EP0108361B1 - Vormischbrenner mit integriertem Diffusionsbrenner - Google Patents

Vormischbrenner mit integriertem Diffusionsbrenner Download PDF

Info

Publication number
EP0108361B1
EP0108361B1 EP83110824A EP83110824A EP0108361B1 EP 0108361 B1 EP0108361 B1 EP 0108361B1 EP 83110824 A EP83110824 A EP 83110824A EP 83110824 A EP83110824 A EP 83110824A EP 0108361 B1 EP0108361 B1 EP 0108361B1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
premixing
fuel nozzle
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110824A
Other languages
English (en)
French (fr)
Other versions
EP0108361A1 (de
Inventor
Wolfram Dipl.-Ing. Krockow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of EP0108361A1 publication Critical patent/EP0108361A1/de
Application granted granted Critical
Publication of EP0108361B1 publication Critical patent/EP0108361B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/005Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space with combinations of different spraying or vaporising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00008Burner assemblies with diffusion and premix modes, i.e. dual mode burners

Definitions

  • the invention relates to a premix burner with an integrated diffusion burner for gas turbine combustion chambers according to the preamble of claim 1.
  • NO x When gaseous or liquid fuels are burned in gas turbine combustion chambers, the nitrogen oxides NO and NO z , which are collectively referred to as NO x , are among the pollutants in the exhaust gas.
  • the NO x content in the exhaust gas is to be kept as low as possible, for example in the USA a limit value of 75 ppm at 15% by volume 0 2 may not be exceeded due to environmental protection regulations. Compliance with these regulations is particularly difficult when conventional diffusion burners are used in the gas turbine combustion chambers. In such diffusion burners, the fuel is introduced directly into the combustion zone via a fuel nozzle and mixed there with the combustion air, the combustion being controlled by turbulent diffusion processes between the fuel, the combustion air and the exhaust gas products. Since there are large temperature differences with high temperature peaks due to the locally different mixing ratios of fuel and combustion air during combustion, there is a relatively high NO x content in the exhaust gas.
  • premix burners for gas turbine combustion chambers, in whose premixing chambers the premixing and pre-evaporation of the liquid fuel supplied by fuel nozzles and / or the premixing of the gaseous fuel supplied by fuel nozzles with the combustion air takes place with a large excess of air .
  • Premixing means that locally different mixing ratios of fuel and combustion air are avoided during combustion.
  • such premix burners have a much smaller working range than the conventional diffusion burners, ie the mixing ratios of fuel and combustion air must be kept within relatively narrow limits. If the fuel content is too high, too much NO X is formed and if there is too little fuel, the combustion goes out.
  • the fuel lines of the individual premix burners are therefore equipped with valves so that, depending on the load of the gas turbine, only so many premix burners are supplied with fuel for the operation of which the narrow limits of the mixing ratios can be maintained.
  • some conventional diffusion burners are also provided, which are only used to start the gas turbine and are then switched off again.
  • hybrid burners for gas turbine combustion chambers consist of premix burners with integrated diffusion burners.
  • the premix burner has a premixing chamber delimited at the downstream end by a flame holder, into which a main fuel nozzle and a feed device for combustion air open.
  • the diffusion burner has a pilot fuel nozzle arranged in the central area of the flame holder, the combustion air for the operation of the diffusion burner being supplied partly through the premixing chamber of the premixing burner and partly through holes arranged in the flame tube of the gas turbine combustion chamber.
  • a fuel control device which regulates the total amount and the partial amounts of the fuel supplied to the main fuel nozzle and the pilot fuel nozzle in dependence on the load of the gas turbine in such a way that only the diffusion burner can be operated until the idling speed or a low partial load has been reached and then the diffusion burner and the premix burner can be operated together.
  • Such hybrid burners therefore have the advantage that separate start-up burners designed as diffusion burners can be dispensed with in a space-saving, compact design.
  • the flame of the diffusion burner supports the combustion of the mixture of fuel and combustion air generated in the premixing chamber, ie the flame of the premix burner can also be ignited reliably with extremely lean mixture ratios with regard to low NO x formation.
  • the hybrid burner can thus be operated over a wide load range with a low NO x content in the exhaust gas, although an undesirable increase in NO x formation can be observed in the upper load range and in particular under limit load.
  • the invention has for its object to provide a premix burner with an integrated diffusion burner for gas turbine combustion chambers, which enables operation with low NO x formation over the entire load range.
  • the invention is based on the knowledge that when the premix burner is operated solely in the upper load range, the NO x formation can be significantly reduced and that the premix burner can only be operated in the upper load range if the entire available combustion air is exclusive is fed via the premixing chamber.
  • the fuel control device reduces the partial quantity of the fuel supplied to the pilot fuel nozzle as the load increases as soon as the idling speed or a low partial load is reached.
  • the NO x formation caused by the operation of the diffusion burner is then reduced more than the NO x formation additionally caused by the operation of the premix burner with a correspondingly increased amount of fuel, the support of the However, the flame of the premix burner is fully guaranteed by the flame of the diffusion burner.
  • the fuel control device can also be assigned to further premix burners with integrated diffusion burners, as a result of which, in particular, the overall effort required for valves in a gas turbine combustion chamber can be significantly reduced.
  • the premix burner has a first main fuel nozzle for gaseous fuel and a second main fuel nozzle for liquid fuel.
  • the diffusion burner can then also have a first pilot fuel nozzle for gaseous fuel and a second pilot fuel nozzle for liquid fuel.
  • the integration of the diffusion burner into the premix burner can be accomplished with particularly little effort in that the fuel supply line to the pilot fuel nozzle passes through the premix chamber centrally and in the axial direction. If the diffusion burner can be operated with gaseous and / or liquid fuel, it is correspondingly provided that the fuel feed lines to the first pilot fuel nozzle and the second pilot fuel nozzle penetrate the premixing chamber centrally and in the axial direction as concentric tubes.
  • premix burner can also be operated with gaseous and / or liquid fuel, a particularly compact design can be achieved in that the fuel feed lines to the two main fuel nozzles and the two pilot fuel nozzles are designed as concentric tubes.
  • the feed device for combustion air opening into the premixing chamber is designed as a swirl device. This further promotes the intensive mixing of combustion air and fuel in the premixing chamber.
  • the swirl device can then also be designed simultaneously as a main fuel nozzle, with several fuel injection bores being made in each case in vanes designed as hollow blades.
  • a particularly intensive atomization and pre-evaporation of liquid fuel in the combustion air can also be achieved in that the premixing chamber has a venturi-like contour with a section converging at the upstream end and a section diverging at the downstream end.
  • both the premix burner and the diffusion burner can be operated with gaseous and / or liquid fuel
  • the fuel feed lines, the main fuel nozzles and the two pilot fuel nozzles can be combined to form a component which can be pulled out of the premixing chamber in the axial direction.
  • the hybrid burner 1 shows a highly simplified schematic illustration of a longitudinal section through a hybrid burner, designated overall by 1, which can be operated as a premix burner and / or diffusion burner.
  • the hybrid burner 1 has a burner housing 10 which carries a flame holder 11 at one end and a swirl device 12 at its other end.
  • a main fuel nozzle 13 is arranged in the central region of the swirl device 12, while the fuel feed line is designated by 14.
  • a pilot fuel nozzle 15 is arranged in the central area of the flame holder 11, the fuel feed line 16 passing through the main fuel nozzle 13 and the burner housing 10 centrally and in the axial direction.
  • the liquid main fuel indicated by an arrow HB arrives from a fuel tank BT via a main fuel pump HBP and a main fuel control valve HBRV into the fuel feed line 14 of the main fuel nozzle 13.
  • the main fuel HB is then injected in finely divided form into a premixing chamber 100 which is delimited by the burner housing 10, the flame holder 11 and the swirl device 12.
  • the main fuel HB is evaporated in this premixing chamber 100 and mixed with the combustion air VL supplied via the swirl device 12, this mixing and the pre-evaporation being favored by the venturi-like contour of the burner housing 10.
  • the combustion of the homogeneous mixture of main fuel HB and combustion air VL formed in the premixing chamber 100 then takes place only in the flame tube F of a gas turbine combustor, which is not shown in any more detail mer, wherein the flame holder 11 serves to stabilize the flame, but still prevents the flame from kicking back into the premixing chamber 100.
  • the pilot fuel indicated by an arrow PB reaches the fuel feed line 16 of the pilot fuel nozzle 15 from the fuel tank BT via a pilot fuel pump PBP and a pilot fuel control valve PBRV. From the pilot fuel nozzle 15 15, the pilot fuel PB is then injected in finely divided form directly into the combustion zone of the flame tube F and mixed there with the combustion air VL supplied exclusively via the swirl device 12, the premixing chamber 100 and the flame holder 11, the combustion being effected by turbulent diffusion processes between the Pilot fuel PB, the combustion air VL and the exhaust products is controlled.
  • the total amount of fuel supplied and the partial amounts supplied as pilot fuel PB or as main fuel HB are regulated via a fuel control device BRE depending on the load of the gas turbine.
  • the fuel control device BRE to which a corresponding load signal LS is applied, regulates the flow through the pilot fuel control valve PRBV and the main fuel control valve HBRV via corresponding control lines AL1 and AL2 in such a way that only the diffusion burner until the idling speed or a low partial load is reached It can be operated that the diffusion burner and the premix burner can then be operated together and that only the premix burner can be operated in the upper load range.
  • the flame tube F shown in FIG. 1 can be, for example, the flame tube of a primary combustion chamber, the gas turbine combustion chamber having a large number of such primary combustion chambers opening into a common mixing chamber.
  • the fuel control device BRE, the pilot fuel control valve PRBV and the main fuel control valve HBRV can then be summarized for all hybrid burners 1 of the gas turbine combustion chamber, since the large working range of the hybrid burner 1 means that separate control and a load-dependent switching on and off of individual primary combustion chambers can be omitted .
  • Such a common fuel control device is also possible if a large number of hybrid burners open into the flame tube of a gas turbine combustion chamber. This case is shown in FIG. 2, but only three hybrid burners 1 are shown to simplify the drawing.
  • FIG. 2 three hybrid burners 1 can be seen in FIG. 2, which open into the flame tube designated F 'of a gas turbine combustion chamber, which is otherwise not shown in detail.
  • the flame tube F ' has no openings for the entry of combustion air in the region of the combustion zone, since all of the available combustion air VL is supplied exclusively to the mixing chambers 100 of the hybrid burner 1. However, this does not rule out the fact that openings for the entry of mixed air may be present in the flame tube F 'downstream of the combustion zone.
  • the pilot fuel PB reaches the fuel supply lines 16 to the pilot fuel nozzles 15 of the individual hybrid burners 1 via a common pilot fuel pump PBP ′, a common pilot fuel control valve PBRV and a distributor V1 shown as a circle.
  • the main fuel H B reaches the main fuel nozzles 13 of the individual hybrid burners 1 via a common main fuel pump HBP ', a common main fuel control valve HBRV' and a distributor V2 shown as a circle in the fuel supply lines 14.
  • the total quantity of fuel B supplied to hybrid burners 1 and the partial quantities supplied overall as pilot fuel PB or as main fuel HB are regulated by a fuel control device BRE 'depending on the load of the gas turbine.
  • the fuel control device BR E ' to which a corresponding load signal LS is applied, regulates the flow through the common pilot fuel control valve PBRV' and the common main fuel control valve HBRV 'via corresponding control lines AL1' and AL2 'in such a way that until the Idle speed or a low partial load, only the diffusion burners can be operated, that afterwards the diffusion burners and the premix burners can be operated together and that only the premix burners can be operated in the upper load range.
  • the mode of operation described above can be seen in more detail from the diagram in FIG. 3.
  • the power N of the gas turbine up to the limit load in percent is plotted on the right branch of the abscissa, the speeds n up to idling speed in rpm are plotted on the left branch of the abscissa and the fuel quantities m on the ordinate.
  • the solid curve shows the total amount m G of the fuel B supplied (see FIG. 2), the dashed curve, the amount mp of the total pilot fuel PB supplied (see FIG. 2) and the dashed curve, the amount m H of the total main fuel HB supplied (see FIG. 2).
  • the exclusive operation of the diffusion burners is continued for a short time after the idling speed has been reached, until the premix burners are switched on at a low partial load and are supplied with an increasing amount m H of main fuel HB (FIG. 2).
  • the amount mp of the pilot fuel PB (FIG. 2) fed to the diffusion burner is reduced.
  • the diffusion burners are then switched off completely and only the premix burners are operated, ie only main fuel HB (see FIG. 2) is supplied.
  • the upper load range in which the diffusion burners are switched off could also be defined as the range between the flame stability limit of the premix burners and the desired NO x limit at the limit load.
  • the diffusion burners are only switched off when the premix burners can burn alone without the support of the flame of the diffusion burners and without the risk of extinguishing.
  • the diagram of FIG. 4 shows the NO x emission during operation of the gas turbine combustion chamber shown in FIG. 2.
  • the NO x content in the exhaust gas in ppm at 15 vol.% O 2 is plotted on the ordinate.
  • the straight line G running parallel to the abscissa indicates a NO x limit value of 75 ppm at 15 vol.% O 2 , which must not be exceeded during operation of the gas turbine combustion chamber.
  • the hybrid burners 1 are operated exclusively as diffusion burners until a low partial load is reached, the NO x content in the exhaust gas being indicated by point A on curve D during this operating phase. Thereafter, the hybrid burners 1 are operated as a diffusion burner and at the same time as a premix burner, the NO x content in the exhaust gas being indicated by the thick curve AB during this operating phase.
  • the last vertical section of curve AB illustrates the drop in the NO x content in the exhaust gas after the diffusion burner has been completely switched off. Accordingly, the point B lies above the flame stability limit S v on the curve V.
  • the hybrid burners 1 are then operated in the upper load range exclusively as a premix burner, the NO x content in the exhaust gas during this operating phase being caused by the thickly drawn-out partial area BC curve V is given.
  • Point C corresponds to the maximum value of the NO x content in the exhaust gas reached at the limit load, although this maximum value is still significantly below the permissible NO x limit. Point C is therefore also the design point of the gas turbine combustion chamber, which is decisive for the total number of hybrid burners 1 required.
  • the hybrid burner which can be operated with gaseous and / or liquid fuel in the longitudinal section or in cross section only partially shown.
  • the hybrid burner designated as a whole by 1 ', has a burner housing which is indicated by the broken line 10' and which has a venturi-like contour.
  • the premixing chamber 100 'formed by the burner housing 10' is delimited at its downstream end by a flame holder 11 'only indicated in the drawing and at its upstream end by a swirl device 12'.
  • the swirl device 12 'simultaneously forms a first main fuel nozzle for gaseous fuel, a plurality of fuel injection bores 120' being made in each of the individual vanes designed as hollow blades.
  • the gaseous fuel indicated by an arrow H B " is supplied via a fuel feed line 14", on which the vanes of the swirl device 12 'designed as hollow blades are placed.
  • a second main fuel nozzle 13 'for liquid fuel is arranged at a short distance downstream of the swirl device 12' and also has vanes in the form of hollow blades, into each of which a plurality of fuel injection bores 130 'are made.
  • the supply of the liquid fuel indicated by arrows HB 'to the fuel injection bores 130' takes place via a fuel feed line 14 ', which is arranged concentrically within the fuel feed line 14 "and on which the vanes of the second main fuel nozzle 13', which are designed as hollow blades, are placed .
  • a first pilot fuel nozzle 15 "for gaseous fuel and a second pilot fuel nozzle 15 'for liquid fuel are arranged in the central region of the flame holder 11'.
  • the supply of the gaseous fuel indicated by an arrow PB" to the first pilot fuel nozzle 15 " takes place via a fuel feed line 16 ′′, which initially runs concentrically within the fuel feed line 14 ′ and then passes through the premixing chamber 100 ′ centrally and in the axial direction.
  • the liquid fuel, indicated by an arrow PB ′, is supplied to the second pilot fuel nozzle 15 ′ via a fuel feed line 16 ′, which is arranged concentrically within the fuel feed line 16 ′′.
  • the four fuel feed lines 14 ′′, 14 ′, 16 ′′, 16 ′, the swirl device 12 ′ that is simultaneously designed as the first main fuel nozzle, the second main fuel nozzle 13 ′, the first pilot fuel nozzle 15 ′′ and the second pilot fuel nozzle 15 ′ are combined into one component which can be pulled out of the burner housing 10 'and the flame holder 11' in the axial direction to facilitate maintenance and inspection.
  • the operation of the hybrid burner 1 'shown in FIGS. 5 and 6 corresponds to the operation of the hybrid burner 1 shown in FIGS. 1 and 2, but for the liquid fuels PB' and HB 'and for the gaseous fuels PB "and HB"
  • a fuel control device is provided in each case. If the hybrid burner 1 'is to be operated simultaneously with liquid and gaseous fuel, these two fuel control devices are to be linked to one another in accordance with the operating mode shown in FIG. 3.

Description

  • Die Erfindung betrifft einen Vormischbrenner mit integriertem Diffusionsbrenner für Gasturbinenbrennkammern nach dem Oberbegriff des Anspruchs 1.
  • Bei der Verbrennung gasförmiger oder flüssiger Brennstoffe in Gasturbinenbrennkammern entstehen als Schadstoffe im Abgas u. a. die Stickstoffoxide NO und NOz, die zusammengefasst als NOX bezeichnet werden. Der NOx-Gehalt im Abgas ist möglichst gering zu halten, wobei beispielsweise in den USA aufgrund von Umweltschutzvorschriften ein Grenzwert von 75 ppm bei 15 Vol.-% 02 nicht überschritten werden darf. Die Einhaltung dieser Vorschriften bereitet insbesondere dann grosse Schwierigkeiten, wenn in den Gasturbinenbrennkammern konventionelle Diffusionsbrenner eingesetzt werden. Bei derartigen Diffusionsbrennern wird der Brennstoff über eine Brennstoffdüse direkt in die Verbrennungszone eingebracht und dort mit der Verbrennungsluft vermischt, wobei die Verbrennung durch turbulente Diffusionsvorgänge zwischen dem Brennstoff, der Verbrennungsluft und den Abgasprodukten gesteuert wird. Da durch örtlich unterschiedliche Mischungsverhältnisse von Brennstoff und Verbrennungsluft bei der Verbrennung starke Temperaturunterschiede mit hohen Temperaturspitzen entstehen, ergibt sich ein relativ hoher NOX-Gehalt im Abgas.
  • Aus der DE-OS Nr. 2950535 ist es auch bekannt, für Gasturbinenbrennkammern sogenannte Vormischbrenner einzusetzen, in deren Vormischkammern das Vormischen und Vorverdampfen des durch Brennstoffdüsen zugeführten flüssigen Brennstoffes und/oder das Vormischen des durch Brennstoffdüsen zugeführten gasförmigen Brennstoffes mit der Verbrennungsluft bei grosser Luftüberschusszahl abläuft. Durch das Vormischen werden bei der Verbrennung also örtlich unterschiedliche Mischungsverhältnisse von Brennstoff und Verbrennungsluft vermieden. Andererseits besitzen derartige Vormischbrenner einen wesentlich geringeren Arbeitsbereich als die konventionellen Diffusionsbrenner, d. h. die Mischungsverhältnisse von Brennstoff und Verbrennungsluft müssen in relativ engen Grenzen gehalten werden. Ist der Brennstoffanteil zu hoch, so wird zu viel NOX gebildet, und ist zu wenig Brennstoff vorhanden, so erlischt die Verbrennung. Die Brennstoffleitungen der einzelnen Vormischbrenner werden daher mit ventilen ausgerüstet, so dass in Abhängigkeit von der Last der Gasturbine jeweils nur so viele Vormischbrenner mit Brennstoff versorgt werden, für deren Betrieb die engen Grenzen der Mischungsverhältnisse eingehalten werden können. Ausserdem sind zusätzlich noch einige konventionelle Diffusionsbrenner vorgesehen, die nur zum Anfahren der Gasturbine dienen und danach wieder abgeschaltet werden.
  • Aus der DE-OS Nr. 2613589 sind auch bereits Hybridbrennerfür Gasturbinenbrennkammern bekannt, welche aus Vormischbrennern mit integrierten Diffusionsbrennern bestehen. Der Vormischbrenner besitzt eine am stromabwärtigen Ende durch einen Flammenhalter begrenzte Vormischkammer, in welche eine Haupt-Brennstoffdüse und eine Zufuhreinrichtung für Verbrennungsluft einmünden. Der Diffusionsbrenner besitzt eine im zentralen Bereich des Flammenhalters angeordnete Pilot-Brennstoffdüse, wobei die Verbrennungsluft für den Betrieb des Diffusionsbrenners zum Teil durch die Vormischkammer des Vormischbrenners und zum Teil durch im Flammrohr der Gasturbinenbrennkammer angeordnete Löcher zugeführtwird. Zusätzlich ist eine Brennstoffregelreinrichtung vorgesehen, welche die Gesamtmenge und die Teilmengen des der Haupt-Brennstoffdüse und der Pilot-Brennstoffdüse zugeführten Brennstoffes in Abhängigkeit von der Last der Gasturbine derart regelt, dass bis zum Erreichen der Leerlaufdrehzahl oder einer geringen Teillast ausschliesslich der Diffusionsbrenner betreibbar ist und danach der Diffusionsbrenner und der Vormischbrenner gemeinsam betreibbar sind. Derartige Hybridbrenner haben also den Vorteil, dass bei raumsparender kompakter Bauweise als Diffusionsbrenner ausgebildete separate Anfahrbrenner entfallen können. Ausserdem stützt die Flamme des Diffusionsbrenners die Verbrennung des in der Vormischkammer erzeugten Gemisches aus Brennstoff und Verbrennungsluft, d. h. die Flamme des Vormischbrenners kann auch noch bei im Hinblick auf eine geringe NOX-Bildung extrem mageren Mischungsverhältnissen sicher zur Entzündung gebracht werden. Der Hybridbrenner kann also über einen weiten Lastbereich mit einem geringen NOx-Gehalt im Abgas betrieben werden, wobei jedoch im oberen Lastbereich und insbesondere bei Grenzlast ein unerwünschter Anstieg der NOx-Bildung zu verzeichnen ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Vormischbrenner mit integriertem Diffusionsbrenner für Gasturbinenbrennkammern zu schaffen, welcher über den gesamten Lastbereich einen Betrieb mit geringer NOx-Bildung ermöglicht.
  • Diese Aufgabe wird bei einer gattungsgemässen Einrichtung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass bei einem im oberen Lastbereich alleinigen Betrieb des Vormischbrenners die NOx-Bildung wesentlich verringert werden kann und dass der alleinige Betrieb des Vormischbrenners im oberen Lastbereich aber nur dann möglich ist, wenn die gesamte zur Verfügung stehende Verbrennungsluft ausschliesslich über die Vormischkammer zugeführt wird.
  • Nach einer weiteren Ausbildung der Erfindung ist vorgesehen, dass die Brennstoffregeleinrichtung ab Erreichen der Leerlaufdrehzahl oder einer geringen Teillast die Teilmenge des der Pilot-Brennstoffdüse zugeführten Brennstoffes mit zunehmender Last verringert. Die durch den Betrieb des Diffusionsbrenners verursachte NOX-Bildung wird dann stärker verringert, als die durch den Betrieb des Vormischbrenners mit entsprechend vergrösserter Brennstoffmenge zusätzlich verursachte NOX-Bildung, wobei die Stützung der Flamme des Vormischbrenners durch die Flamme des Diffusionsbrenners jedoch voll gewährleistet ist.
  • Die Brennstoffregeleinrichtung kann auch weiteren Vormischbrennern mit integrierten Diffusionsbrennern zugeordnet sein, wodurch insbesondere der insgesamt für eine Gasturbinenbrennkammer an Ventilen erforderliche Aufwand wesentlich verringert werden kann.
  • Ein alternativer Betrieb mit gasförmigem und/ oder flüssigem Brennstoff wird dadurch ermöglicht, dass der Vormischbrenner eine erste Haupt-Brennstoffdüse für gasförmigen Brennstoff und eine zweite Haupt-Brennstoffdüse für flüssigen Brennstoff besitzt. In entsprechender Weise kann dann auch der Diffusionsbrenner eine erste Pilot-Brennstoffdüse für gasförmigen Brennstoff und eine zweite Pilot-Brennstoffdüse für flüssigen Brennstoff besitzen.
  • Die Integration des Diffusionsbrenners in den Vormischbrenner kann mit besonders geringem Aufwand dadurch gewerkstelligt werden, dass die Brennstoffzuleitung zu der Pilot-Brennstoffdüse die Vormischkammer zentral und in axialer Richtung durchsetzt. Ist der Diffusionsbrenner mit gasförmigem und/oder flüssigem Brennstoff betreibbar, so ist in entsprechender Weise vorgesehen, dass die Brennstoffzuleitungen zu der ersten Pilot-Brennstoffdüse und der zweiten Pilot-Brennstoffdüse die Vormischkammer als konzentrische Rohre zentral und in axialer Richtung durchsetzen.
  • Ist auch der Vormischbrenner mit gasförmigem und/oderflüssigem Brennstoff betreibbar, so kann eine besonders kompakte Bauweise dadurch erzielt werden, dass die Brennstoffzuleitungen zu den beiden Haupt-Brennstoffdüsen und den beiden Pilot-Brennstoffdüsen als konzentrische Rohre ausgebildet sind.
  • Bei einer weiteren bevorzugten Ausführungsform der Erfindung ist die in die Vormischkammer einmündende Zufuhreinrichtung für Verbrennungsluft als Dralleinrichtung ausgebildet. Hierdurch wird die intensive Vermischung von Verbrennungsluft und Brennstoff in der Vormischkammer weiter begünstigt. Die Dralleinrichtung kann dann auch gleichzeitig als Haupt-Brennstoffdüse ausgebildet sein, wobei in als Hohlschaufeln ausgebildete Flügel jeweils mehrere Brennstoff-Injektionsbohrungen eingebracht sind.
  • Eine besonders intensive Zerstäubung und Vorverdampfung von flüssigem Brennstoff in der Verbrennungsluft kann auch dadurch erreicht werden, dass die Vormischkammer eine venturiähnliche Kontur mit einem am stromaufwärtigen Ende konvergierenden Abschnitt und einem am stromabwärtigen Ende divergierenden Abschnitt besitzt.
  • Sind sowohl der Vormischbrenner als auch der Diffusionsbrenner mit gasförmigem und/oder flüssigem Brennstoff betreibbar, so können die Brennstoffzuleitungen, die Haupt-Brennstoffdüsen und die beiden Pilot-Brennstoffdüsen zu einem in axialer Richtung aus der Vormischkammer ausziehbaren Bauteil zusammengefasst sein. Hierdurch werden insbesondere die Montage, die Wartung und die Inspektion wesentlich vereinfacht.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.
  • Es zeigen:
    • Fig. 1 einen Hybridbrenner, welcher aus einem Vormischbrenner mit integriertem Diffusionsbrenner besteht,
    • Fig. 2 eine Gasturbinenbrennkammer mit mehreren Hybridbrennern,
    • Fig. 3 ein Diagramm, in welchem die Gesamtmenge und die Teilmengen des der Haupt-Brennstoffdüse und der Pilot-Brennstoffdüse zugeführten Brennstoffes in Abhängigkeit von der Last der Gasturbine dargestellt sind,
    • Fig. 4 ein Diagramm, in welchem der NOX-Gehalt im Abgas über dem Äquivalenzverhältnis aufgetragen ist,
    • Fig. 5 einen Hybridbrenner, bei welchem sowohl der Vormischbrenner als auch der Diffusionsbrenner mit gasförmigem und/oder flüssigem Brennstoff betreibbar sind, und
    • Fig. 6 einen Schnitt gemäss der Linie VI-VI der Fig. 5.
  • Fig. 1 zeigt in stark vereinfachter schematischer Darstellung einen Längsschnitt durch einen insgesamt mit 1 bezeichneten Hybridbrenner, welcher als Vormischbrenner und/oder Diffusionsbrenner betreibbar ist. Der Hybridbrenner 1 besitzt ein Brennergehäuse 10, welches an seinem einen stirnseitigen Ende einen Flammenhalter 11 und an seinem anderen stirnseitigen Ende eine Dralleinrichtung 12 trägt. Im zentralen Bereich der Dralleinrichtung 12 ist eine Haupt-Brennstoffdüse 13 angeordnet, während die Brennstoffzuleitung mit 14 bezeichnet ist. Im zentralen Bereich des Flammenhalters 11 ist eine Pilot-Brennstoffdüse 15 angeordnet, deren Brennstoffzuleitung 16 die Haupt-Brennstoffdüse 13 und das Brennergehäuse 10 zentral und in axialer Richtung durchsetzt.
  • Wird der Hybridbrenner 1 als Vormischbrenner betrieben, so gelangt der durch einen Pfeil H B angedeutete flüssige Haupt-Brennstoff aus einem Brennstofftank BT über eine Haupt-Brennstoffpumpe HBP und ein Haupt-Brennstoffregelventil HBRV in die Brennstoffzuleitung 14 der Haupt-Brennstoffdüse 13. Aus der Haupt-Brennstoffdüse 13 wird der Haupt-Brennstoff H B dann in fein verteilter Form in eine Vormischkammer 100 eingespritzt, welche durch das Brennergehäuse 10, den Flammenhalter 11 und die Dralleinrichtung 12 begrenzt ist. In dieser Vormischkammer 100 wird der Haupt-Brennstoff HB verdampft und mit der über die Dralleinrichtung 12 zugeführten Verbrennungsluft VL vermischt, wobei diese Vermischung und die Vorverdampfung durch die venturiähnliche Kontur des Brennergehäuses 10 begünstigt wird. Die Verbrennung des in der Vormischkammer 100 gebildeten homogenen Gemisches aus Haupt-Brennstoff HB und Verbrennungsluft VL erfolgt dann erst in dem Flammrohr F einer sonst nicht näher dargestellten Gasturbinenbrennkammer, wobei der Flammenhalter 11 zur Stabilisierung der Flamme dient, aber trotzdem ein Rückschlagen der Flamme in die Vormischkammer 100 verhindert.
  • Wird der Hybridbrenner 1 als Diffusionsbrenner betrieben, so gelangt der durch einen Pfeil PB angedeutete Pilot-Brennstoff aus dem Brennstofftank BT über eine Pilot-Brennstoffpumpe PBP und ein Pilot-Brennstoffregelventil PBRV in die Brennstoffzuleitung 16 der Pilot-Brennstoffdüse 15. Aus der Pilot-Brennstoffdüse 15 wird der Pilot-Brennstoff PB dann in fein verteilter Form unmittelbar in die Verbrennungszone des Flammrohres F eingespritzt und dort mit der ausschliesslich über die Dralleinrichtung 12, die Vormischkammer 100 und den Flammenhalter 11 zugeführte Verbrennungsluft VL vermischt, wobei die Verbrennung durch turbulente Diffusionsvorgänge zwischen dem Pilot-Brennstoff PB, der Verbrennungsluft VL und den Abgasprodukten gesteuert wird.
  • Beim Betrieb des Hybridbrenners 1 werden die Gesamtmenge des zugeführten Brennstoffes und die als Pilot-Brennstoff PB bzw. als Haupt-Brennstoff HB zugeführten Teilmengen über eine Brennstoffregeleinrichtung BRE in Abhängigkeit von der Last der Gasturbine geregelt. Die Brennstoffregeleinrichtung BRE, welche mit einem entsprechenden Lastsignal LS beaufschlagt wird, regelt dabei den Durchfluss durch das Pilot-Brennstoffregelventil PRBV und das Haupt-Brennstoffregelventil HBRV über entsprechende Ansteuerleitungen AL1 und AL2 derart, dass bis zum Erreichen der Leerlaufdrehzahl oder einer geringen Teillast ausschliesslich der Diffusionsbrenner betreibbar ist, dass danach der Diffusionsbrenner und der Vormischbrenner gemeinsam betreibbar sind und dass im oberen Lastbereich ausschliesslich der Vormischbrenner betreibbar ist.
  • Bei dem in Fig. 1 dargestellten Flammrohr F kann es sich beispielsweise um das Flammrohr einer Primärbrennkammer handeln, wobei die Gasturbinenbrennkammer eine Vielzahl derartiger in eine gemeinsame Mischkammer einmündender Primärbrennkammern besitzt. Die Brennstoffregeleinrichtung BRE, das Pilot-Brennstoffregelventil PRBV und das Haupt-Brennstoffregelventil HBRV können dann für sämtliche Hybridbrenner 1 der Gasturbinenbrennkammer zusammenge: fasst werden, da durch den grossen Arbeitsbereich der Hybridbrenner 1 eine separate Regelung und ein lastabhängiges Zu- und Abschalten einzelner Primärbrennkammern entfallen kann. Eine derartige gemeinsame Brennstoffregeleinrichtung ist aber auch dann möglich, wenn eine Vielzahl von Hybridbrennern in das Flammrohr einer Gasturbinenbrennkammer einmünden. Dieser Fall ist in Fig. 2 dargestellt, wobei aber zur Vereinfachung der zeichnerischen Darstellung lediglich drei Hybridbrenner 1 gezeigt sind.
  • Dementsprechend sind in Fig. 2 drei Hybridbrenner 1 zu erkennen, die in das mit F' bezeichnete Flammrohr einer sonst nicht näher dargestellten Gasturbinenbrennkammer einmünden. Das Flammrohr F' besitzt im Bereich der Verbrennungszone keine Öffnungen für den Zutritt von Verbrennungsluft, da ja die gesamte zur Verfügung stehende Verbrennungsluft VL ausschliesslich den Mischkammern 100 der Hybridbrenner 1 zugeführt wird. Dies schliesst jedoch nicht aus, dass im Flammrohr F' stromabwärts der Verbrennungszone Öffnungen für den Zutritt von Mischluft vorhanden sein können.
  • Der Pilot-Brennstoff PB gelangt über eine gemeinsame Pilot-Brennstoffpumpe PBP', ein gemeinsames Pilot-Brennstoffregelventil PBRV und einen als Kreis dargestellten Verteiler V1 in die Brennstoffzuleitungen 16 zu den Pilot-Brennstoffdüsen 15 der einzelnen Hybridbrenner 1.
  • Der Haupt-Brennstoff H B gelangt über eine gemeinsame Haupt-Brennstoffpumpe HBP', ein gemeinsames Haupt-Brennstoffregelventil HBRV' und einen als Kreis dargestellten Verteiler V2 in die Brennstoffzuleitungen 14 zu den Haupt-Brennstoffdüsen 13 der einzelnen Hybridbrenner 1.
  • Beim Betrieb der Gasturbinenbrennkammer werden die Gesamtmenge des den Hybridbrennern 1 zugeführten Brennstoffes B und die insgesamt als Pilot-Brennstoff PB bzw. als Haupt-Brennstoff HB zugeführten Teilmengen über eine Brennstoffregeleinrichtung BRE' in Abhängigkeit von der Last der Gasturbine geregelt. Die Brennstoffregeleinrichtung B R E', welche mit einem entsprechenden Lastsignal LS beaufschlagt wird, regelt dabei den Durchfluss durch das gemeinsame Pilot-Brennstoffregelventil PBRV' und das gemeinsame Haupt-Brennstoffregelventil HBRV' über entsprechende Ansteuerleitungen AL1' und AL2' derart, dass bis zum Erreichen der Leerlaufdrehzahl oder einer geringen Teillast ausschliesslich die Diffusionsbrenner betreibbar sind, dass danach die Diffusionsbrenner und die Vormischbrenner gemeinsam betreibbar sind und dass im oberen Lastbereich ausschliesslich die Vormischbrenner betreibbar sind.
  • Die vorstehend geschilderte Betriebsweise geht aus dem Diagramm der Fig. 3 noch detaillierter hervor. Hier sind auf dem rechten Zweig der Abszisse die Leistung N der Gasturbine bis zur Grenzlast in Prozent, auf dem linken Zweig der Abszisse die Drehzahlen n bis zur Leerlaufdrehzahl in U/min und auf der Ordinate die Brennstoffmengen m aufgetragen. Dabei zeigt die ausgezogene Kurve die Gesamtmenge mG des zugeführten Brennstoffes B (vgl. Fig. 2), die punktstrichlierte Kurve, die Menge mp des insgesamt zugeführten Pilot-Brennstoffes PB (vgl. Fig. 2) und die gestrichelte Kurve, die Menge mH des insgesamt zugeführten Haupt-Brennstoffes H B (vgl. Fig. 2). Es ist zu erkennen, dass beim Anfahren der Gasturbine ab einer geringen Drehzahl die Diffusionsbrenner eingeschaltet werden und bis zum Erreichen der Leerlaufdrehzahl n = 3000 U/min ausschliesslich Pilot-Brennstoff PB (Fig. 2) zugeführtwird. Derausschliessliche Betrieb der Diffusionsbrenner wird nach Erreichen der Leerlaufdrehzahl noch kurz fortgesetzt, bis bei einer geringen Teillast die Vormischbrenner zugeschaltet werden und mit einer zunehmenden Menge mH an Haupt-Brennstoff H B (Fig. 2) versorgt werden. Nach dem Zuschalten der Vormischbrenner wird die Menge mp des den Diffusionsbrenner zugeführten Pilot-Brennstoffes PB (Fig. 2) zurückgenommen. Im oberen Lastbereich werden dann die Diffusionsbrenner ganz abgeschaltet und nur noch die Vormischbrenner betrieben, d. h. es wird nur noch Haupt-Brennstoff H B (vgl. Fig. 2) zugeführt.
  • Der obere Lastbereich, in welchem die Diffusionsbrenner abgeschaltet und nur noch die Vormischbrenner betrieben werden, liegt in dem dargestellten Ausführungsbeispiel zwischen N = 80% und der Grenzlast mit N = 100%. Den oberen Lastbereich, in welchem die Diffusionsbrenner abgeschaltetwerden, könnte man auch als Bereich zwischen der Flammenstabilitätsgrenze der Vormischbrenner und der angestrebten NOX-Grenze bei Grenzlast definieren. Die Diffusionsbrenner werden nämlich erst dann abgeschaltet, wenn die Vormischbrenner ohne die Unterstützung durch die Flamme der Diffusionsbrenner alleine und ohne die Gefahr des Erlöschens brennen können.
  • Aus dem Diagramm der Fig. 4 geht die NOX-Emission beim Betrieb der in Fig. 2 dargestellten Gasturbinenbrennkammer hervor. Hier ist auf der Abszisse das Äquivalenzverhältnis ϕ = 1 /λ aufgetragen, wobei λ die Luftüberschusszahl ist. Auf der Ordinate ist der NOx-Gehalt im Abgas in ppm bei 15 Vol.-% O2 aufgetragen. Die paralle.l zur Abszisse verlaufende Gerade G gibt einen NOX-Grenzwert von 75 ppm bei 15 Vol.-% O2 an, der beim Betrieb der Gasturbinenbrennkammer nicht überschritten werden darf.
  • Werden die Hybridbrenner 1 der in Fig. 2 dargestellten Gasturbinenbrennkammer ausschliesslich als Diffusionsbrenner betrieben, so ergibt sich ein NOx-Gehalt im Abgas entsprechend der strichpunktierten Kurve D, während sich beim ausschliesslichen Betrieb eines Vormischbrenners ein NOx-Gehalt im Abgas entsprechend der gestrichelten Kurve V ergibt. Dabei sind mit SD und Sv die Flammenstabilitätsgrenzen bezeichnet, bei welchen ein Diffusionsbrenner bzw. ein Vormischbrenner gerade noch stabil brennt.
  • Es ist ferner zu erkennen, dass sich sowohl beim Betrieb als Diffusionsbrenner als auch beim Betrieb als Vormischbrenner ein Maximum des NOx-Gehaltes im Abgas bei einem Äquivalenzverhältnis von φ = 1 einstellt.
  • Beim Anfahren der in Fig. 2 dargestellten Gasturbinenbrennkammer werden die Hybridbrenner 1 bis zum Erreichen einer geringen Teillast ausschliesslich als Diffusionsbrenner betrieben, wobei der NOx-Gehalt im Abgas während dieser Betriebsphase durch den Punkt A auf der Kurve D angegeben ist. Danach werden die Hybridbrenner 1 als Diffusionsbrenner und zugleich als Vormischbrenner betrieben, wobei der NOx-Gehalt im Abgas während dieser Betriebsphase durch die dick ausgezogene Kurve AB angegeben ist. Das letzte vertikal verlaufende Teilstück der Kurve AB verdeutlicht dabei das Absinken des NOx-Gehaltes im Abgas nach dem vollständigen Abschalten der Diffusionsbrenner. Dementsprechend liegt der Punkt B oberhalb der Flammenstabilitätsgrenze Sv auf der Kurve V. Nach dem Abschalten der Diffusionsbrenner werden die Hybridbrenner 1 dann im oberen Lastbereich ausschliesslich als Vormischbrenner betrieben, wobei der NOX-Gehalt im Abgas während dieser Betriebsphase durch den dick ausgezogenen Teilbereich BC der Kurve V angegeben ist. Der Punkt C entspricht dabei dem bei Grenzlast erreichten Höchstwert des NOx-Gehaltes im Abgas, wobei dieser Höchstwert aber noch deutlich unterhalb der zulässigen NOX-Grenze liegt. Bei dem Punkt C handelt es sich somit auch um den Auslegepunkt der Gasturbinenbrennkammer, der für die insgesamt erforderliche Anzahl von Hybridbrennern 1 massgeblich ist.
  • Die Fig. 5 und 6 zeigen einen mit gasförmigem und/oder flüssigem Brennstoff betreibbaren Hybridbrenner im nur teilweise dargestellten Längsschnitt bzw. im Querschnitt. Der insgesamt mit 1' bezeichnete Hybridbrenner besitzt ein durch die gestrichtelte Linie 10' angedeutetes Brennergehäuse, welcher eine venturiähnliche Kontur aufweist. Die durch das Brennergehäuse 10' gebildete Vormischkammer 100' ist an ihrem stromabwärtigen Ende durch einen in der Zeichnung nur angedeuteten Flammenhalter 11' und an ihrem stromaufwärtigen Ende durch eine Dralleinrichtung 12' begrenzt. Die Dralleinrichtung 12' bildet dabei gleichzeitig eine erste Haupt-Brennstoffdüse für gasförmigen Brennstoff, wobei in die einzelnen als Hohlschaufeln ausgebildeten Flügel jeweils mehrere Brennstoff-Injektionsbohrungen 120' eingebracht sind. Die Zufuhr des durch einen Pfeil H B" angedeuteten gasförmigen Brennstoffes erfolgt über eine Brennstoffzuleitung 14", auf welche die als Hohlschaufeln ausgebildeten Flügel der Dralleinrichtung 12' aufgesetzt sind. In geringem Abstand stromabwärts der Dralleinrichtung 12' ist eine zweite Haupt-Brennstoffdüse 13' für flüssigen Brennstoff angeordnet, welche ebenfalls als Hohlschaufeln ausgebildete Flügel besitzt, in die jeweils mehrere Brennstoff-Injektionsbohrungen 130' eingebracht sind. Die Zufuhr des durch Pfeile HB' angedeuteten flüssigen Brennstoffes zu den Brennstoff-Injektionsbohrungen 130' erfolgt über eine Brennstoffzuleitung 14', welche konzentrisch innerhalb der Brennstoffzuleitung 14" angeordnet ist und auf welche die als Hohlschaufeln ausgebildeten Flügel der zweiten Haupt-Brennstoffdüse 13' aufgesetzt sind.
  • Im zentralen Bereich des Flammenhalters 11' sind eine erste Pilot- Brennstoffdüse 15" für gasförmigen Brennstoff und eine zweite Pilot-Brennstoffdüse 15' für flüssigen Brennstoff angeordnet. Die Zufuhr des durch einen Pfeil PB" angedeuteten gasförmigen Brennstoffes zu der ersten Pilot-Brennstoffdüse 15" erfolgt über eine Brennstoffzuleitung 16", welche zunächst konzentrisch innerhalb der Brennstoffzuleitung 14' verläuft und dann die Vormischkammer 100' zentral und in axialer Richtung durchsetzt. Die Zufuhr des durch einen Pfeil PB'angedeuteten flüssigen Brennstoffes zu der zweiten Pilot-Brennstoffdüse 15' erfolgt über eine Brennstoffzuleitung 16', welche konzentrisch innerhalb der Brennstoffzuleitung 16" angeordnet ist.
  • Die vier Brennstoffzuleitungen 14", 14', 16", 16', die gleichzeitig als erste Haupt-Brennstoffdüse ausgebildete Dralleinrichtung 12', die zweite Haupt-Brennstoffdüse 13', die erste Pilot-Brennstoffdüse 15" und die zweite Pilot-Brennstoffdüse 15' sind zu einem Bauteil vereinigt, welches zur Erleichterung der Wartung und Inspektion in axialer Richtung aus dem Brennergehäuse 10' und dem Flammenhalter 11' ausgezogen werden kann.
  • In den Querschnitt der Fig. 6 ist die konzentrische Anordnung der einzelnen Brennstoffzuleitungen 14", 14', 16" und 16' deutlich zu erkennen. Ausserdem ist zu erkennen, dass die sternförmig ausgerichteten Flügel der Dralleinrichtung 12' und die sternförmig ausgerichteten Flügel der zweiten Haupt-Brennstoffdüse 13' in Umfangsrichtung gesehen versetzt zueinander angeordnet sind. Da die zweite Haupt-Brennstoffdüse 13' zusätzlich noch im Bereich des engsten Querschnittes der venturiähnlichen Kontur des Brennergehäuses 10' angeordnet ist, ergibt sich eine besonders intensive Zerstäubung und Vorverdampfung des aus den Brennstoff-Injektionsbohrungen 130' austretenden flüssigen Brennstoffes HB' in der über die Dralleinrichtung 12' zugeführten Verbrennungsluft.
  • Die Betriebsweise des in den Fig. 5 und 6 dargestellten Hybridbrenners 1' entspricht der Betriebsweise des in den Fig. 1 und 2 dargestellten Hybridbrenners 1, wobei jedoch für die flüssigen Brennstoffe PB' und H B' und für die gasförmigen Brennstoffe PB" und H B" jeweils eine Brennstoffregeleinrichtung vorgesehen ist. Soll der Hybridbrenner 1' gleichzeitig mit flüssigem und gasförmigem Brennstoff betrieben werden, so sind diese beiden Brennstoffregeleinrichtungen entsprechend der in Fig. 3 dargestellten Betriebsweise miteinander zu verknüpfen.

Claims (12)

1. Vormischbrenner mit integriertem Diffusionsbrenner für Gasturbinenbrennkammern, wobei
- der Vormischbrenner eine am stromabwärtigen Ende durch einen Flammenhalter begrenzte Vormischkammer besitzt, in welche eine Haupt-Brennstoffdüse und eine Zufuhreinrichtung für Verbrennungsluft einmünden,
- der Diffusionsbrenner eine im zentralen Bereich des Flammenhalters angeordnete Pilot-Brennstoffdüse besitzt und wobei
- eine Brennstoffregeleinrichtung die Gesamtmenge und die Teilmengen des der Haupt-Brennstoffdüse und der Pilot-Brennstoffdüse zugeführten Brennstoffes in Abhängigkeit von der Last der Gasturbine derart regelt, dass bis zum Erreichen der Leerlaufdrehzahl oder einer geringen Teillast ausschliesslich der Diffusionsbrenner betreibbar ist und danach der Diffusionsbrenner und der Vormischbrenner gemeinsam betreibbar sind, gekennzeichnet durch folgende Merkmale:
a) die gesamte für den Betrieb des Diffusionsbrenners erforderliche Verbrennungsluft (VL) ist ausschliesslich über die Vormischkammer (100; 100') zuführbar,
b) die Brennstoffregeleinrichtung (BRE; BRE') regelt die Gesamtmenge (MG) und die Teilmengen (mp, mH) des zugeführten Brennstoffes (B) derart, dass im oberen Lastbereich ausschliesslich der Vormischbrenner betreibbar ist.
2. Vormischbrenner mit integriertem Diffusionsbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Brennstoffregeleinrichtung (BRE; BRE') ab Erreichen der Leerlaufdrehzahl oder einer geringen Teillast die Teilmenge (mp) des der Pilot-Brennstoffdüse (15; 15', 15") zugeführten Brennstoffes (PB; PB', PB") mit zunehmender Last verringert.
3. Vormischbrenner mit integriertem Diffusionsbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Brennstoffregeleinrichtung (BRE') weiteren Vormischbrennern mit integrierten Diffusionsbrennern zugeordnet ist.
4. Vormischbrenner mit integriertem Diffusionsbrenner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Vormischbrenner eine erste Haupt-Brennstoffdüse für gasförmigen Brennstoff (HB") und eine zweite Haupt-Brennstoffdüse (13') für flüssigen Brennstoff (HB') besitzt.
5. Vormischbrenner mit integriertem Diffusionsbrenner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Diffusionsbrenner eine erste Pilot-Brennstoffdüse (15") für gasförmigen Brennstoff (PB") und eine zweite Pilot-Brennstoffdüse (15') für flüssigen Brennstoff (PB') besitzt.
6. Vormischbrenner mit integriertem Diffusionsbrenner nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Brennstoffzuleitung (16) zu der Pilot-Brennstoffdüse (15) die Vormischkammer (100) zentral und in axialer Richtung durchsetzt.
7. Vormischbrenner mit integriertem Diffusionsbrenner nach Anspruch 5, dadurch gekennzeichnet, dass die Brennstoffzuleitungen (16", 16') zu der ersten Pilot- Brennstoffdüse (15") und der zweiten Pilot-Brennstoffdüse (15') die Vormischkammer (100') als konzentrische Rohre zentral und in axialer Richtung durchsetzen.
8. Vormischbrenner mit integriertem Diffusionsbrenner nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, dass die Brennstoffzuleitungen (14", 14', 16", 16') zu den beiden Haupt-Brennstoffdüsen (13') und den beiden Pilot-Brennstoffdüsen (15", 15') als konzentrische Rohre ausgebildet sind.
9. Vormischbrenner mit integriertem Diffusionsbrenner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in die Vormischkammer (100') einmündendeZufuhreinrichtung für Verbrennungsluft als Dralleinrichtung (12') ausgebildet ist.
10. Vormischbrenner mit integriertem Diffusionsbrenner nach Anspruch 9, dadurch gekennzeichnet, dass die Dralleinrichtung (12') gleichzeitig als Haupt-Brennstoffdüse ausgebildet ist, wobei in als Hohlschaufel ausgebildete Flügel jeweils mehrere Brennstoff-Injektionsbohrungen (120') eingebracht sind.
11. Vormischbrenner mit integriertem Diffusionsbrenner nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vormischkammer (100; 100') eine venturiähnliche Kontur mit einem am stromaufwärtigen Ende konvergierenden Abschnitt und einen am stromabwärtigen divergierenden Abschnitt besitzt.
12. Vormischbrenner mit integriertem Diffusionsbrenner nach Anspruch 8, dadurch gekennzeichnet, dass die Brennstoffzuleitungen (14", 14', 16", 16'), die beiden Haupt-Brennstoffdüsen (13') und die beiden Pilot-Brennstoffdüsen (15",15') zu einem in axialer Richtung aus der Vormischkammer (100') ausziehbaren Teil zusammengefasst sind.
EP83110824A 1982-11-08 1983-10-28 Vormischbrenner mit integriertem Diffusionsbrenner Expired EP0108361B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823241162 DE3241162A1 (de) 1982-11-08 1982-11-08 Vormischbrenner mit integriertem diffusionsbrenner
DE3241162 1982-11-08

Publications (2)

Publication Number Publication Date
EP0108361A1 EP0108361A1 (de) 1984-05-16
EP0108361B1 true EP0108361B1 (de) 1985-08-14

Family

ID=6177557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110824A Expired EP0108361B1 (de) 1982-11-08 1983-10-28 Vormischbrenner mit integriertem Diffusionsbrenner

Country Status (4)

Country Link
US (1) US4589260A (de)
EP (1) EP0108361B1 (de)
JP (1) JPS59101551A (de)
DE (2) DE3241162A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000446A1 (de) * 1990-01-09 1991-07-11 Siemens Ag Armatur zur verbindung mindestens eines hybridbrenners mit einrichtungen zur zustellung eines fluidischen brennstoffes
DE19618058A1 (de) * 1996-05-06 1997-11-13 Abb Research Ltd Brenner
DE19839085C2 (de) * 1998-08-27 2000-06-08 Siemens Ag Brenneranordnung mit primärem und sekundärem Pilotbrenner

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735052A (en) * 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
DE3543908C1 (de) * 1985-12-12 1987-01-29 Mtu Muenchen Gmbh Einrichtung zur Steuerung der Brennstoffzufuhr zum Nachbrenner eines Nebenstrom-Gasturbinenstrahltriebwerkes
US4835962A (en) * 1986-07-11 1989-06-06 Avco Corporation Fuel atomization apparatus for gas turbine engine
DE3766807D1 (de) * 1986-11-25 1991-01-31 Gen Electric Kombinierter diffusions- und vormischpilotbrenner.
US5193346A (en) * 1986-11-25 1993-03-16 General Electric Company Premixed secondary fuel nozzle with integral swirler
US4982570A (en) * 1986-11-25 1991-01-08 General Electric Company Premixed pilot nozzle for dry low Nox combustor
CH672541A5 (de) * 1986-12-11 1989-11-30 Bbc Brown Boveri & Cie
US4845952A (en) * 1987-10-23 1989-07-11 General Electric Company Multiple venturi tube gas fuel injector for catalytic combustor
DE69126846T2 (de) * 1990-11-27 1998-02-12 Gen Electric Sekundäre Vormischbrennstoffdüse mit integrierter Verwirbelungsvorrichtung
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
US5199265A (en) * 1991-04-03 1993-04-06 General Electric Company Two stage (premixed/diffusion) gas only secondary fuel nozzle
JP2743675B2 (ja) * 1992-01-16 1998-04-22 株式会社日立製作所 ガスタービン燃焼器
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
US5218824A (en) * 1992-06-25 1993-06-15 Solar Turbines Incorporated Low emission combustion nozzle for use with a gas turbine engine
US5410884A (en) * 1992-10-19 1995-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Combustor for gas turbines with diverging pilot nozzle cone
DE4306956A1 (de) * 1993-03-05 1994-09-08 Abb Management Ag Brennstoffzuführung für eine Gasturbine
DE4307086A1 (de) * 1993-03-06 1994-09-08 Abb Management Ag Brennstoffzuführung für eine Gasturbine
US5487274A (en) * 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
US5470224A (en) * 1993-07-16 1995-11-28 Radian Corporation Apparatus and method for reducing NOx , CO and hydrocarbon emissions when burning gaseous fuels
US5408830A (en) * 1994-02-10 1995-04-25 General Electric Company Multi-stage fuel nozzle for reducing combustion instabilities in low NOX gas turbines
US5435126A (en) * 1994-03-14 1995-07-25 General Electric Company Fuel nozzle for a turbine having dual capability for diffusion and premix combustion and methods of operation
US5471840A (en) * 1994-07-05 1995-12-05 General Electric Company Bluffbody flameholders for low emission gas turbine combustors
JP3183053B2 (ja) * 1994-07-20 2001-07-03 株式会社日立製作所 ガスタービン燃焼器及びガスタービン
US5613363A (en) * 1994-09-26 1997-03-25 General Electric Company Air fuel mixer for gas turbine combustor
US5943866A (en) * 1994-10-03 1999-08-31 General Electric Company Dynamically uncoupled low NOx combustor having multiple premixers with axial staging
JPH09119641A (ja) * 1995-06-05 1997-05-06 Allison Engine Co Inc ガスタービンエンジン用低窒素酸化物希薄予混合モジュール
DE19605736A1 (de) 1996-02-16 1997-08-21 Gutehoffnungshuette Man Verfahren zur Schnellumschaltung vom Vormischbetrieb in den Diffusionsbetrieb in einer Brennkammer einer mit Brenngas betriebenen Gasturbine
DE19636093B4 (de) * 1996-09-05 2004-07-29 Siemens Ag Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
WO1998025084A1 (en) * 1996-12-04 1998-06-11 Siemens Westinghouse Power Corporation DIFFUSION AND PREMIX PILOT BURNER FOR LOW NOx COMBUSTOR
WO1999004196A1 (de) 1997-07-17 1999-01-28 Siemens Aktiengesellschaft Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer
GB2333832A (en) 1998-01-31 1999-08-04 Europ Gas Turbines Ltd Multi-fuel gas turbine engine combustor
EP0936406B1 (de) 1998-02-10 2004-05-06 General Electric Company Brenner mit gleichmässiger Brennstoff/Luft Vormischung zur emissionsarmen Verbrennung
US6189314B1 (en) 1998-09-01 2001-02-20 Honda Giken Kogyo Kabushiki Kaisha Premix combustor for gas turbine engine
US6311473B1 (en) * 1999-03-25 2001-11-06 Parker-Hannifin Corporation Stable pre-mixer for lean burn composition
JP2002031343A (ja) * 2000-07-13 2002-01-31 Mitsubishi Heavy Ind Ltd 燃料噴出部材、バーナ、燃焼器の予混合ノズル、燃焼器、ガスタービン及びジェットエンジン
US6363724B1 (en) 2000-08-31 2002-04-02 General Electric Company Gas only nozzle fuel tip
DE10049203A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren zur Brennstoffeinleitung in einen Vormischbrenner
JP2003065075A (ja) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd ガスタービン燃焼装置
JP2003074854A (ja) * 2001-08-28 2003-03-12 Honda Motor Co Ltd ガスタービン・エンジンの燃焼器
JP2003074856A (ja) * 2001-08-28 2003-03-12 Honda Motor Co Ltd ガスタービン・エンジンの燃焼器
JP2003074853A (ja) * 2001-08-28 2003-03-12 Honda Motor Co Ltd ガスタービン・エンジンの燃焼器
US6655145B2 (en) * 2001-12-20 2003-12-02 Solar Turbings Inc Fuel nozzle for a gas turbine engine
ITMI20012780A1 (it) * 2001-12-21 2003-06-21 Nuovo Pignone Spa Dispositivo di iniezione principale di combustibile liquido per camera di combustione singola dotata di camera di pre-miscelamento di una tu
EP1342952A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Brenner, Verfahren zum Betrieb eines Brenners und Gasturbine
EP1342953A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gasturbine
US7093445B2 (en) * 2002-05-31 2006-08-22 Catalytica Energy Systems, Inc. Fuel-air premixing system for a catalytic combustor
GB2404729B (en) * 2003-08-08 2008-01-23 Rolls Royce Plc Fuel injection
US7185497B2 (en) * 2004-05-04 2007-03-06 Honeywell International, Inc. Rich quick mix combustion system
EP1645805A1 (de) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Brenner für fluidische Brennstoffe und Verfahren zum Betreiben eines derartigen Brenners
KR100673385B1 (ko) * 2005-05-31 2007-01-24 한국과학기술연구원 나노분말 연소반응기와, 그 나노분말 연소반응기를 이용한나노분말 합성장치와, 그 나노분말 합성장치의 제어방법
US7568349B2 (en) * 2005-09-30 2009-08-04 General Electric Company Method for controlling combustion device dynamics
US8881531B2 (en) * 2005-12-14 2014-11-11 Rolls-Royce Power Engineering Plc Gas turbine engine premix injectors
GB2446164A (en) * 2007-02-05 2008-08-06 Ntnu Technology Transfer As Gas Turbine Emissions Reduction with Premixed and Diffusion Combustion
DE102008019117A1 (de) * 2008-04-16 2009-10-22 Man Turbo Ag Verfahren zum Betreiben eines Vormischbrenners und ein Vormischbrenner zur Durchführung des Verfahrens
EP2116766B1 (de) * 2008-05-09 2016-01-27 Alstom Technology Ltd Brenner mit Brennstofflanze
US9371989B2 (en) * 2011-05-18 2016-06-21 General Electric Company Combustor nozzle and method for supplying fuel to a combustor
EP2551470A1 (de) * 2011-07-26 2013-01-30 Siemens Aktiengesellschaft Verfahren zum Hochfahren einer stationären Gasturbine
JP6134732B2 (ja) * 2011-12-05 2017-05-24 ゼネラル・エレクトリック・カンパニイ マルチゾーン燃焼器
WO2013128572A1 (ja) * 2012-02-28 2013-09-06 三菱重工業株式会社 燃焼器及びガスタービン
US9395084B2 (en) * 2012-06-06 2016-07-19 General Electric Company Fuel pre-mixer with planar and swirler vanes
US9435540B2 (en) 2013-12-11 2016-09-06 General Electric Company Fuel injector with premix pilot nozzle
US10041681B2 (en) * 2014-08-06 2018-08-07 General Electric Company Multi-stage combustor with a linear actuator controlling a variable air bypass
US10030869B2 (en) 2014-11-26 2018-07-24 General Electric Company Premix fuel nozzle assembly
US9714767B2 (en) 2014-11-26 2017-07-25 General Electric Company Premix fuel nozzle assembly
US9803861B2 (en) * 2015-04-14 2017-10-31 Reecon M&E Co. Ltd. Heating system and method of operating same
US9982892B2 (en) 2015-04-16 2018-05-29 General Electric Company Fuel nozzle assembly including a pilot nozzle
US9803867B2 (en) 2015-04-21 2017-10-31 General Electric Company Premix pilot nozzle
US20170191428A1 (en) * 2016-01-05 2017-07-06 Solar Turbines Incorporated Two stream liquid fuel lean direct injection
EP3306197B1 (de) * 2016-10-08 2020-01-29 Ansaldo Energia Switzerland AG Zweikraftstoffinjektor für einen brenner der zweiten stufe einer sequentiellen gasturbine
JP6779097B2 (ja) * 2016-10-24 2020-11-04 三菱パワー株式会社 ガスタービン燃焼器及びその運転方法
US10422530B2 (en) 2016-10-27 2019-09-24 Reecon M & E Co. Ltd. Smart fuel burning system and method of operating same
US11885494B2 (en) 2016-10-27 2024-01-30 Reecon North America LLC Smart fuel burning system and method of operating same
US20210341142A1 (en) * 2018-10-05 2021-11-04 Fives Pillard Burner and combustion method for a burner
US11815263B2 (en) * 2019-10-15 2023-11-14 Doosan Heavy Industries & Construction C Fuel transfer apparatus and boiler facility including same
GB2602037A (en) 2020-12-16 2022-06-22 Siemens Energy Global Gmbh & Co Kg Method of operating a combustor for a gas turbine
KR102595333B1 (ko) * 2021-09-17 2023-10-27 두산에너빌리티 주식회사 연소기 및 이를 포함하는 가스터빈

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH303030A (de) * 1952-08-15 1954-11-15 Bbc Brown Boveri & Cie Gasbrenner, vorzugsweise für Brennkammern von Gasturbinenanlagen.
GB780834A (en) * 1954-07-20 1957-08-07 Rolls Royce Improvements relating to combustion equipment for gas-turbine engines
DE1074920B (de) * 1955-07-07 1960-02-04 Ing habil Fritz A F Schmidt Murnau Dr (Obb) Verfahren und \ orrichtung zur Regelung von Gas turbmenbrennkammern mit unterteilter Verbrennung und mehreren Druckstufen
DE1039785B (de) * 1957-10-12 1958-09-25 Maschf Augsburg Nuernberg Ag Brennkammer mit hoher Waermebelastung, insbesondere fuer Verbrennung heizwertarmer, gasfoermiger Brennstoffe in Gasturbinenanlagen
FR1302273A (fr) * 1961-10-03 1962-08-24 Maschf Augsburg Nuernberg Ag Chambre pour la combustion simultanée de combustibles gazeux et non gazeux, en particulier pour installations de turbines à gaz
US3483700A (en) * 1967-09-27 1969-12-16 Caterpillar Tractor Co Dual fuel injection system for gas turbine engine
GB1465785A (en) * 1973-03-12 1977-03-02 Tokyo Gas Co Ltd Burner and method of combustion-
US3853273A (en) * 1973-10-01 1974-12-10 Gen Electric Axial swirler central injection carburetor
CH577627A5 (de) * 1974-04-03 1976-07-15 Bbc Sulzer Turbomaschinen
US3886728A (en) * 1974-05-01 1975-06-03 Gen Motors Corp Combustor prechamber
US3905192A (en) * 1974-08-29 1975-09-16 United Aircraft Corp Combustor having staged premixing tubes
DE2460740C3 (de) * 1974-12-21 1980-09-18 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Brennkammer für Gasturbinentriebwerke
JPS51123413A (en) * 1975-04-19 1976-10-28 Nissan Motor Co Ltd Combustion system of gas turbine
JPS52123212U (de) * 1976-03-17 1977-09-19
US4215535A (en) * 1978-01-19 1980-08-05 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors
US4222232A (en) * 1978-01-19 1980-09-16 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors
DE2950535A1 (de) * 1979-11-23 1981-06-11 BBC AG Brown, Boveri & Cie., Baden, Aargau Brennkammer einer gasturbine mit vormisch/vorverdampf-elementen
DE2949388A1 (de) * 1979-12-07 1981-06-11 Kraftwerk Union AG, 4330 Mülheim Brennkammer fuer gasturbinen und verfahren zum betrieb der brennkammer
GB2073399B (en) * 1980-04-02 1983-11-02 United Technologies Corp Dual premix tube fuel nozzle
US4356698A (en) * 1980-10-02 1982-11-02 United Technologies Corporation Staged combustor having aerodynamically separated combustion zones
DE3238684A1 (de) * 1982-10-19 1984-04-19 Kraftwerk Union AG, 4330 Mülheim Gasturbinenbrennkammer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000446A1 (de) * 1990-01-09 1991-07-11 Siemens Ag Armatur zur verbindung mindestens eines hybridbrenners mit einrichtungen zur zustellung eines fluidischen brennstoffes
DE19618058A1 (de) * 1996-05-06 1997-11-13 Abb Research Ltd Brenner
DE19618058B4 (de) * 1996-05-06 2008-12-04 Alstom Brenner
DE19839085C2 (de) * 1998-08-27 2000-06-08 Siemens Ag Brenneranordnung mit primärem und sekundärem Pilotbrenner

Also Published As

Publication number Publication date
US4589260A (en) 1986-05-20
JPS59101551A (ja) 1984-06-12
EP0108361A1 (de) 1984-05-16
DE3241162A1 (de) 1984-05-10
JPH0159414B2 (de) 1989-12-18
DE3360574D1 (en) 1985-09-19

Similar Documents

Publication Publication Date Title
EP0108361B1 (de) Vormischbrenner mit integriertem Diffusionsbrenner
EP0274630B1 (de) Brenneranordnung
DE3217674C2 (de) Brennkammer für eine Gasturbine
EP0976982B1 (de) Verfahren zum Betrieb einer Gasturbinenbrennkammer mit gasförmigem Brennstoff
EP0095788B1 (de) Brennkammer einer Gasturbine und Verfahren zu deren Betrieb
EP0276696B1 (de) Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen
EP0576697B1 (de) Brennkammer einer Gasturbine
DE102005054442B4 (de) Brennkammer für eine Gasturbine
DE2539993C2 (de) Brenner für flüssigen oder gasförmigen Brennstoff
EP0571782B1 (de) Verfahren zum Betrieb einer Brennkammer einer Gasturbine
EP1110034B1 (de) Brenneranordnung mit primärem und sekundärem pilotbrenner
DE4240222C2 (de) Gasturbinenbrenner
DE2730791C2 (de) Brennkammer für Gasturbinentriebwerke
EP0794383A2 (de) Druckzerstäuberdüse
EP1645802A2 (de) Vormischbrenner
DE1074920B (de) Verfahren und \ orrichtung zur Regelung von Gas turbmenbrennkammern mit unterteilter Verbrennung und mehreren Druckstufen
EP0481111B1 (de) Brennkammer einer Gasturbine
WO2006103257A1 (de) Vormischbrenner für eine gasturbinenbrennkammer
EP0924460B1 (de) Zweistufige Druckzerstäuberdüse
EP0394800A1 (de) Vormischbrenner für die Heissgaserzeugung
DE4318405C2 (de) Brennkammeranordnung für eine Gasturbine
EP1334309A1 (de) Verfahren und vorrichtung zur brennstoffversorgung eines vormischbrenners
EP0030313B1 (de) Brennkammer für Gasturbinen und Verfahren zum Betrieb der Brennkammer
DE19618058B4 (de) Brenner
WO2002052201A1 (de) Brenner mit gestufter brennstoffeindüsung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840309

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3360574

Country of ref document: DE

Date of ref document: 19850919

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 83110824.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950918

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951024

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960118

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 83110824.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST