phosphor, and a line of red phosphor. All triples together form the screen 10.
  • the fluorescent lines run perpendicular to the plane of the drawing.
  • a perforated mask 11 is arranged in front of the screen, in which a large number of elongated openings 12 are provided, through which the electron beams 6, 7 and 8 pass, each of which only reaches fluorescent lines of a single color.
  • the three electron beams lying in one plane are deflected by the deflection coil system 13.
  • FIG. 2 shows a longitudinal section of the electron beam generation system of the color picture tube according to FIG. 1.
  • the electron gun contains a common cup-shaped control electrode 20, in which three cathodes 21, 22 and 23 are fastened, and a common plate-shaped anode 24.
  • the three electron beams lying in one plane with their axes are by means of the electrodes 25 and 26 focused.
  • the electrode 25 consists of two cup-shaped parts 27 and 28 which are fastened to one another with their open ends.
  • the electrode 26 contains a single cup-shaped part 29 and a centering bush 30, the bottom of which is provided with openings 31 through which the electron beams pass.
  • the electrode 25 is provided with an outer edge 32 which extends to the electrode 26 and the electrode 26 is provided with an outer edge 33 which extends to the electrode 25.
  • openings 38, 39 and 40 attached in the recessed part 34, which extends perpendicular to the axes 35, 36 and 37 of the electron beams 6, 7 and 8, openings 38, 39 and 40 attached. Openings 42, 43 and 44 are made in the recessed part 41, which extends essentially perpendicular to the axis 36 of the central electron beam.
  • the recessed portions 34 and 41 may be integral with the portions 28 and 29, respectively, as in the electron gun system described in U.S. Patent 4,370,592.
  • the openings in the recessed parts can also be equipped with collars. Since the edge 33 has a larger opening than the edge 32, the electron beams converge behind the focusing lens.
  • the electron beams converge in or behind the triode part of the electron gun system which is formed by the cathode and the electrodes 20, 24 and 25; (See, for example, U.S. Patent 4,291,251).
  • the wall of the electrodes 25 and 26 is, for example, 0.25 mm thick.
  • the gap between the electrodes 25 and 26 has a width of 1 mm, for example.
  • the distance between the axes of the electron beams 35, 36 and 36, 37 is, for example, 4.45 mm
  • FIG. 3 shows a view of the lens electrode 25 according to FIG. 2. Due to the essentially octagonal and elongated configuration of the opening 39, the long axis of which extends perpendicular to the plane of the bundle axis 35, 36 and 37, the intersection line 45 of which is shown in the plane of the drawing, the eight-pole component is essentially balanced in addition to the horizontal / vertical astigmatism which is created in the focusing lens field by the edges 32 and 33.
  • the corners of the octagon can be rounded, which simultaneously compensates for higher order multipoles. It is also possible to form sides 46 and 47, which form parts of a circle in the drawing.
  • Such pear-shaped and octagonal openings can be easily realized by starting with a circle (dashed lines), parts (48, 49) of the circle being replaced by their chords (50, 51).
  • a pear-shaped opening made in this way has an edge with the shape of an isosceles trapezoid, the base and the apex line being replaced by circular arcs.
  • a part of the circular arc 52 can be replaced by its chord 53 (shown in broken lines).
  • the outer circles shown in broken lines have a radius of 2.15 mm, for example, and the middle circle has a radius of 1.9 mm.
  • the beam axes 35 and 36 and the beam axes 36 and 37 are, for example, 4.45 mm apart.
  • the corner points A, B, C and D lie at the locations indicated in the table
  • the edge 32 extends 2 mm above the recessed part 34.
  • the openings 38 and 40 are identical and are symmetrical with respect to the X axis.
  • the opening 39 is symmetrical with respect to the X and Y axes.
  • Line A is the course of the impingement leak diameter depending on the beam current in a conventional type electron gun with no edge and no recessed part.
  • Line B is the course of the impact spot diameter depending on the beam current in an electron beam generating system according to US Pat. No. 4,370,592.
  • Line C shows the course of the impact spot diameter depending on the beam current in an electron beam generating system for a color picture tube according to the invention.
  • the electrodes 25 and 26 are designed according to FIGS. 2 and 3.
  • the impingement leak diameter is smaller both at high and at low beam currents, as a result of which a sharper image can be obtained.
  • a 10 to 20% smaller impact leak was found in tubes according to the invention than in tubes in which the invention was not used.
  • the desired eight and six-pole component correction can also be obtained.
  • the four-pole component in the focusing lens field at the location of the rays can also be compensated for or adjusted to a specific value.
  • the six and eight pole correction is weakened.
  • the use of identical lens parts offers advantages, which are explained in more detail below.
  • FIG. 5 shows another embodiment of the lens electrode 26 according to FIG.
  • the opening 43 like the opening 39 in FIG. 3, is essentially octagonal and elongated. However, the long axis of this opening now lies in the plane through the electron beam axes, the intersection line 54 of which is shown with the plane of the drawing.
  • the eight-pole component which is in the focusing lens field through the Edges 32 and 33 arise, substantially balanced.
  • the openings 42 and 44 are substantially pear-shaped. The edge of the openings now diverges outwards.
  • the six-pole component which is created in the focusing lens field by the edges 32 and 33, is essentially compensated through these openings.
  • the different position of the openings in the electrode 26 compared to the position in the electrode 25 is due to the fact that the focusing lens can be regarded as being composed of a positive lens part followed by a weaker negative lens part.
  • the lens becomes stronger in this direction because the positive lens part lies close to the electrode 25.
  • the opening diameter in a certain direction in the electrode 26 By reducing the opening diameter in a certain direction in the electrode 26, the lens becomes weaker in this direction because the negative lens part lies close to the electrode 26. It follows that the opening diameters in the electrodes 25 and 26 have to be changed opposite to each other in order to achieve the same effect.
  • the astigmatism of the electron beams can also be reduced by making the lens electrode parts, between which the lens field is formed in an electron gun, identical.
  • the lens electrode parts must face one another with the corresponding sides and be arranged opposite one another with the corresponding openings.
  • the pear-shaped openings can also be made as indicated in FIG. 6.
  • the straight lines 60, 61, 62, 63 and 64 are again chords of a circle, of which the arches 65, 66 and 67 are still left.

