EP0093872A1 - Verfahren zur Übertragung von Messwerten in einem Überwachungssystem - Google Patents

Verfahren zur Übertragung von Messwerten in einem Überwachungssystem Download PDF

Info

Publication number
EP0093872A1
EP0093872A1 EP83103224A EP83103224A EP0093872A1 EP 0093872 A1 EP0093872 A1 EP 0093872A1 EP 83103224 A EP83103224 A EP 83103224A EP 83103224 A EP83103224 A EP 83103224A EP 0093872 A1 EP0093872 A1 EP 0093872A1
Authority
EP
European Patent Office
Prior art keywords
measuring point
signal
measuring
measuring points
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83103224A
Other languages
English (en)
French (fr)
Inventor
Richard Buhler
Eugen Dipl.-Ing. Schibli
Jürg Dr. Muggli
Andreas Dr. Scheidweiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Publication of EP0093872A1 publication Critical patent/EP0093872A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a method for the transmission of measured values in a monitoring system, wherein measured values determined by individual measuring points serving for monitoring and lying in a chain on signal lines are passed to first pairs of terminals in a signaling center, in which they are then linked to obtain differentiated fault or alarm messages and furthermore, when starting up, all measuring points are disconnected by a voltage change in the signal line and then switched back in time to the signal line by switching elements present in each measuring point so that after a certain time delay each measuring point additionally switches on a subsequent measuring point to the line voltage.
  • measuring points are distributed in extensive objects and connected to a signal center via a signal line.
  • the object of the invention is to provide a method and a device for carrying out the method for the identification of measuring points of a transmission system, which avoids the disadvantages mentioned above, in particular to create a transmission system which, with little installation effort , reliably identifies the measuring point , of which measured values are sent to a signal center, whereby identical measuring points, which are connected in a chain to the signal center, can be used.
  • Another on The object of the invention is, according to one embodiment of the transmission system according to the invention, to design the measuring points such that they can be controlled from both sides by the signal center via signal lines arranged in a loop.
  • this is achieved in a method for the transmission of measured values of the type mentioned at the outset in that address memories present in the measuring points are assigned in a predetermined order from the signaling center with the addresses of the corresponding measuring points and then locked before the next measuring point thereof is switched by the switching element Signal line is connected to the signal voltage.
  • the address memory of the newly connected measuring point is filled and then locked immediately, ie locked against reading in further addresses.
  • the switching element switches the next measuring point on the signal line and this further measuring point is in turn ready to receive its corresponding address.
  • This switching on of new measuring points continues until all measuring points of a signal line are provided with their associated individual addresses. This ensures that the originally identical measuring points differ from one another after commissioning. Remote addressing avoids everyone Manipulation at the measuring points themselves and allows the exploitation of both the advantages of the parallel system and those of the series system without having their disadvantages. Of course, the addresses can be read in again at any time in the event of a system failure, malfunction or maintenance.
  • the origin of the signals i.e. the identification of the measuring point from which the signals originate, is possible in the signal center by two methods; first by counting the incremental pulses and second by the measuring point address. By combining both methods, i.e. by comparing the counted pulses with the detector address, a very high degree of security of the measuring point identification can be achieved.
  • the measured values can now be transmitted as described in DE-AS 2,533,382, i.e. the switching elements are actuated with each interrogation cycle. However, the transmission can also take place as in a parallel transmission system, the switching elements remaining closed.
  • a device for carrying out the method according to the invention consists of measuring points which have a measured variable sensor, a measured value converter, a control unit, an address memory and a switching element.
  • Fig. 1 shows the structure of a conventional Ueberwachun g ssy- stems after the chain indexing principle.
  • a signal station Z From a signal station Z, one or more signal lines L go out, to each of which a plurality M essstellen MS are connected.
  • the measuring points substantially MS contain in addition to the measuring sensors and M esswertwandlind a signal receiver, a sequencer, a signal generator and a switching element S m.
  • a timing element starts to run in the measuring point MS 1 .
  • the switching element S 1 closes and applies the line voltage to the second measuring point MS 2 , where a timer also starts to run again.
  • Storage capacitors located in the measuring point ensure the energy supply to the measuring point during any system-related voltage interruptions.
  • each signal line L consists of a two-wire line to which all measuring points MS of a signal line are connected in parallel.
  • Each measuring point MS is characterized by a fixed address A. By sending this characteristic address, the signal center Z can call up any measuring point MS m and, for example, have it output its measured value.
  • the address signals can consist, for example, of a digital pulse sequence, a specific voltage, frequency or tone sequence, or of any combination of these elements.
  • FIG. 3 shows the block diagram of a measuring point MS for use in the transmission method according to the invention.
  • the measuring point MS can be a fire detector, for example an ionization smoke detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in one Intrusion protection system, such as a passive infrared detector, an ultrasound detector or a noise detector, or any measuring point in a transmission system.
  • a fire detector for example an ionization smoke detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in one Intrusion protection system, such as a passive infrared detector, an ultrasound detector or a noise detector, or any measuring point in a transmission system.
  • each measuring point MS there is a directionally symmetrical (bilateral) switching element S which connects the two input / output terminals 1, 2 to one another.
  • a measured variable sensor M In the module B, a measured variable sensor M, a measured value converter W, a control unit KE and an address memory AR are provided.
  • the state of the switching element S is controlled by the control unit KE, which also contains means for signal detection.
  • the control unit KE which also contains means for signal detection.
  • the address A superimposed on the line voltage is determined by switching on the line voltage from the control unit KE and read into the address memory AR.
  • any other individual commands or information can be stored in the measuring point MS; however, the address memory AR is blocked from accepting further addresses A.
  • the measuring points MS are connected to one another and to the signal center Z via the terminals 1 and 3A on the one hand and the terminals 2 and 3B on the other hand, as shown in FIG. 4.
  • the switching element S is directionally symmetrical (bilateral)
  • the measuring points MS can be supplied with power from both sides, ie the signal lines can be connected to terminals 1 and 3A as well as to terminals 2 and 3B of the measuring point MS, which simplifies and increases safety during assembly.
  • the polling direction for the signal line L concerned can be reversed if the signal line L is returned from the last measuring point MS to the signal center Z.
  • the measuring point MS thus remotely addressed is characterized by the stored address A until the voltage supply of the measuring point MS fails or until the signal center Z releases the address memory lock for re-addressing by special control commands and a new address is read.
  • High reliability of the measured value identification is achieved if the address A is transmitted together with the measured value to the signal center Z for evaluation; the signal center Z can monitor the function of the measured value transmission by comparing the expected with the actually read address.
  • the KE control unit also contains a line short-circuit detector for the left and for the right connection terminal. If a short circuit is detected, opening the switching element S prevents the voltage at the terminal which is not short-circuited from dropping below the required operating voltage. This makes it possible to maintain the operation of all measuring points MS up to the line short circuit.
  • the measuring points MS are symmetrical, ie interchangeable, with regard to the connection terminals.
  • a preferred embodiment of the method according to the invention provides that the line is led back from the last measuring point MS of a signal line L to the signal center Z.
  • the monitoring of the measuring point MS can now take place from two sides. This makes it possible in connection with the short-circuit detector mentioned, in the event of a line short-circuit or interruption Maintain data traffic from and to the measuring points MS fully, while reporting the line fault. In this context, it is of great importance that the location of the line fault can easily be determined by the method according to the invention. This is a particular advantage, because it is generally known that finding line faults is very time-consuming and time-consuming.
  • FIG. 4 shows an embodiment of a transmission system according to the invention with measuring points MS which are addressed from the signal center.
  • all measuring points MS m are distributed over one or more signal lines L.
  • the measuring points MS are constructed according to FIG. 3, ie they each contain a measuring sensor M, a measuring value converter W, a control unit KE and address memory AR for storing the measuring point address and other individual commands in the modules B.
  • all switching elements S m are first opened, so that only the measuring point MS 1 closest to the center of a signal line L can receive information from the signal center Z.
  • the control center now sends out the address A 1 on the signal line L, which is received by the measuring point MS 1 and read into the address memory AR 1 .
  • control commands for the measuring point MS 1 can also be transmitted and read into the corresponding memory and stored there.
  • the switching element S 1 After receiving the address A 1 together with any associated control commands, the switching element S 1 is closed, so that the measuring point MS 2 can receive its corresponding information from the signal center Z. Simultaneously with the closing of the switching element S 1 , the address memory AR 1 and possibly existing command memories are locked in such a way that no new information can be read into these memories.
  • the fully addressed system can now be operated like a conventional monitoring system according to the chain advance principle according to FIG. 1, in which each time the switching element S of the measuring point MS m is closed, a current pulse is drawn, which is counted by the signal center Z for the purpose of identifying the measuring point.
  • the address A m is coded together with the measured value and transmitted to the Signalzentrra.le Z, where it is compared with the address determined independently by counting the current pulses. This redundancy makes measuring point identification extremely reliable.
  • Such a monitoring system can be completed by remote addressing, of course, purely as a parallel system of FIG. 2 are operated, must be set in which no addresses by hand to the M essstellen but from the signal station Z out. Furthermore, the remote-addressed system can be operated as a mixed series-parallel system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)
  • Dc Digital Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

Meßstellen (MS), die kettenförmig an Signallinien (L) liegen, übermitteln Meßwerte an eine Signalzentrale (Z), in welcher sie zur Gewinnung differenzierter Störungs- bzw. Alarmsignale verknüpft werden. Bei Inbetriebnahme werden alle Meßstellen (MS) durch eine Spannungsänderung der Signallinie (L) abgetrennt und dann durch in jeder Meßstelle vorhandene Schaltelemente (S) zeitlich gestaffelt so wieder an die Signallinie (L) angeschaltet, daß jede Meßstelle (MSm) nach einer bestimmten Zeitverzögerung eine nachfolgende Meßstelle (MSm + 1) zusätzlich an die Linienspannung anschaltet. In den Meßstellen (MS) sind Adreßspeicher (AR) vorhanden, welche in vorgegebener Reihenfolge von der Signalzentrale (Z) aus mit den Adressen (A) der einzelnen Meßstelle (MS) belegt und dann verriegelt werden, bevor durch das Schaltelement (S) die nächste Meßstelle (MS) derselben Signallinie (L) an die Signalspannung angeschlossen wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Uebertragung von Messwerten in einem Ueberwachungssystem, wobei von einzelnen, zur Ueberwachung dienenden, kettenförmig an Signallinien liegenden Messstellen ermittelte Messwerte an erste Klemmenpaare einer Signalzentrale gegeben werden, in welcher sie dann zur Gewinnung differenzierter Störungs- bzw. Alarmmeldungen verknüpft werden und wobei ferner bei Inbetriebnahme alle Messstellen durch eine Spannungsänderung der Signallinie abgetrennt und dann durch in jeder Messstelle vorhandene Schaltelemente zeitlich gestaffelt so wieder an die Signallinie angeschaltet werden, dass jede Messstelle nach einer bestimmten Zeitverzögerung eine nachfolgende Messstelle zusätzlich an die Linienspannung anschaltet.
  • Zur Lösung vielfältiger Ueberwachungsaufgaben werden Messstellen in ausgedehnten Objekten verteilt und über eine Signalleitung an eine Signalzentrale angeschlossen. In diesem Zusammenhang wird es immer wichtiger, die genaue Herkunft der Messdaten zu kennen, um die Bedürfnisse einer intelligenten Signalverarbeitung zu befriedigen.
  • Die Identifizierbarkeit der Messstellen ist grundsätzlich auf drei verschiedene Arten zu erreichen. Die älteste bekannte, heute aber nur noch sehr wenig angewandte Methode besteht darin, von jeder Messstelle eine separate Leitung zur Signalzentrale zu ziehen. Diese Lösung ist jedoch mit äusserst hohem Installationsaufwand verbunden. Moderne Systeme verwenden entweder das Kettenfortschaltprinzip, bei welchem die Messstellen in Serie geschaltet sind und die Identifizierung durch Zählen entsprechender Fortschalteimpulse erfolgt (siehe Fig.1), oder individuell fest adressierte Messstellen, welche parallel an die Leitung angeschaltet sind (Fig. 2). Ein auf dem Fortschalteprinzip nach Fig. 1 beruhendes Verfahren ist in DE-AS 2'533'382 beschrieben. Der wesentliche Unterschied zwischen den beiden letztgenannten Verfahren besteht darin, dass beim Fortschalteprinzip alle Messstellen identisch sein können, während sich bei dem Parallelsystem die Messstellen durch ihre Adresse unterscheiden, was entweder durch Schalter oder sonstige Programmierhilfsmittel erreicht wird. Es leuchtet ein, dass identische Messstellen vom Standpunkt der Grosseriefabrikation als auch für Service und Wartung entscheidende Vorteile aufweisen und ausserdem die Gefahr der Vertauschung und Fehladressierung ausschliessen. Andererseits erlaubt jedoch die fest eingeprägte Adresse eine höhere Sicherheit der Messstellen-Identifizierung. Die bekannten Verfahren zur Identifizierung von Messstellen in Uebertragungssystemen weisen folgende Nachteile auf:
    • 1) Hoher Installationsaufwand
    • 2) Unsicherheit bei der Messstellen-Identifizierung (Kettenfortschaltung)
    • 3) Unterschiedliche Messstellen (Parallelsystem)
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Einrichtung zur Durchführung des Verfahrens für die Identifizierung von Messstellen eines Uebertragungssystems zu schaffen, welches die vorstehend genannten Nachteile vermeidet, insbesondere ein Uebertragungssystem zu schaffen, welches bei geringem Installationsaufwand eine sichere Identi- fizierung der Messstelle, von welcher Messwerte an eine Signalzentrale gegeben werden, ermöglicht, wobei identische Messstellen, die kettenförmig an die Signalzentrale angeschlossen werden, verwendet werden können. Eine weitere Aufgabe der Erfindung besteht darin, gemäss einer Ausgestaltung des erfindungsgemässen Uebertragungssystems, die Messstellen so auszugestalten, dass sie über schleifenförmig angeordnete Signallinien von beiden Seiten her von der Signalzentrale angesteuert werden können.
  • Dies wird erfindungsgemäss in einem Verfahren zur Uebertragung von Messwerten der eingangs erwähnten Art dadurch erreicht, dass in den Messstellen vorhandene Adressspeicher in vorgegebener Reihenfolge von der Signalzentrale aus mit den Adressen der entsprechenden Messstellen belegt und dann verriegelt werden, bevor durch das Schaltelement die nächste Messstelle derselben Signallinie an die Signalspannung angeschlossen wird.
  • Es werden also wie beim Fortschalteprinzip identische Messstellen seriell an die Signalzentrale angeschaltet, d.h. in jeder Messstelle befindet sich ein Schaltelement mit dem bei Inbetriebnahme nacheinander die Messstellen an die Signalzen- trale angeschaltet werden und mit dem individuelle Adressen von der Signalzentrale aus in entsprechende Adressspeicher in den Messstellen eingelesen werden.
  • Der Adressspeicher der neu angeschalteten Messstelle wird gefüllt und dann sofort verriegelt, d.h. gegen das Einlesen weiterer Adressen gesperrt. Gleichzeitig schaltet das Schaltelement die nächste Messstelle an die Signalleitung an und diese weitere Messstelle ist nun ihrerseits zur Aufnahme ihrer entsprechenden Adresse bereit. Dieses Anschalten neuer Messstellen wird fortgesetzt bis alle Messstellen einer Signalleitung mit ihren zugehörigen individuellen Adressen versehen sind. Dadurch wird erreicht, dass sich die ursprünglich identischen Messstellen nach der Inbetriebnahme voneinander unterscheiden. Die Fernadressierung vermeidet jede Manipulation an den Messstellen selbst und erlaubt die Ausnützung sowohl der Vorteile des Parallelsystems als auch jener des Seriesystems, ohne aber deren Nachteile zu haben. Selbstverständlich kann man bei Systemausfall, Störung oder Wartung die Adressen jederzeit neu einlesen.
  • Die Herkunft der Signale, d.h, die Identifizierung der Messstelle von welcher die Signale stammen, ist in der Signalzentrale nach zwei Methoden möglich; erstend durch Zählen der Fortschaltimpulse und zweitens durch die Messstellen-Adresse. Durch Kombination beider Methoden, d.h. durch Vergleich der gezählten Impulse mit der Melderadresse, lässt sich ein sehr hoher Sicherheitsgrad der Messstellenidentifizierung erreichen.
  • Die Uebertragung der Messwerte kann nun so erfolgen, wie es in der DE-AS 2'533'382 beschrieben wurde, d.h. es werden bei jedem Abfragezyklus die Schaltelemente betätigt. Die Uebertragung kann aber auch wie bei einem Parallelübertragungssystem erfolgen, wobei die Schaltelemente geschlossen bleiben.
  • Eine Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens besteht aus Messstellen, welche einen Messgrössensensor, einen Messwertwandler, eine Kontrolleinheit, einen Adressspeicher und ein Schaltelement aufweisen.
  • Im folgenden wird anhand der Figuren eine bevorzugte Ausführungsform der Erfindung näher er.läutert. Es zeigen
    • Fig. 1 ein serielles, kettengeschaltetes Ueberwachungssystem nach dem Stand der Technik,
    • Fig. 2 ein parallel adressiertes Ueberwachungssystem des Standes der Technik,
    • Fig. 3 das Blockschaltbild einer Messstelle (MS) zur Durchführung des erfindungsgemässen Verfahrens und
    • Fig. 4 eine Ausführungsform eines erfindungsgemässen Ueberwachungssystems mit Fernadressierung der Messstelle (MS) von der Signalzentrale Z aus.
  • Fig. 1 zeigt den Aufbau eines herkömmlichen Ueberwachungssy- stems nach dem Kettenfortschaltprinzip. Von einer Signalzentrale Z gehen eine oder mehrere Signalleitungen L aus, an welche jeweils mehrere Messstellen MS angeschlossen sind. Die Messstellen MS enthalten im wesentlichen ausser den Messsensoren und Messwertwandlern einen Signalempfänger, eine Ablaufsteuerung, einen Signalgenerator und ein Schaltelement Sm. Nach Anlegen der Linienspannung an die Signallinie L beginnt in der Messstelle MS1 ein Zeitglied zu laufen. Nach einer bestimmten Verzögerung schliesst das Schaltelement S1 und legt die Linienspannung an die zweite Messstelle MS2, wo ebenfalls wieder ein Zeitglied zu laufen beginnt. Auf diese Art schliessen nacheinander alle Schalter der Messstellen MS einer Signallinie L. Dieser Vorgang lässt sich periodisch wiederholen, so dass alle Messstellen MS einer Linie zyklisch abgefragt werden. Nach Anlegen der Linienspannung an eine Messstelle MSm bzw. beim Schliessen des betreffenden Schaltelementes Sm kann eine Uebertragung des Messwertes des Messsensors M an die Signalzentrale Z erfolgen.
  • In der Messstelle befindliche Speicherkondensatoren stellen die Energieversorgung der Messstelle während eventuell auftretender systembedingter Spannungsunterbrechungen sicher.
  • Fig. 2 zeigt ein herkömmliches parallel adressiertes Ueberwachungssystem. Die einzelnen Messstellen MS der gesamten Anlage sind wie in Fig. 1 auf verschiedene Signallinien L verteilt und über diese Signallinie L mit einer Signalzentrale Z verbunden. Jede Signallinie L besteht aus einer Zweidrahtleitung, an die alle Messstellen MS einer Signallinie parallel angeschlossen sind. Jede Messstelle MS ist durch eine fest eingestellte Adresse A charakterisiert. Durch Aussenden dieser charakteristischen Adresse kann die Signalzentrale Z jede beliebige Messstelle MSm aufrufen und zum Beispiel zur Abgabe ihres Messwertes veranlassen. Die Adresssignale können beispielsweise aus einer digitalen Impulsfolge, einer bestimmten Spannungs-, Frequenz- oder Tonfolge, oder aus beliebigen Kombinationen dieser Elemente bestehen. Bei einer grösseren Anzahl von Messstellen MS pro Signallinie L kommt praktisch nur eine digitale Impulsfolge in Frage, weil sich damit eine fast beliebige Anzahl verschiedener Adressen mit integrationsfreundlichen Elementen von bescheidener absoluter Genauigkeit realisieren lässt. Durch weitere digitale Impulsfolgen können zudem auch komplizierte Instruktionen an die jeweils adressierte Messstellen übermittelt werden.
  • Ein offenkundiger Nachteil des beschriebenen Parallelsystems besteht in der Möglichkeit einer Messstellen-Verwechslung oder einer nur schwer auffindbaren Fehladressierung. Ausserdem setzt ein Leitungskurzschluss eine ganze Signallinie ausser Betrieb.
  • Fig. 3 zeigt das Blockschaltbild einer Messstelle MS für den Einsatz in dem erfindungsgemässen Uebertragungsverfahren.
  • Die Messstelle MS kann ein Brandmelder, z.B. ein Ionisationsrauchmelder, ein optischer Rauchmelder, ein Temperaturmelder oder ein Flammenmelder, oder ein Ueberwachungsgerät in einem Intrusionsschutzsystem, z.B. ein passiver Infrarotmelder, ein Ultraschallmelder oder ein Geräuschmelder, oder eine beliebige Messstelle in einem Uebertragungssystem sein.
  • In jeder Messstelle MS ist ein richtungssymmetrisches (bilaterales) Schaltelement S vorhanden, das die beiden Eingang/ Ausgang-Klemmen 1, 2 miteinander verbindet. In der Baugruppe B sind ein Messgrössensensor M ein Messwertwandler W, eine Kontrolleinheit KE und ein Adressspeicher AR vorgesehen.
  • Der Zustand des Schaltelementes S wird von der Kontrolleinheit KE gesteuert, welche auch Mittel zur Signalerkennung enthält. Bei Inbetriebnahme des Ueberwachungssystems, d.h, wenn die Messstelle MS über die Linie L mit der Signalzentrale Z verbunden wird, wird durch Anschalten an die Linienspannung von der Kontrolleinheit KE die der Linienspannung überlagerte Adresse A ermittelt und in den Adressspeicher AR eingelesen. Neben der Adresse A können in der Messstelle MS beliebige andere individuelle Befehle oder Informationen gespeichert werden; der Adressspeicher AR ist jedoch für die Aufnahme weiterer Adressen A blockiert.
  • Ueber die Klemmen 1 und 3A einerseits und die Klemmen 2 und 3B andererseits sind die Messstellen MS miteinander und mit der Signalzentrale Z verbunden, wie es in Fig. 4 dargestellt ist.
  • Da das Schaltelement S richtungssymmetrisch (bilateral) ausgebildet ist, können die Messstellen MS von beiden Seiten her mit Strom versorgt werden, d. h. die Signalleitungen können sowohl mit den Klemmen 1 und 3A als auch mit den Klemmen 2 und 3B der Messstelle MS verbunden werden, was eine Vereinfachung und Erhöhung der Sicherheit bei der Montage bedeutet. Andererseits kann beim Ausbleiben von Meldersignalen die Abfragerichtung für die betroffene Signalleitung L umgekehrt werden, wenn die Signalleitung L von der letzten Messstelle MS zur Signalzentrale Z zurückgeführt wird.
  • Die so fernadressierte Messstelle MS ist solange durch die gespeicherte Adresse A charakterisiert, bis die Spannungsversorgung der Messstelle MS ausfällt oder bis die Signalzentrale Z durch besondere Steuerbefehle die Adressspeicherverriegelung zwecks Neuadressierung aufhebt und eine neue Adresse eingelesen wird. Hohe Zuverlässigkeit der Messwert-Identifizierung wird erreicht, wenn die Adresse A zur Auswertung zusammen mit dem Messwert an die Signalzentrale Z übertragen wird; die Signalzentrale Z kann durch Vergleich der erwarteten mit der tatsächlich gelesenen Adresse die Funktion der Messwertübertragung überwachen.
  • Weiterhin enthält die Kontrolleinheit KE je einen Leitungskurzschlussdetektor für die linke und für die rechte Anschlussklemme. Wenn ein Kurzschluss erkannt ist, wird durch Oeffnen des Schaltelementes S ein Absinken der Spannung an der nicht kurzgeschlossenen Klemme unter die nötige Betriebsspannung verhindert. Dadurch ist es möglich, den Betrieb sämtlicher Messstellen MS bis zum Leitungskurzschluss aufrechtzuerhalten.
  • Die Messtellen MS sind bezüglich der Anschlussklemmen symmetrisch, d.h. vertauschbar. Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens sieht vor, dass die Leitung von der letzten Messstelle MS einer Signalleitung L wieder zur Signalzentrale Z zurückgeführt wird. Die Ueberwachung der Messstelle MS kann nun von zwei Seiten erfolgen. Hierdurch wird in Verbindung mit dem erwähnten Kurzschlussdetektor ermöglicht, bei einem Leitungs-Kurzschluss oder -Unterbruch den Datenverkehr von und zu den Messstellen MS voll aufrechtzuerhalten, bei gleichzeitiger Meldung der Leitungsstörung. Von grosser Bedeutung ist in diesem Zusammenhang, dass durch das erfindungsgemässe Verfahren der Ort der Leitungsstörung leicht ermittelt werden kann. Dies ist ein besonderer Vorteil, denn es ist allgemein bekannt, dass das Auffinden von Leitungsfehlern sehr aufwendig und zeitraubend ist.
  • Fig. 4 zeigt eine Ausführungsform eines erfindungsgemässen Uebertragungssystems mit Messstellen MS, die von der Signalzentrale aus adressiert sind. Es sind wie in der Fig. 1 alle Messstellen MSm auf eine oder mehrere Signalleitungen L verteilt. Die Messstellen MS sind entsprechend Fig. 3 aufgebaut, d.h. sie enthalten in den Baugruppen B je einen Messensor M, einen Messwertwandler W, eine Kontrolleinheit KE und Adressspeicher AR zur Speicherung der Messstellenadresse und anderer individueller Befehle. Bei Inbetriebnahme werden zunächst alle Schaltelemente Sm geöffnet, so dass nur die zentralennächste Messstelle MS1 einer Signalleitung L von der Signalzentrale Z Information empfangen kann. Die Zentrale sendet nun auf der Signalleitung L die Adresse A1 aus, welche von der Messstelle MS1 empfangen und in den Adressspeicher ARl eingelesen wird. Bei dieser Gelegenheit können auch Steuerbefehle für die Messstelle MS1 übertragen und in entsprechende Speicher eingelesen und dort gespeichert werden. Nach Empfang der Adresse A1 samt den eventuell zugehörigen Steuerbefehlen wird das Schaltelement S1 geschlossen, so dass die Messstelle MS2 von der Signalzentrale Z ihre entsprechende Information empfangen kann. Gleichzeitig mit dem Schliessen des Schaltelementes S1 werden auch der Adressspeicher AR1 und eventuell vorhandene Befehlsspeicher so verriegelt, dass keine neue Information in diese Speicher eingelesen werden kann.
  • Dieser Zyklus wiederholt sich, bis alle Messstellen MS der Anlage mit Adressen Am und zugehörigen Steuerbefehlen versehen sind, d.h. alle Messstellen MS sind automatisch von der Signalzentrale Z aus fernadressiert worden.
  • Die vollständig adressierte Anlage kann nun wie ein herkömmliches Ueberwachungssystem nach dem Kettenfortschaltprinzip entsprechend Fig. 1 betrieben werden, in welchem bei jedem Schliessen des Schaltelementes S der Messstelle MSm ein Strompuls gezogen wird, welcher von der Signalzentrale Z zwecks Messstellenidentifizierung gezählt wird. In Abweichung von der Funktion nach Fig. 1 werden die Adresse Am zusammen mit dem Messwert codiert an die Signalzentra.le Z übertragen, wo sie mit der unabhängig durch Zählen der Stromimpulse ermittelten Adresse verglichen werden. Durch diese Redundanz wird die Messstellen-Identifizierung höchst zuverlässig.
  • Ein solches Ueberwachungssystem kann nach abgeschlossener Fernadressierung selbstverständlich auch als reines Parallelsystem nach Fig. 2 betrieben werden, bei welchen keine Adressen von Hand an den Messstellen eingestellt werden müssen, sondern von der Signalzentrale Z aus. Weiterhin kann die fernadressierte Anlage als ein gemischtes Serie-Parallel System betrieben werden.

Claims (7)

1. Verfahren zur Uebertragung von Messwerten in einem Ueberwachungssystem, wobei von einzelnen, zur Ueberwachung dienenden, kettenförmig an Signallinien (L) liegenden Messstellen (MS) ermittelte Messwerte an erste Klemmenpaare einer Signalzentrale (Z) gegeben werden, in welcher sie dann zur Gewinnung differenzierter Störungs- bzw. Alarmmeldungen verknüpft werden und wobei ferner bei Inbetriebnahme alle Messstellen (MS) durch eine Spannungsänderung der Signallinie (L) abgetrennt und dann durch in jeder Messstelle (MS) vorhandene Schaltelemente (S) zeitlich gestaffelt so wieder an die Signallinie (L) angeschaltet werden, dass jede Messstelle (MS) nach einer bestimmten Zeitverzögerung eine nachfolgende Messstelle zusätzlich an die Linienspannung anschaltet, dadurch gekennzeichnet, dass in den Messstellen (MS) vorhandene Adressspeicher (AR) in vorgegebener Reihenfolge von der Signalzentrale (Z) aus mit den Adressen (A) der Messstelle (MS) belegt und dann verriegelt werden, bevor durch das Schaltelement (S) die nächste Messstelle (MS) derselben Signallinie (L) an die Signalspannung angeschlossen wird.
2. Verfahren gemäss Patentanspruch 1, dadurch gekennzeichnet, dass zuerst der in der der Signalzentrale (Z) nächstgelegenen Messstelle (MS) befindliche Adressspeicher (AR) mit der der Messstelle (MS) zugehörigen Adresse (A) belegt wird.
3. Verfahren gemäss Patentanspruch 1, dadurch gekennzeichnet, dass zuerst der in der der Signalzentrale (Z) entferntest gelegen Messstelle (MS) befindliche Adressspreicher (AR) mit der der Messstelle zugehörigen Adresse (A) belegt wird.
4. Verfahren gemäss einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messstellen (MS) hinsichtlich des Anschlusses an die Meldelinien (L) richtungssymmetrisch (bilateral) sind.
5. Verfahren gemäss Patentanspruch 4, dadurch gekennzeichnet, dass die Signallinie (L) von der letzten Messstelle (MS) an zweite Klemmenpaare (K2) zurückgeführt werden und dass die Messstellen (MS) von der Signalzentrale (Z) her sowohl über die Klemmenpaare (Ki) als auch über die Klemmenpaare (K2) angesteuert werden können.
6. Verfahren gemäss einem der Patentanprüche 1 bis 5, dadurch gekennzeichnet, dass nach der Belegung aller Adressspeicher (AR) sämtlicher Messstellen einer Signallinie (L) alle Schaltelemente (S) geschlossen und somit alle Messstellen der Signallinie (L) parallel an die Signalzentrale (Z) angeschlossen sind.
7. Verfahren gemäss einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass in den Messstellen (MS) Mittel (KE) vorhanden sind, welche einen Kurzschluss der Klemmenpaare (1, 3A) bzw. (2, 3B) mit denen die Messstellen (MS) mit der Signallinie verbunden sind, erkennen können.
EP83103224A 1982-04-28 1983-03-31 Verfahren zur Übertragung von Messwerten in einem Überwachungssystem Withdrawn EP0093872A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2589/82 1982-04-28
CH2589/82A CH664637A5 (de) 1982-04-28 1982-04-28 Verfahren zur uebertragung von messwerten in einem ueberwachungssystem.

Publications (1)

Publication Number Publication Date
EP0093872A1 true EP0093872A1 (de) 1983-11-16

Family

ID=4237179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83103224A Withdrawn EP0093872A1 (de) 1982-04-28 1983-03-31 Verfahren zur Übertragung von Messwerten in einem Überwachungssystem

Country Status (4)

Country Link
US (1) US4612534A (de)
EP (1) EP0093872A1 (de)
JP (1) JPS58198943A (de)
CH (1) CH664637A5 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191239A1 (de) * 1984-12-18 1986-08-20 Gent Limited Informationsübertragungsanlage
EP0212106A1 (de) * 1985-07-10 1987-03-04 Cerberus Ag Verfahren zur Uebertragung von Messwerten
EP0243928A2 (de) * 1986-04-30 1987-11-04 Siemens Nixdorf Informationssysteme Aktiengesellschaft Gefahrenmeldeanlage
DE3715196A1 (de) * 1986-05-16 1987-11-19 Merk Gmbh Telefonbau Fried Gefahrenmeldeanlage
EP0419703A1 (de) * 1989-09-27 1991-04-03 Siemens Aktiengesellschaft Verfahren zur frei wählbaren Vergabe von Melderadressen in einer Gefahrenmeldeanlage, die nach dem Kettensynchronisationsprinzip arbeitet
EP0450119A1 (de) * 1990-04-03 1991-10-09 Siemens Aktiengesellschaft Einrichtung zum Anschliessen weiterer Elemente an eine bereits bestehende Meldeprimärleitung
EP0468234A2 (de) * 1990-07-26 1992-01-29 Siemens Aktiengesellschaft Verfahren zur Erhöhung der Störsicherheit bei Gefahrenmeldeanlagen
AT399957B (de) * 1986-05-16 1995-08-25 Merk Gmbh Telefonbau Fried Gefahrenmeldeanlage
DE4405986A1 (de) * 1994-02-24 1995-08-31 Kessler & Luch Gmbh Sonde zur Darstellung einer turbulenzarmen Strömung
EP0854609A2 (de) * 1997-01-21 1998-07-22 Nittan Company, Limited Übertragungssystem
WO2000003368A1 (de) * 1998-07-09 2000-01-20 Robert Bosch Gmbh Bus-betreibbare sensorvorrichtung und entsprechendes prüfverfahren
EP1363261A1 (de) * 2002-05-17 2003-11-19 Securiton AG Verfahren zum Betrieb einer Gefahrenmeldeanlage sowie Gefahrenmeldeanlage, insbesondere zur Durchführung des Verfahrens
DE10240650B3 (de) * 2002-09-03 2004-02-26 Siemens Gebäudesicherheit GmbH & Co. oHG Verfahren zum Adressieren von Meldern in einer Gefahrenmeldeanlage
EP1553726A1 (de) * 2002-10-25 2005-07-13 Citizen Watch Co. Ltd. Elektronisches gerätesystem
WO2019242863A1 (en) * 2018-06-21 2019-12-26 Autronica Fire & Security As System and method for startup of a detector loop

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632517B2 (ja) * 1985-07-19 1994-04-27 ホーチキ株式会社 異常監視装置
US4717907A (en) * 1986-03-10 1988-01-05 Arinc Research Corporation Remote parameter monitoring system with location-specific indicators
US4751498A (en) * 1986-03-11 1988-06-14 Tracer Electronics, Inc. Single-wire loop alarm system
US4777473A (en) * 1986-08-22 1988-10-11 Fire Burglary Instruments, Inc. Alarm system incorporating dynamic range testing
GB2194867B (en) * 1986-09-09 1991-05-29 Mitsubishi Electric Corp A transmission line control system and method for disconnecting a sub-bus from a main-bus
IN170265B (de) * 1986-10-02 1992-03-07 Rosemount Inc
DE3702591A1 (de) * 1987-01-29 1988-08-11 Sonnenschein Accumulatoren Schaltung zur laufenden ueberpruefung der qualitaet einer mehrzelligen batterie
EP0409016A3 (en) * 1989-07-10 1992-07-01 Csir System and method for locating labelled objects
US5140622A (en) * 1990-04-04 1992-08-18 Idec Izumi Corporation Data transmission system with double lines
US5168273A (en) * 1991-03-14 1992-12-01 Potter Electric Signal Company Sequential analog/digital data multiplexing system and method
DE4240628C2 (de) * 1992-12-03 2000-11-09 Sipra Patent Beteiligung Überwachungseinrichtung an einer Textilmaschine
US5576689A (en) * 1993-08-27 1996-11-19 Queen; Andrew Self testing personal response system with programmable timer values
US5801913A (en) * 1996-04-29 1998-09-01 Kiddie-Fenwal, Inc. Isolation circuitry
DE19707651A1 (de) * 1997-02-26 1998-08-27 Itt Mfg Enterprises Inc Ultraschall-Abstandsmeßsystem mit im Zeitmultiplex übertragenen digitalen Meßsignalen
JP2000067352A (ja) * 1998-06-16 2000-03-03 Pittway Corp アドレスを付けるための方法と装置
DE19940700C2 (de) * 1999-08-27 2003-05-08 Job Lizenz Gmbh & Co Kg Verfahren und Vorrichtung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage
FI116805B (fi) * 2002-10-04 2006-02-28 Kone Oyj Signalointimenetelmä ja signalointijärjestely
KR100968865B1 (ko) * 2007-12-17 2010-07-09 주식회사 애트랩 시리얼 통신 시스템 및 이의 id 부여방법
CA2769228C (en) 2009-07-30 2017-02-14 Prysmian S.P.A. Apparatus and method for generating electric energy in an electric power transmission system
AU2009350577B2 (en) 2009-07-30 2015-06-18 Prysmian S.P.A. Method and system for monitoring a cable system of an electric power transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2121318A5 (de) * 1971-01-08 1972-08-18 Bbc Brown Boveri & Cie
DE2533382B1 (de) * 1975-07-25 1976-10-21 Siemens Ag Verfahren und Einrichtung zur UEbertragung von Messwerten in einem Brandmeldesystem
US4263580A (en) * 1976-08-23 1981-04-21 Hitachi, Ltd. Monitor system for operation of solenoid operated devices
EP0042501A1 (de) * 1980-06-23 1981-12-30 Cerberus Ag Einrichtung zur Übertragung von Messwerten in einem Brandmeldesystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400694A (en) * 1979-12-03 1983-08-23 Wong Raphael W H Microprocessor base for monitor/control of communications facilities
US4290055A (en) * 1979-12-05 1981-09-15 Technical Development Ltd Scanning control system
US4468664A (en) * 1980-05-21 1984-08-28 American District Telegraph Company Non-home run zoning system
US4413259A (en) * 1981-09-18 1983-11-01 Raychem Corporation Cascade monitoring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2121318A5 (de) * 1971-01-08 1972-08-18 Bbc Brown Boveri & Cie
DE2533382B1 (de) * 1975-07-25 1976-10-21 Siemens Ag Verfahren und Einrichtung zur UEbertragung von Messwerten in einem Brandmeldesystem
US4263580A (en) * 1976-08-23 1981-04-21 Hitachi, Ltd. Monitor system for operation of solenoid operated devices
EP0042501A1 (de) * 1980-06-23 1981-12-30 Cerberus Ag Einrichtung zur Übertragung von Messwerten in einem Brandmeldesystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TECHNISCHE MITTEILUNGEN, AEG-TELEFUNKEN, Band 61, Nr. 6, 1971, Seiten 318-320, Berlin, DE. *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191239A1 (de) * 1984-12-18 1986-08-20 Gent Limited Informationsübertragungsanlage
US4864519A (en) * 1984-12-18 1989-09-05 Gent Limited Information transmission system
EP0212106A1 (de) * 1985-07-10 1987-03-04 Cerberus Ag Verfahren zur Uebertragung von Messwerten
EP0243928A2 (de) * 1986-04-30 1987-11-04 Siemens Nixdorf Informationssysteme Aktiengesellschaft Gefahrenmeldeanlage
EP0243928A3 (de) * 1986-04-30 1989-02-08 Siemens Nixdorf Informationssysteme Aktiengesellschaft Gefahrenmeldeanlage
DE3715196A1 (de) * 1986-05-16 1987-11-19 Merk Gmbh Telefonbau Fried Gefahrenmeldeanlage
AT399957B (de) * 1986-05-16 1995-08-25 Merk Gmbh Telefonbau Fried Gefahrenmeldeanlage
EP0419703A1 (de) * 1989-09-27 1991-04-03 Siemens Aktiengesellschaft Verfahren zur frei wählbaren Vergabe von Melderadressen in einer Gefahrenmeldeanlage, die nach dem Kettensynchronisationsprinzip arbeitet
EP0450119A1 (de) * 1990-04-03 1991-10-09 Siemens Aktiengesellschaft Einrichtung zum Anschliessen weiterer Elemente an eine bereits bestehende Meldeprimärleitung
EP0468234A2 (de) * 1990-07-26 1992-01-29 Siemens Aktiengesellschaft Verfahren zur Erhöhung der Störsicherheit bei Gefahrenmeldeanlagen
EP0468234A3 (en) * 1990-07-26 1992-12-09 Siemens Aktiengesellschaft Method for increasing the fault security by risk signal systems
DE4405986A1 (de) * 1994-02-24 1995-08-31 Kessler & Luch Gmbh Sonde zur Darstellung einer turbulenzarmen Strömung
EP0854609A2 (de) * 1997-01-21 1998-07-22 Nittan Company, Limited Übertragungssystem
EP0854609A3 (de) * 1997-01-21 1999-12-22 Nittan Company, Limited Übertragungssystem
WO2000003368A1 (de) * 1998-07-09 2000-01-20 Robert Bosch Gmbh Bus-betreibbare sensorvorrichtung und entsprechendes prüfverfahren
AU750454B2 (en) * 1998-07-09 2002-07-18 Robert Bosch Gmbh Bus-operational sensor device and corresponding test method
US6563326B1 (en) 1998-07-09 2003-05-13 Robert Bosch Gmbh Bus-driveable sensor apparatus with direction-dependent current/voltage characteristic curve and method for testing the apparatus
EP1363261A1 (de) * 2002-05-17 2003-11-19 Securiton AG Verfahren zum Betrieb einer Gefahrenmeldeanlage sowie Gefahrenmeldeanlage, insbesondere zur Durchführung des Verfahrens
DE10240650B3 (de) * 2002-09-03 2004-02-26 Siemens Gebäudesicherheit GmbH & Co. oHG Verfahren zum Adressieren von Meldern in einer Gefahrenmeldeanlage
EP1398745A2 (de) * 2002-09-03 2004-03-17 Siemens Gebäudesicherheit GmbH & Co. OHG Verfahren zum Adressieren von Meldern in einer Gefahrenmeldeanlage
EP1398745A3 (de) * 2002-09-03 2004-07-21 Siemens Gebäudesicherheit GmbH & Co. OHG Verfahren zum Adressieren von Meldern in einer Gefahrenmeldeanlage
EP1553726A1 (de) * 2002-10-25 2005-07-13 Citizen Watch Co. Ltd. Elektronisches gerätesystem
US7330766B2 (en) 2002-10-25 2008-02-12 Citizen Holdings Co., Ltd. Electronic device system
EP1553726A4 (de) * 2002-10-25 2009-06-10 Citizen Holdings Co Ltd Elektronisches gerätesystem
WO2019242863A1 (en) * 2018-06-21 2019-12-26 Autronica Fire & Security As System and method for startup of a detector loop
US11367339B2 (en) 2018-06-21 2022-06-21 Autronica Fire & Security As System and method for startup of a detector loop

Also Published As

Publication number Publication date
US4612534A (en) 1986-09-16
JPH0378024B2 (de) 1991-12-12
JPS58198943A (ja) 1983-11-19
CH664637A5 (de) 1988-03-15

Similar Documents

Publication Publication Date Title
EP0093872A1 (de) Verfahren zur Übertragung von Messwerten in einem Überwachungssystem
EP1206765B1 (de) Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage
DE4036639C2 (de)
EP0489346B1 (de) Verfahren zur automatischen Zuordnung von Meldeadressen bei einer Gefahrenmeldeanlage
DE2533354C3 (de) Einrichtung zum Übertragen von Steuerbefehlen in einem Brandschutzsystem
DE2533330B2 (de) Verfahren und einrichtung zur uebertragung von messwerten in einem brandmeldesystem
DE3611949C2 (de)
DE3623705C2 (de)
DE4017533C2 (de)
EP0212106B1 (de) Verfahren zur Uebertragung von Messwerten
DE3614692C2 (de)
DE102009050692B4 (de) Sicherheits-Kommunikationssystem zur Signalisierung von Systemzuständen
DE3424294A1 (de) Abfrageeinrichtung zur identifikation der stellung von schaltern
DE3637681A1 (de) Gefahrenmeldeanlage nach dem pulsmeldesystem
DE19631302B4 (de) Sensor-Aktor-Bussystem
DE4426466C2 (de) Anordnung und Verfahren zum Betreiben von Gefahrenmeldern
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
EP0362797B2 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE3715196C2 (de)
CH627574A5 (en) Road traffic light system and method for operating the system for changing the duration of the light signal phases of the road traffic lights
EP0098553B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und/oder der Melderkennung in einer Gefahrenmeldeanlage
AT399957B (de) Gefahrenmeldeanlage
EP0450119A1 (de) Einrichtung zum Anschliessen weiterer Elemente an eine bereits bestehende Meldeprimärleitung
EP0195457A1 (de) Vorrichtung zur Eigenüberwachung einer Schaltungsanordnung mit einem Mikrocomputer
DE3225044C2 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermeßwerts und der Melderkennung in einer Gefahrenmeldeanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830331

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850808

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUGGLI, JUERG, DR.

Inventor name: SCHEIDWEILER, ANDREAS, DR.

Inventor name: BUHLER, RICHARD

Inventor name: SCHIBLI, EUGEN, DIPL.-ING.