Description

  • Die Erfindung betrifft eine Farbbildröhre mit einem evakuierten Kolben, der aus einem Hals, einem Konus und einem Bildfenster zusammengesetzt ist, in welchem Hals ein Elektronenstrahlerzeugungssystem angeordnet ist, mit dem drei mit ihren Achsen in einer Ebene liegende Elektronenstrahlen erzeugt werden, die mit einem Fokussierlinsenfeld auf einem Bildschirm, der an der Innenseite des Bildfensters angebracht ist. fokussiert werden, welches Fokussierungslinsenfeld zwischen zwei hintereinander auf den Achsen liegenden Elektroden des Elektronenstrahlerzeugungssystems gebildet wird, welche Elektroden mit sich zueinander erstreckenden äusseren Rändern versehen sind und in diesen Rändern in einem tieferen, sich im wesentlichen senkrecht zu den Achsen erstreckenden Teil drei symmetrisch in bezug auf die Ebene befindliche Öffnungen angebracht sind, durch die die Elektronenstrahlen hindurchgehen.
  • Eine derartige Farbbildröhre ist aus der US-PS-4 370 592 bekannt. In dieser Patentschrift ist weiter erwähnt, dass das auf diese Weise erzeugte Fokussierlinsenfeld dennoch astigmatisch ist und die Elektronenstrahlen mehr vertikal als horizontal fokussiert werden. Dieser Astigmatismus wird, wie in dieser Patentschrift beschrieben, dadurch korrigiert, dass die zweite Elektrode der Fokussierungslinse einer Platte mit einem länglichen Schlitz versehen wird, der an der Seite des Bildschirms angebracht ist. Dieser Schlitz liegt symmetrisch in bezug auf die Ebene durch die Strahlachsen. Es hat sich jedoch gezeigt, dass diese Korrekturen des Horizontal-Vertikal-Astigmatismus nicht genügen, da die Qualität des Auftrefflecks auf dem Bildschirm immer noch zu wünschen übriglässt. Die UK-Patentanmeldung 2112564 beschreibt ebenfalls eine derartige Farbbildröhre. Der Horizontal/Vertikal-Astigmatismus wird dadurch beseitigt, dass die Öffnungen im vertieften Teil eine längliche Form erhalten. Dies genügt jedoch nicht zum Erhalten kleinerer Auftreffleckabmessungen.
  • Daher liegt der Erfindung die Aufgabe zugrunde, Massnahmen zur Verbesserung der Auftreffleckqualität anzugeben und kleinere Auftreffleckabmessungen als bei den bekannten Röhren mit vergleichbaren Strahlströmen zu erhalten.
  • Diese Aufgabe wird bei einer Farbbildröhre der eingangs erwähnten Art erfindungsgemäss dadurch gelöst, dass die mittlere Öffnung in zumindest einer der Elektroden länglich und so ausgebildet ist, dass eine Vierpolkomponente und eine ausgleichende Achtpolkomponente im Fokussierungslinsenfeld an der Stelle des mittleren Elektronenstrahls erzeugt werden, und die äusseren Öffnungen in zumindest einer der Elektroden derart geformt sind, dass eine Vierpolkomponente und eine ausgleichende Sechspolkomponente im Fokussierungslinsenfeld an der Stelle der äusseren Elektronenstrahlen erzeugt werden.
  • Der Erfindung liegt die versuchsweise und durch Berechnungen erhaltene Erkenntnis zugrunde, dass, da die drei Elektronenstrahlen mit ihren Achsen in einer Ebene und in sich zueinander erstreckenden äusseren Rändern liegen, nicht nur eine verschiedene Fokussierung in horizontaler und vertikaler Richtung, sondern auch in zwischenliegenden Richtungen erfolgt. Um den mittleren Strahl herum entsteht insbesondere eine Achtpolkomponente und um die Aussenstrahlen herum eine Sehspolkomponente im Fokussierungslinsenfeld. Diese Mehrpolkomponenten sind wenigstens zum grössten Teil auszugleichen. Dies kann erfindungsgemäss dadurch erreicht werden, dass den Öffnungen in den Elektroden, zwischen denen das Fokussierungslinsenfeld erzeugt wird, eine derartige von einer runden Öffnung abweichende Form gegeben wird, dass neben der Vierpolkomponente für den mittleren Strahl eine ausgleichende Achtpolkomponente und für die äusseren Strahlen eine ausgleichende Sechspolkomponente erhalten wird. Der Horizontal/Vertikal-Astigmatismus lässt sich durch die Vierpolkomponente im Linsenfeld im wesentlichen ausgleichen. Jedoch ist es auch möglich im Fokussierungslinsenfeld einen Horizontal/Vertikal-Astigmatismus in dem Mass auftreten zu lassen, dass der Astigmatismus der Ablenkspulen ausgeglichen wird.
  • Weiter hat es sich gezeigt, dass ein optimaler Abstand gegeben ist, mit dem der äussere Rand über dem vertieften Teil ausragt. Eine bevorzugte erste Ausführungsform einer erfindungsgemässen Farbbildröhre ist daher dadurch gekennzeichnet, dass der äussere Rand um einen Abstand über den tieferen Teil hinausragt, der gleich 10 bis 25% des grössten Durchmessers des tieferen Teils im äusseren Rand ist.
  • Ist der Abstand kleiner, ist der Einfluss der Form der Öffnungen auf das Linsenfeld vorherrschend und verringert den wirksamen Linsendurchmesser. Ist der Abstand grösser, ist der Einfluss der Öffnungen zu gering zum guten Korrigieren der Aberrationen. Meistens weisen die Elektroden einen ovalen Querschnitt senkrecht zur Längsachse des Elektronenstrahlerzeugungssystems auf. Jedoch können die Elektroden auch einen runden senkrechten Querschnitt haben. Eine ausgleichende Achtpolkomponente im Fokussierungslinsenfeld kann dadurch erzeugt werden, dass der mittleren Öffnung im tieferen Teil der ersten und/ oder der zweiten Elektrode neben einer länglichen Form zum Erzeugen einer Vierpolkomponente im wesentlichen eine achteckige Form gegeben wird. Eine ausgleichende Sechspolkomponente im Fokussierungslinsenfeld lässt sich dadurch erzeugen, dass die äusseren Öffnungen im wesentlichen eine Birnenform bekommen.
  • Eine zweite bevorzugte Ausführungsform der erfindungsgemässen Farbbildröhre ist daher dadurch gekennzeichnet, dass in Fortpflanzungsrichtung der Elektronenstrahlen gesehen in zumindest der ersten der beiden Elektroden, zwischen denen das Fokussierungslinsenfeld gebildet wird, die mittlere Öffnung länglich ist, wobei deren lange Achse senkrecht zur erwähnten Ebene verläuft und der Rand dieser Öffnung im wesentlichen ein Achteck bildet und die äusseren Öffnungen birnenförmig sind, wobei deren Ränder von der mittleren Öffnung aus gesehen nach aussen hin konvergieren. Eine zwischen zwei Elektroden gebildete Fokussierungslinse kann so betrachtet werden, dass sie aus zwei Linsenteilen zusammengesetzt ist, und zwar einem positiven Linsenteil (Äquipotentiallinien konvex in Richtung auf die Elektrode mit niedrigem Potential) und einem schwächeren negativen Linsenteil (Äquipotentiallinse konvex in Richtung auf die Elektrode mit hohem Potential). Die Stärke des positiven Linsenteils ist immer grösser als die des negativen Linsenteils, so dass die zwei Linsenteile zusammen eine positive Linsenwirkung haben.
  • Wenn die Öffnungen in der zweiten Elektrode der Fokussierungslinse die gleiche Form wie die Öffnungen in der ersten Elektrode haben, wird der Einfluss der Öffnungen in der ersten Elektrode auf den positiven Linsenteil durch den Einfluss der Öffnungen in der zweiten Elektrode auf den negativen Linsenteil geschwächt. Diese wird weiter unten näher erläutert.
  • Eine dritte bevorzugte Ausführungsform der Farbbildröhre nach der Erfindung ist dadurch gekennzeichnet, dass in Fortpflanzungsrichtung der Elektronenstrahlen gesehen in der zweiten der beiden Elektroden, zwischen denen das Fokussierlinsenfeld gebildet wird, die mittlere Öffnung länglich ist, wobei deren lange Achse in der erwähnten Ebene liegt und der Rand dieser Öffnung im wesentlichen ein Achteck bildet, und die äusseren Öffnungen im wesentlichen birnenförmig sind, wobei deren Ränder von der mittleren Öffnung aus gesehen nach aussen hin auseinander streben.
  • Durch diese Ausbildung der Öffnungen in der zweiten Elektrode kann auch die gewünschte Korrektur erhalten werden. Durch Kombination der ersten und zweiten bevorzugten Ausführungsform lässt sich auch die gewünschte Korrektur durchführen. Es ist klar, dass die gewünschten Achtpol-und Sechspolkomponenten auch durch das Anbringen beispielsweise einer länglichen, im wesentlichen achteckigen mittleren Öffnung in der ersten Elektrode mit der langen Achse der Öffnung senkrecht zur erwähnten Ebene und zweier nach aussen auseinanderstrebender, im wesentlichen birnenförmiger äusserer Öffnungen in der zweiten Elektrode der Fokussierungslinse erhalten werden können. Auch ist es möglich, die gewünschten Achtpol- und Sechspolkomponenten dadurch zu erhalten, dass z.B. eine längliche, im wesentlichen achteckige, mittlere Öffnung mit der langen Achse in der erwähnten Ebene in der zweiten Elektrode und zwei nach aussen konvergierende, im wesentlichen birnenförmige äussere Öffnungen in der ersten Elektrode angebracht werden. Dies ist jedoch aus herstellungstechnischen Erwägungen weniger vorteilhaft.
  • Die birnenförmigen Öffnungen werden auf einfache Weise dadurch erhalten, dass sie aus von der mittleren Öffnung nach aussen oder nach innen hin konvergierenden gleichschenkligen Trapezen zusammengesetzt werden, die an der Aussen- und/oder Innenseite mit Kreisbogen abgeschlossen sind.
  • Einige Ausführungsbeispiele der Erfindung werden nachstehend an Hand der Zeichnung näher erläutert. Es zeigen
    • Fig. 1 einen Längsschnitt durch eine erfindungsgemässe Farbbildröhre,
    • Fig. 2 einen Längsschnitt durch ein Elektronenstrahlerzeugungssystem in einer Farbbildröhre nach Fig. 1,
    • Fig. 3 eine Ansicht einer Linsenelektrode nach Fig. 2,
    • Fig. 4 den Durchmesser des Auftrefflecks auf dem Bildschirm abhängig vom Strahlstrom für drei Farbbildröhren,
    • Fig. 5 eine weitere Ansicht einer Linsenelektrode nach Fig. 2, und
    • Fig. 6 eine andere birnenförmige Öffnung.
  • In Fig. 1 ist eine Farbbildröhre vom sog. «In-Line»-Typ im Längsschnitt dargestellt. In einem Glaskolben 1, der aus einem Bildfenster 2, einem Konus 3 und einem Hals 4 besteht, ist in diesem Hals ein integriertes Elektronenstrahlerzeugungssystem 5 angeordnet, das drei Elektronenstrahlen 6, 7 und 8 erzeugt, die mit ihren Achsen in der Zeichenebene liegen. Die Achse des mittleren Elektronenstrahls 7 fällt zunächst mit der Röhrenachse 9 zusammen. Das Bildfenster 2 ist an der Innenseite mit einer Vielzahl von Leuchtstofftripein versehen. Jedes Tripel enthält eine Linie aus einem blauleuchtenden Phosphor, einer Linie aus einem grünleuchtenden Phosphor und einer Linie aus einem rotleuchtenden Phosphor. Alle Tripel zusammen bilden den Bildschirm 10. Die Leuchtstoff linien-verlaufen senkrecht zur Zeichenebene. Vor dem Bildschirm ist eine Lochmaske 11 angeordnet, in der eine grosse Anzahl länglicher Öffnungen 12 angebracht ist, durch die die Elektronenstrahlen 6, 7 und 8 gehen, die je nur Leuchtstofflinien einer einzigen Farbe erreichen. Die drei in einer Ebene liegenden Elektronenstrahlen werden vom Ablenkspulensystem 13 abgelenkt.
  • In Fig. 2 ist ein Längsschnitt des Elektronenstrahlerzeugungssystems der Farbbildröhre nach Fig. 1 dargestellt. Das Elektronenstrahlerzeugungssystem enthält eine gemeinsame becherförmige Steuerelektrode 20, in der drei Kathoden 21, 22 und 23 befestigt sind, und eine gemeinsame plattenförmige Anode 24. Die drei mit ihren Achsen in einer Ebene liegenden Elektronenstrahlen werden mit Hilfe der für die drei Elektronenstrahlen gemeinsamen Elektroden 25 und 26 fokussiert. Die Elektrode 25 besteht aus zwei becherförmigen Teilen 27 und 28, die mit ihren offenen Enden aneinander befestigt sind. Die Elektrode 26 enthält einen einzigen becherförmigen Teil 29 und eine Zentrierbuchse 30, deren Boden mit Öffnungen 31 versehen ist, durch die die Elektronenstrahlen hindurchgehen. Die Elektrode 25 ist mit einem sich zur Elektrode 26 erstreckenden äusseren Rand 32 und die Elektrode 26 mit einem sich zur Elektrode 25 erstreckenden äusseren Rand 33 versehen. Im vertieften Teil 34, der sich senkrecht zu den Achsen 35, 36 und 37 der Elektronenstrahlen 6, 7 und 8 erstreckt, sind Öffnungen 38, 39 und 40 angebracht. Im vertieften Teil 41, der sich im wesentlichen senkrecht zur Achse 36 des mittleren Elektronenstrahls erstreckt, sind Öffnungen 42, 43 und 44 angebracht. Die vertieften Teile 34 und 41 können mit den Teilen 28 bzw. 29 wie im Elektronenstrahlerzeugungssystem nach der Beschreibung in der US-Patentschrift 4370592 eine Einheit bilden. Die Öffnungen in den vertieften Teilen können auch mit Kragen ausgerüstet sein. Da der Rand 33 eine grössere Öffnung als der Rand 32 hat, konvergieren die Elektronenstrahlen hinter der Fokussierungslinse. Jedoch ist es auch möglich, die Elektronenstrahlen schon in oder hinter dem Triodenteil des Elektronenstrahlerzeugunssystems zusammenlaufen zu lassen, der von der Kathode und den Elektroden 20, 24 und 25 gebildet wird; (Siehe beispielsweise US-Patentschrift 4 291 251). Die Wand der Elektroden 25 und 26 ist beispielsweise 0,25 mm dick. Der Spalt zwischen den Elektroden 25 und 26 hat beispielsweise eine Breite von 1 mm. Der Abstand zwischen den Achsen der Elektronenstrahlen 35, 36 und 36, 37 beträgt beispielsweise 4,45 mm
  • In Fig. 3 ist eine Ansicht der Linsenelektrode 25 nach Fig. 2 dargestellt. Durch die im wesentlichen achteckige und längliche Ausbildung der Öffnung 39, deren lange Achse senkrecht zur Ebene der Bündelachse 35, 36 und 37 verläuft, deren Schnittlinie 45 in der Zeichenebene dargestellt ist, wird neben dem Horizontal/Vertikal-Astigmatismus die Achtpolkomponente im wesentlichen ausgeglichen, die im Fokussierungslinsenfeld durch die Ränder 32 und 33 entsteht.
  • Die Ecken des Achtecks können gerundet sein, womit gleichzeitig Mehrpole höherer Ordnung ausgeglichen werden. Auch ist es möglich, die Seiten 46 und 47, die in der Zeichnung Teile eines Kreises bilden, gerade auszubilden. Durch die im wesentlichen birnenförmige Ausbildung der Öffnungen 38 und 40, wobei der Rand der Öffnungen von der mittleren Öffnung 39 aus gesehen nach aussen hin zusammenläuft, wird die Sechspolkomponente im wesentlichen ausgeglichen, die im Fokussierungslinsenfeld durch die Ränder 32 und 33 entsteht.
  • Derartige birnenförmige und achteckige Öffnungen lassen sich leicht verwirklichen, indem von einem Kreis (gestrichelte Linien) ausgegangen wird, wobei Teile (48, 49) des Kreises durch ihre Sehnen (50, 51) ersetzt werden.
  • Eine auf diese Weise hergestellte birnenförmige Öffnung hat einen Rand mit der Form eines gleichschenkligen Trapezes, wobei die Basis und die Scheitellinie durch Kreisbögen ersetzt sind. Ein Teil des Kreisbogens 52 kann durch seine Sehne 53 (gestrichelt dargestellt) ersetzt werden.
  • Die äusseren, gestrichelt dargestellten Kreise haben einen Radius beispielsweise von 2,15 mm und der mittlere Kreis einen Radius von 1,9 mm. Die Strahlachsen 35 und 36 und die Strahlachsen 36 und 37 liegen beispielsweise 4,45 mm auseinander. In einem Achsensystem X-Y mit dem Schnittpunkt in der Zeichenebene, wobei die Achse 36 der Mittelpunkt ist, liegen die Eckpunkte A, B, C und D an den in der Tabelle angegebenen Stellen
  • Figure imgb0001
  • Der Rand 32 erstreckt sich 2 mm über dem vertieften Teil 34. Die Öffnungen 38 und 40 sind identisch und liegen in bezug auf die X-Achse symmetrisch. Die Öffnung 39 liegt in bezug auf die X- und Y-Achse symmetrisch.
  • In Fig. 4 ist der Auftreffleckdurchmesser d (in mm) auf dem Bildschirm abhängig vom Elektronenstrahlstrom I (in mA) für den mittleren Elektronenstrahl für drei Elektronenstrahlerzeugungssysteme dargestellt. Die Linie A ist der Verlauf des Auftreffleckdurchmessers abhängig vom Strahlstrom bei einem Elektronenstrahlerzeugungssystem vom herkömmlichen Typ ohne Rand und ohne vertieften Teil. Die Linie B ist der Verlauf des Auftreffleckdurchmessers abhängig vom Strahlstrom bei einem Elektronenstrahlerzeugungssystem nach der US-Patentschrift 4 370 592. Die Linie C gibt den Verlauf des Auftreffleckdurchmessers abhängig vom Strahlstrom bei einem Elektronenstrahlerzeugungssystem für eine erfindungsgemässe Farbbildröhre wieder. Die Elektroden 25 und 26 sind gemäss den Fig. 2 und 3 ausgeführt. Aus diesem Vergleich geht hervor, dass durch die Verwendung der Erfindung sowohl bei hohen als auch bei niedrigen Strahlströmen der Auftreffleckdurchmesser kleiner ist, wodurch ein schärferes Bild erhalten werden kann. In erfindungsgemässen Röhren wurde ein 10 bis 20% kleinerer Auftreffleck festgestellt als bei Röhren, in denen die Erfindung nicht verwendet wurde. Durch die Verwendung von Öffnungen gemäss Fig. 3 in der Elektrode 25 kann neben der Vierpol- auch die gewünschte Acht- und Sechspolkomponenten-Korrektur erhalten werden. Durch mehr oder weniger längliche Ausbildung der dargestellten Öffnungen kann auch die Vierpolkomponente im Fokussierungslinsenfeld an der Stelle der Strahlen nach Bedarf ausgeglichen oder auf einen bestimmten Wert eingestellt werden. Durch die Verwendung der gleichen Lochform gemäss Fig. 3 in der Elektrode 26 wird die Sechs- und Achtpolkorrektur geschwächt. Die Verwendung identischer Linsenteile bietet jedoch Vorteile, die weiter unten näher erläutert werden.
  • In Fig. 5 ist eine andere Ausführungsform der Linsenelektrode 26 nach Fig. dargestellt. Die Öffnung 43 ist wie die Öffnung 39 in Fig. 3 im wesentlichen achteckig und länglich. Die lange Achse dieser Öffnung liegt jetzt jedoch in der Ebene durch die Elektronenstrahlachsen, deren Schnittlinie 54 mit der Zeichenebene dargestellt ist. Durch eine derartige Form der Öffnung wird neben der Vierpolkomponente die Achtpolkomponente, die im Fokussierungslinsenfeld durch die Ränder 32 und 33 entsteht, im wesentlichen ausgeglichen. Die Öffnungen 42 und 44 sind im wesentlichen birnenförmig. Der Rand der Öffnungen strebt jetzt nach aussen hin auseinander. Die Sechspolkomponente, die im Fokussierungslinsenfeld durch die Ränder 32 und 33 entsteht, wird im wesentlichen durch diese Öffnungen ausgeglichen. Die andere Lage der Öffnungen in der Elektrode 26 im Vergleich zur Lage in der Elektrode 25 ist die Folge davon, dass die Fokussierungslinse als zusammengesetzt aus einem positiven Linsenteil gefolgt von einem schwächeren negativen Linsenteil betrachtet werden kann. Durch Verkleinerung des Öffnungsdurchmessers in einer bestimmten Richtung in der Elektrode 25 wird die Linse in dieser Richtung kräftiger, weil nahe bei der Elektrode 25 der positive Linsenteil liegt. Durch die Verkleinerung des Öffnungsdurchmessers in einer bestimmten Richtung in der Elektrode 26 wird die Linse in dieser Richtung schwächer, weil nahe bei der Elektrode 26 der negative Linsenteil liegt. Es folgt daraus, dass die Öffnungsdurchmesser in den Elektroden 25 und 26 entgegengesetzt zueinander geändert werden müssen, um den gleichen Effekt zu bewirken.
  • Wenn die Öffnungen in den Elektroden 25 und 26 jedoch die gleiche Form haben, erfolgt dennoch eine Korrektur, weil der positive Linsenteil immer stärker als der negative Linsenteil ist. Die Wahl der gleichen Form der Öffnungen in den Elektroden 25 und 26 kann aus herstellungstechnischen Gründen vorteilhaft sein. Wie in der noch nicht offengelegten niederländischen Patentanmeldung 8203320 beschrieben ist, kann der Astigmatismus der Elektronenstrahlen auch noch dadurch verringert werden, dass die Linsenelektrodenteile, zwischen denen sich in einem Elektronenstrahlerzeugungssystem das Linsenfeld bildet, identisch ausgeführt werden. Die Linsenelektrodenteile müssen mit den entsprechenden Seiten einander zugewandt und mit den entsprechenden Öffnungen einander gegenüber angeordnet werden. Durch die Gegenüberstellung identischer Teile für die Linsenelektroden auf die beschriebene Weise wird erreicht, dass die Abweichungen der gewünschten Form der einander gegenüberliegenden Öffnungen, welche Abweichungen während der Herstellung der Öffnungen entstanden sind, ungefähr gleich gross sind. Dadurch ist auch der störende Einfluss auf die Elektronenstrahlen für beide Linsenelektroden etwa gleich gross, jedoch mit entgegengesetztem Vorzeichen, wodurch der Astigmatismus durch diese Abweichungen gering wird.
  • Die birnenförmigen Öffnungen können auch, wie in Fig. 6 angegeben, ausgeführt werden. Die geraden Linien 60, 61, 62, 63 und 64 sind wieder Sehnen eines Kreises, von dem noch die Bogen 65, 66 und 67 übrig sind.
  • Es ist auch möglich die Vier-, Sechs- und Achtpolkomponenten im Fokussierungslinsenfeld durch Rundung der Öffnungen in den vertieften Teilen und die Anbringung von Kragen an diesen Öffnungen zu erhalten, von welchen Kragen entlang des Umfangs die Höhe variiert (wellige Kragen). Diese Kragen sind jedoch mit Hilfe vieleckiger Zugstempel, z.B. mit einem sechseckigen oder achteckigen Zugstempel in einer Platte mit runden Öffnungen, schwer herstellbar. Es ist auch möglich, einen runden Zugstempel in einer Platte mit sechs- oder achteckigen Öffnungen zu verwenden. Die Kragen können zur Verwirklichung von Konvergenz auch schräg gemacht werden.

Claims (6)

1. Farbbildröhre mit einem evakuierten Kolben, der aus einem Hals, einem Konus und einem Bildfenster zusammengesetzt ist, in welchem Hals ein Elektronenstrahlerzeugungssystem angeordnet ist, mit dem drei mit ihren Achsen in einer Ebene liegende Elektronenstrahlen erzeugt werden, die mit einem Fokussierungslinsenfeld auf einem Bildschirm, der an der Innenseite des Bildfensters angebracht ist, fokussiert werden, welches Fokussierungslinsenfeld zwischen zwei hintereinander auf den Achsen liegenden Elektroden des Elektronenstrahlerzeugungssystems gebildet wird, welche Elektroden mit sich zueinander hin erstrekkenden äusseren Rändern versehen sind und in diesen Rändern in einem vertieften, sich im wesentlichen senkrecht zu den Achsen erstreckenden Teil drei symmetrisch in bezug auf die erwähnte Ebene angeordnete Öffnungen angebracht sind, durch die die Elektronenstrahlen hindurchgehen, dadurch gekennzeichnet, dass die mittlere Öffnung in zumindest einer der Elektroden länglich ist und so ausgebildet ist, dass eine Vierpolkomponente und eine ausgleichende Achtpolkomponente im Fokussierungslinsenfeld an der Stelle des mittleren Elektronenstrahls erzeugt werden, und die äusseren Öffnungen in zumindest einer der Elektroden derart geformt sind, dass eine Vierpolkomponente und eine ausgleichende Sechspolkomponente im Fokussierungslinsenfeld an der Stelle der äusseren Elektrodenstrahlen erzeugt werden.
2. Farbbildröhre nach Anspruch 1, dadurch gekennzeichnet, dass der äussere Rand um einen Abstand über den vertieften Teil hinausragt, der gleich 10 bis 25% des grössten Durchmessers des vertieften Teils im äusseren Rand ist.
3. Farbbildröhre nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Fortpflanzungsrichtung der Elektronenstrahlen gesehen in der ersten der beiden Elektroden, zwischen denen das Fokussierungslinsenfeld gebildet wird, die mittlere Öffnung länglich ist, wobei deren lange Achse senkrecht zur erwähnten Ebene verläuft und der Rand dieser Öffnung im wesentlichen ein Achteck bildet und die äusseren Öffnungen birnenförmig sind, wobei deren Ränder von der mittleren Öffnung her gesehen nach aussen hin konvergieren.
4. Farbbildröhre nach Anspruch 1, · oder 3, dadurch gekennzeichnet, dass in Fortpflanzungsrichtung der Elektronenstrahlen gesehen in der zweiten der beiden Elektroden, zwischen denen das Fokussierungslinsenfeld gebildet wird, die mittlere Öffnung länglich ist, wobei deren lange Achse in der erwähnten Ebene liegt und der Rand dieser Öffnung im wesentlichen ein Achteck bildet, und die äusseren Öffnungen im wesentlichen birnenförmig sind, wobei deren Ränder von der mittleren Öffnung aus gesehen nach aussen hin auseinander streben.
5. Farbbildröhre nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Fortpflanzungsrichtung der Elektronenstrahlen gesehen in beiden Elektroden, zwischen denen das Fokussierungslinsenfeld gebildet wird, die mittlere Öffnung länglich ist, wobei deren lange Achse senkrecht zur erwähnten Ebene verläuft und der Rand dieser Öffnung im wesentlichen ein Achteck bildet und die äusseren Öffnungen birnenförmig sind, wobei deren Ränder von der mittleren Öffnung her gesehen nach aussen hin konvergieren.
6. Farbbildröhre nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass die birnenförmigen Öffnungen durch von der mittleren Öffnung aus gesehen nach aussen oder nach innen zusammenlaufende gleichschenklige Trapeze gebildet sind, die an der Innen- und/oder Aussenseite mit Kreisbögen abgeschlossen sind.
EP84201127A 1983-08-05 1984-08-01 Farbbildröhre Expired EP0134059B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8302773 1983-08-05
NL8302773A NL8302773A (nl) 1983-08-05 1983-08-05 Kleurenbeeldbuis.

Publications (3)

Publication Number Publication Date
EP0134059A2 EP0134059A2 (de) 1985-03-13
EP0134059A3 EP0134059A3 (en) 1985-04-10
EP0134059B1 true EP0134059B1 (de) 1988-10-26

Family

ID=19842237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201127A Expired EP0134059B1 (de) 1983-08-05 1984-08-01 Farbbildröhre

Country Status (11)

Country Link
US (1) US4626738A (de)
EP (1) EP0134059B1 (de)
JP (1) JPS6054143A (de)
KR (1) KR920001870B1 (de)
CA (1) CA1216878A (de)
DD (1) DD223566A5 (de)
DE (1) DE3474881D1 (de)
ES (1) ES8505142A1 (de)
NL (1) NL8302773A (de)
PL (1) PL249062A1 (de)
SG (1) SG52090G (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583024A (en) * 1984-02-21 1986-04-15 Rca Corporation Color picture tube having an inline electron gun with built-in stigmator
US4833364A (en) * 1984-04-04 1989-05-23 Hitachi, Ltd. Electron gun for color picture tubes having uniquely formed lens apertures
JPS6199249A (ja) * 1984-10-18 1986-05-17 Matsushita Electronics Corp 受像管装置
FR2590724B1 (fr) * 1985-11-22 1988-01-08 Videocolor Dispositif de correction de l'effet de deviation du a une variation de la tension de focalisation dans un tube cathodique trichrome a cathodes en ligne
NL8600117A (nl) * 1986-01-21 1987-08-17 Philips Nv Kleurenbeeldbuis met verminderde deflectie defocussering.
EP0241218B1 (de) * 1986-04-03 1991-12-18 Mitsubishi Denki Kabushiki Kaisha Kathodenstrahlröhre
GB2208564A (en) * 1987-07-29 1989-04-05 Philips Nv Colour cathode ray tube having an in-line electron gun
US4851741A (en) * 1987-11-25 1989-07-25 Hitachi, Ltd. Electron gun for color picture tube
JP2804052B2 (ja) * 1988-11-25 1998-09-24 株式会社東芝 カラー受像管装置
KR910007657Y1 (ko) * 1988-12-15 1991-09-30 삼성전관 주식회사 칼라 음극선관용 인라인형 전자총
US5038073A (en) * 1988-12-23 1991-08-06 Samsung Electron Devices Co., Ltd. Electron gun for cathode ray tube
US5196762A (en) * 1988-12-30 1993-03-23 Goldstar Co., Ltd. Electron gun for color picture cathode-ray tube with hexagonal cross-section
KR920006233B1 (ko) * 1988-12-30 1992-08-01 주식회사 금성사 칼라음극선관용 전자총
JPH03156835A (ja) * 1989-11-15 1991-07-04 Nec Corp 電子銃電極構体
GB2240212B (en) * 1990-01-19 1994-08-24 Samsung Electronic Devices Inline type electron gun for color cathode ray tube
NL9002515A (nl) * 1990-11-19 1992-06-16 Koninkl Philips Electronics Nv Kleurenbeeldbuis met in-line elektronenkanon.
KR920013565A (ko) * 1990-12-18 1992-07-29 김정배 음극선관용 전자총
KR940002018Y1 (ko) * 1991-06-25 1994-04-01 주식회사 금성사 칼라수상관용 전자총의 포커스 전극 구조
JPH05159720A (ja) * 1991-12-02 1993-06-25 Hitachi Ltd インライン型電子銃を有するカラー陰極線管
JP3053959B2 (ja) * 1992-04-21 2000-06-19 株式会社日立製作所 インライン型電子銃を備えたカラー陰極線管
US5731657A (en) * 1992-04-21 1998-03-24 Hitachi, Ltd. Electron gun with cylindrical electrodes arrangement
JPH0729512A (ja) * 1993-05-14 1995-01-31 Toshiba Corp カラー受像管
US5506468A (en) * 1993-06-24 1996-04-09 Goldstar Co., Ltd. Electron gun for color cathode-ray tube
KR0131059B1 (ko) * 1993-11-30 1998-04-20 엄길용 칼라음극선관용 전자총
WO1995030997A2 (en) * 1994-05-10 1995-11-16 Philips Electronics N.V. Colour cathode ray tube comprising an in-line electron gun
FR2724046B1 (fr) 1994-08-26 1996-10-04 Thomson Tubes & Displays Canon a electrons coplanaire a electrodes de focalisation ameliorees
JPH08190877A (ja) 1995-01-09 1996-07-23 Hitachi Ltd 陰極線管
KR970701917A (ko) * 1995-01-13 1997-04-12 요트. 게. 아. 롤페즈 직렬 전자총을 포함하는 색 표시관(Colour display tube comprising an in-line electron gun)
EP0755569B1 (de) * 1995-02-14 1999-07-21 Koninklijke Philips Electronics N.V. Eine in-line elektronenkanone enthaltende farbkathodenstrahlröhre
DE69603813T2 (de) * 1995-05-02 2000-02-24 Koninkl Philips Electronics Nv Farbkathodenstrahlröhre
KR100189609B1 (ko) * 1995-07-28 1999-06-01 구자홍 칼라음극선관용 전자총의 전극구조
JP3779436B2 (ja) * 1997-06-30 2006-05-31 株式会社東芝 カラー陰極線管用電子銃
WO1999028938A2 (en) * 1997-11-29 1999-06-10 Orion Electric Co., Ltd. Electron gun for a cathode ray tube
US6255767B1 (en) 1997-11-29 2001-07-03 Orion Electric Co., Ltd. Electrode gun with grid electrode having contoured apertures
KR100291925B1 (ko) 1999-03-11 2001-06-01 김순택 칼라 음극선관용 전자총의 전극
KR20000074316A (ko) * 1999-05-19 2000-12-15 김영남 칼라음극선관의 인라인형 전자총
JP2001057163A (ja) * 1999-08-19 2001-02-27 Toshiba Electronic Engineering Corp カラーブラウン管装置
KR20010107098A (ko) 2000-05-25 2001-12-07 김순택 칼라 음극선관용 전자총
KR100447659B1 (ko) * 2002-10-24 2004-09-07 엘지.필립스디스플레이(주) 칼라음극선관용 전자총

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275332A (en) * 1978-07-25 1981-06-23 Matsushita Electronics Corporation In-line electron gun
US4370592A (en) * 1980-10-29 1983-01-25 Rca Corporation Color picture tube having an improved inline electron gun with an expanded focus lens
JPS57118352A (en) * 1981-01-14 1982-07-23 Hitachi Ltd Electromagnetic focusing cathode-ray tube
JPS57123635A (en) * 1981-01-26 1982-08-02 Toshiba Corp Electron gun for color picture tube
FR2509526B1 (fr) * 1981-07-10 1986-08-29 Rca Corp Perfectionnements apportes aux canons electroniques en ligne a lentille focale allongee pour tube image couleur
JPS5840755A (ja) * 1981-09-02 1983-03-09 Nec Corp カラ−受像管用電子銃
US4535266A (en) * 1983-05-02 1985-08-13 North American Philips Consumer Electronics Corp. In-line electron gun structure for color cathode ray tube having tapered walls and elongated apertures for beam spot-shaping

Also Published As

Publication number Publication date
DE3474881D1 (en) 1988-12-01
DD223566A5 (de) 1985-06-12
ES534821A0 (es) 1985-05-01
EP0134059A2 (de) 1985-03-13
SG52090G (en) 1990-10-26
KR920001870B1 (ko) 1992-03-06
NL8302773A (nl) 1985-03-01
CA1216878A (en) 1987-01-20
ES8505142A1 (es) 1985-05-01
KR850002161A (ko) 1985-05-06
EP0134059A3 (en) 1985-04-10
JPS6054143A (ja) 1985-03-28
US4626738A (en) 1986-12-02
JPH053695B2 (de) 1993-01-18
PL249062A1 (en) 1985-04-09

Similar Documents

Publication Publication Date Title
EP0134059B1 (de) Farbbildröhre
DE2938769C2 (de) In-line-Elektronenstrahl-Erzeugungssystem
DE2850411C2 (de) Elektronenstrahlerzeugungssystem in einer Kathodenstrahlröhre
DE69531907T2 (de) Farbkathodenstrahlröhre mit niedrigen dynamischen Fokussierspannung
DE2608463A1 (de) Strahlsystem fuer eine kathodenstrahlroehre
DE3225631A1 (de) Farbbildroehre mit einem inline-elektronenstrahlsystem mit verbesserter ausgedehnter fokussierlinse
DD219900A5 (de) Elektronenstrahlerzeugungssystem fuer farbfernsehbildroehren
DE3107634A1 (de) Farbbildroehre mit aberrationsarmer strahlfokussierungslinse
DD217364A5 (de) Farbbildroehre
DD262525A5 (de) Farbbild-wiedergabesystem
DE3416560A1 (de) Inline-kathodenstrahlroehre mit einem in einer schirmgitterelektrode ausgebildeten asymmetrischen schlitz
DE2850369C2 (de) Elektronenstrahlerzeugungssystem in einer Kathodenstrahlröhre
DE4141879A1 (de) Elektronenkanone fuer eine farbkathodenstrahlroehre
DE3218939C2 (de)
DE2907300A1 (de) Farbbildwiedergaberoehre
DE4415812C2 (de) Farbbildröhre mit einer Inline-Elektronenkanone, die drei astigmatische Linsen aufweist
DE2917268A1 (de) Farbfernsehbildroehre mit inline- strahlerzeugungssystem
DE3614429C2 (de)
DE3402857A1 (de) Farbbildroehre mit inline-elektronenstrahlerzeugungssystem
DE3225634C2 (de) Inline-Elektronenstrahlsystem
EP0138264B1 (de) Farbbildwiedergaberöhre
DE3249810C2 (de)
DE4431335B4 (de) Elektronenkanone für eine Farbbildröhre
DE2913162C2 (de) In-line-Elektronenstrahlerzeugersystem für eine Farbbildröhre
DE4235306C2 (de) Kathodenstrahlröhre mit kombinierter dynamischer Fokussierungs-Korrektur und dynamischer Astigmatismus-Korrektur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT NL

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19851007

17Q First examination report despatched

Effective date: 19870212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3474881

Country of ref document: DE

Date of ref document: 19881201

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020827

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020830

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021016

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST