EP1206765B1 - Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage - Google Patents

Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage Download PDF

Info

Publication number
EP1206765B1
EP1206765B1 EP00940321A EP00940321A EP1206765B1 EP 1206765 B1 EP1206765 B1 EP 1206765B1 EP 00940321 A EP00940321 A EP 00940321A EP 00940321 A EP00940321 A EP 00940321A EP 1206765 B1 EP1206765 B1 EP 1206765B1
Authority
EP
European Patent Office
Prior art keywords
detector
switch
detectors
master station
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00940321A
Other languages
English (en)
French (fr)
Other versions
EP1206765A1 (de
Inventor
Gerhard Röpke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Job Lizenz GmbH and Co KG
Original Assignee
Job Lizenz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Job Lizenz GmbH and Co KG filed Critical Job Lizenz GmbH and Co KG
Publication of EP1206765A1 publication Critical patent/EP1206765A1/de
Application granted granted Critical
Publication of EP1206765B1 publication Critical patent/EP1206765B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/001Alarm systems in which substations are interrogated in succession by a central station with individual interrogation of substations connected in parallel
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/003Address allocation methods and details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • G08B25/045Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop with sensing devices and central station in a closed loop, e.g. McCullough loop
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a method for automatic assignment of Detector addresses in the event of a large number of detectors having alarm system according to claim 1.
  • Security alarm systems e.g. Fire alarm systems usually have a larger one Number of hazard detectors connected to a two-wire signaling line are. This can be designed as a stub or as a loop, via which the individual detectors communicate with a central office. Every detector has a sensor or the like which depends on parameters of its Environment measured values produced. The measured values are sent via the line the control center, this usually the individual detectors cyclically queries. To assign the measured values to the individual detectors It is necessary to assign an identifier or an address to each detector. The address is stored in a non-volatile memory.
  • Measured values of different detector types according to a uniform procedure too process is also known from DE 25 33 354, the individual detectors Assign timers, as in the above-described prior art the case is.
  • the timers are used to transmit control commands on the Line to the individual detectors used, with the detectors only during runtime the individual timers are ready to receive.
  • Control devices are only within one control cycle on the reporting line a timer can be switched on, wherein the starting time of the individual timers in the Central is evaluated as an address.
  • EP 0 098 552 also known in a cyclic query a hazard detection system in each detector an influenceable by the measured value via a transducer Switch timer to the reporting line and in the control center from the number of thereby causing increases in the line current to derive the detector address.
  • Each detector is equipped with an output signal generated in a transducer, this is the sum of the detector measured value and a detector identification signal represents the duration of the timer controlled and in the control center next to the detector address from the respective switching delay both the detector measured value as also derives the detector identifier of the relevant detector.
  • the message line annular close.
  • the query direction vice versa.
  • the measured value is transmitted either by a corresponding time delay until the connection of the following detector or in the form of a coded pulse train, which is forwarded to the central office.
  • each detector a series resistor and a switch between the wires the reporting line is closed and is closed in case of alarm.
  • the response of the Detector causes a change in the total resistance of the reporting line.
  • One in the Central arranged measuring and evaluation device assigns each detector a window discriminator. Triggering the detector causes with the for him characteristic resistance value a corresponding measurement voltage. Of the this measuring voltage associated window discriminator then switches its output to the display device associated with the alarmed detector.
  • From DE 40 38 992 is a method for automatic assignment of detector addresses become known in a security alarm system, in which a central office connected to a two-wire reporting line to the chain-like individual detectors are connected. Each detector has a transmission device, a Data memory, an address memory and a voltage measuring device as well as a switch.
  • a first phase of the center is a rest voltage connected to the line, whereby the detectors are powered by Charging a capacitor.
  • a short-circuit voltage placed on the line, eliminating all detectors whose address memory is empty is short circuit the line by means of its switch.
  • a third phase will the line impressed a measuring current and thereby the first detector with closed Switch dropping voltage is from the voltage measuring device determined.
  • a query voltage is applied to the line, whereby the detector whose Memory is occupied, but the address memory is empty, capable of communication and gets assigned an address from the central office, which in the Address memory is stored. This process is repeated by the control center until all detectors are provided with addresses. The end of the process can be recognized by the central office that in the third phase, no short-circuit current more flows.
  • the last-mentioned known solution requires, on the one hand, a not insignificant one Circuit complexity in the detectors. Furthermore, it requires a longer Period for addressing.
  • the phases 2 to 4 described above must be for every detector of a line will be repeated, which will take a longer time especially with a larger number of detectors in a network.
  • the prior art also includes further addressing or detection methods.
  • Such is described for example in EP 0 546 401, which consists in that an identification module is present in a detector base of each detector is, for each individual detector base an unchangeable identification number is provided, which differs from that of the other detector base is. Means are provided in the detector which recognize the identification number.
  • the identification module mounted in the detector base either turns off a resistor combination, a ROM, a PROM, an EPROM, a EEPROM or an optical bar mark formed. The reading of the identification number via contacts or an optical transmission device.
  • the localization of the detector base is done either by inserting the Detector in the specified order during initial startup by initial detector alarm e.g.
  • EP 0 362 985 attempts to solve the problematic addressing method described above thereby improving that in the notification socket one manually to a binary code adjustable mechanical device on corresponding resilient elements of the inserted measuring head for transmitting the detector address presses. Although the switch is facilitated for maintenance purposes. A time consuming manual setting of the coding for the socket address is also included this solution required. Furthermore, the unstable spring elements and contact points a security risk.
  • EP 0 485 878 discloses a method for determining the configuration the detector of a security alarm system has become known, in which in each detector A binary serial number is stored by the manufacturer. At the installation 12 are sometimes very time-consuming and complex process steps to determine the number of detectors in the plant their position or networking carried out on the determination of their serial numbers. The more complex the Networking of ring and stub lines is, the tighter the known Method.
  • the invention is based on the object, a method for automatic assignment of detector addresses in a hazard alarm system indicate that a low circuit complexity required in the individual detectors, within short time is feasible and even with long transmission lines works with a large number of detectors error-free.
  • the method according to the invention is in a first phase as in the genus in accordance with the state of the art in the center a voltage to the line through which the capacitors are charged. This is an energy supply the detector is secured at short notice.
  • a second phase sends the control panel a switching signal to close the switch of all detectors.
  • this switching signal from a voltage-modulated data word of the center formed.
  • a third phase are immediately after closing the switch in a predetermined Alternating constant currents with different level of the line impressed. The constant current with changing level generates at the measuring resistor of all detectors, whose switch is open, and thus at the detector to be addressed changing Brownouts.
  • the following detectors receive no evaluable voltage pulses through their resistors and thus none Communication address, as the switch of the addressed detector the transmission line short circuits to the following detectors. After the addressed If the detector has saved his address, as mentioned, his switch is opened.
  • the control panel can continue to flow one of the impressed currents.
  • the central office registers the opening of the switch by a voltage jump to the Terminals. This can be used as an acknowledgment signal for making the first one Detector has properly received its communication address.
  • the control panel sends another communication address, which also by an impressed current-modulated serial signal from the two constant currents is formed. Since the switch of the first detector is open, receives also the second detector via its measuring resistor evaluable voltage pulses. All other detectors receive no usable voltage pulses via their Measuring resistors. After storing his address, the second detector opens his switch. For each additional detector, the control panel repeats the last one described Step with a different data word. This is by a Rapid transmission of the communication addresses of a large number of detectors Allocated communication address. Is the assignment of the communication addresses completed, the control panel no longer receives a voltage jump. This can the control center will consider the automatic process completed.
  • a circuit arrangement for achieving the object of the invention provides for each detector connected to the two-wire signaling line in line with a diode switched capacitor, a controllable switch between the Cores, a measuring resistor in the course of a wire, a pulse receiver, a Logic circuit and an address memory connected to the logic circuit in front.
  • the impressed constant currents at the Measuring resistor generates voltage pulses, which evaluates the pulse receiver.
  • the Logic circuit provides for feeding into the address memory.
  • the pulse receiver can be a simple standard amplifier with a fixed gain and a downstream transistor stage may be provided.
  • the invention is alternatively provided to use the microprocessor for this purpose, which is usually arranged in each detector for the implementation measurements and communication with the control center.
  • the A / D converter of the microprocessor are provided and a corresponding Program of the microprocessor.
  • An additional circuit complexity is therefore not required for the pulse receiver.
  • the impressing of constant currents in the signaling line ensures that the detector has the same size at each measuring resistor Voltage drops are generated, regardless of the number the detector, the length of the reporting line and other line parameters.
  • a mechanical switch such as a relay
  • due to its almost ideal resistance conditions also clear voltage relationships between the respective address reception pending resistance, which is identical for all detectors, and those the short-circuited downstream detector.
  • semiconductor switches e.g. FET switches. used. These have switched on, i. conductive state a volume resistance, which can be less than 50 milliohms. As a result, corresponding small form Voltage drops across the terminals of each electrical switch. These residual stresses are still on the following measuring resistor shorted detector measurable. Thus, not all the electricity flowing from the headquarters of the line is impressed, by the short-circuited Detector.
  • the Ratio of the resistance value from the measuring resistor to the resistance of the through-connected semiconductor switch is greater than 10: 1. That way, one becomes unambiguous identification of the pending from the control center for addressing Melders reached.
  • cable cross-sections and e.g. a number of detectors in a loop of 128 pieces is included usual supply voltages of e.g. 24 volts addressing all Detector according to the inventive method in a short time automatically performed.
  • the voltage signal is through the impressed constant currents via the measuring resistor of the addressed Detector is generated, many times higher than the voltage drop at the following still with a semiconductor switch shorted detector.
  • the method according to the invention with a low circuit complexity even with extensive alarm systems within a short time allows automatic assignment of addresses. Because of the low time utilization of each detector for the addressing process The capacitor can be designed relatively small, which is the expense further reduced.
  • Fig. 1 is a center Z of a hazard detection system, such as a Fire alarm system, shown, with a transmission line is connected to the wires A and B.
  • the transmission line can be a branch or a ring line be, as it is known.
  • the control panel has a power supply in the form of a power supply NT, a microprocessor ⁇ C, a constant current source K, a modulator M and a voltage measuring device VM. On the Function of the individual components will be discussed below.
  • each of the detectors M1 and M2 has a resistance Rm1 or Rm2 in the course a wire, a capacitor C1 or C2 in series with a diode D1 or D2 between the wires, a controllable switch SK1 or SK2, a Pulse receiver PE, a logic circuit L and an address memory SP.
  • Rm1 or Rm2 in the course a wire
  • capacitor C1 or C2 in series with a diode D1 or D2 between the wires
  • SK1 or SK2 a controllable switch SK1 or SK2
  • a Pulse receiver PE Pulse receiver PE
  • L logic circuit L
  • an address memory SP an address memory SP
  • the center Z switches a supply voltage to the Transmission line. Via the identically dimensioned measuring resistors Rm1, Rm2 ... Rinn gets the supply voltage to all detectors M1, M2 ... Mn. Your Capacitors C1, C2 ... Cn are charged via the diodes D1, D2 ... Dn. The charged ones Capacitors supply the logic circuits L, the address memories SP and the pulse receiver PE with electrical energy during the addressing phase.
  • the switches SK1, SK2 ... SKn are open and do not carry any current.
  • the center Z transmits a voltage-modulated by means of the modulator M.
  • Data word as collective command "Initialization" to all detectors M1, M2 ... Mn.
  • the required circuit corresponds to the prior art and will not be described further.
  • the demodulators necessary for the reception in the detectors are not relevant for the address assignment to the detectors and therefore not shown in Fig. 1. After receiving this command, all detectors switch M1, M2 ... Mn their switches SK1, SK2 ... SKn.
  • the control panel sends with the help of the constant current source K and of the microprocessor ⁇ C a data word on the transmission line.
  • the data word consists of a predetermined change of two impressed currents Ik0 and Ikl.
  • the two currents cause the resistor Rm1 of the detector M1 Voltage pulses, which are converted by means of the pulse receiver PE into digital signals become.
  • the logic unit L passes the interpreted as a communication address Data word to the non-volatile address memory SP on.
  • the detector M2 and all subsequent detectors receive no evaluable voltage pulses about their resistances Rm2 ... Rmn and thus no communication address, since the Switch SK1 the transmission line to the subsequent detectors M2 ... Mn short-circuits.
  • SK1 is opened. This can be done, for example, by immediately after sending the address from the central Z and storage in the detector M1, the central office current-modulating logic signal sends what the logic L in the detector M1 for opening his switch SK1 causes. In this way takes place at the output of Central Z a voltage jump instead of, as an acknowledgment for a given address assignment is evaluated to the detector M1. The measurement of the voltage jump takes place at the current measuring device VM, which is connected to the microprocessor ⁇ C is.
  • the central Z sends another address, which also by a impressed current-modulated serial signal from the constant currents Ik0 and Ik1 is formed. Since switch SK1 is open, the second detector M2 also receives voltage pulses which can be evaluated via its measuring resistor Rm2 and that from the pulse receiver PE are evaluated. The logic circuit of the first detector M1 ignores this address signal because its address memory is already occupied. The addressing process then continue, as already described for M1. For every detector the center repeats this step. This is achieved by a speedy broadcast the communication addresses a large number of detectors within a short time an address provided. Once the assignment of addresses has been completed, this can be done be determined by the head office that a surge in its Connections of the voltage measuring device VM is no longer registered.
  • FIG. 2 shows a detector with regard to its addressing circuit, which partly the same components as the detectors M1 and M2 of FIG. 1.
  • a logic circuit L is shown instead of the pulse receiver PE with integrated A / D converter.
  • These are "components” a commonly installed in the detector microprocessor whose A / D converter and its program with the voltage drop across the measuring resistor Rm with compares given digital values. The resulting data word becomes interpreted as an address and stored in the address memory SP, if this empty is.
  • the remaining process steps are identical to those already described.

Description

Die Erfindung bezieht sich auf ein Verfahren zur automatischen Zuweisung von Melderadressen bei einer eine Vielzahl von Meldern aufweisenden Gefahrenmeldeanlage nach dem Patentanspruch 1.
Gefahrenmeldeanlagen, z.B. Brandmeldeanlagen, weisen in der Regel eine größere Anzahl von Gefahrenmeldern auf, die an eine zweiadrige Meldeleitung angeschlossen sind. Diese kann als Stichleitung oder auch als Ringleitung konzipiert sein, über die die einzelnen Melder mit einer Zentrale kommunizieren. Jeder Melder weist einen Sensor oder dergleichen auf, der in Abhängigkeit von Parametern seiner Umgebung Messwerte produziert. Die Messwerte werden über die Leitung an die Zentrale übertragen, wobei diese üblicherweise die einzelnen Melder zyklisch abfragt. Um eine Zuordnung der Messwerte zu den einzelnen Meldern vornehmen zu können, ist es notwendig, jedem Melder eine Kennung oder eine Adresse zuzuordnen. Die Adresse ist in einem nicht flüchtigen Speicher abgelegt.
Es ist bekannt, bei Inbetriebnahme einer derartigen Gefahrenmeldeanlage daher zunächst den einzelnen Meldern eine Adresse zuzuweisen. Hierzu wird vorzugsweise ein automatisches Verfahren angewendet.
Im Stand der Technik ist eine Reihe von Verfahren zur Adressierung und zum Betrieb von Gefahrenmeldeanlagen bekannt geworden, auf die nachfolgend kurz eingegangen wird.
Aus DE 25 33 330 ist bekannt, bei Abfrage der Melder eine Linie nach einer für jeden Melder charakteristischen Vorlaufzeit die Abgabe eines Stromimpulses mit einer seinem Messwert proportionalen Pulsdauer zu veranlassen. In der zentralen Auswertevorrichtung wird die Vorlaufzeit gemessen und als Adresse des einzelnen Melders ermittelt. Aus DE 25 33 382 ist ein Verfahren bekannt, bei dem die Melder einer Linie zu Beginn eines jeden Abfragezyklus von der Meldelinie elektrisch abgetrennt sind und dann in vorgegebener Reihenfolge kettenförmig angeschaltet werden. Jeder Melder schaltet nach einer entsprechenden Zeitverzögerung den nachfolgenden Melder an. Eine Auswerteeinrichtung in der Zentrale ermittelt die jeweiligen Erhöhungen des Linienstroms, wobei die Melderadresse der Zahl der Erhöhungen des Linienstroms entspricht. Da es nicht möglich oder sinnvoll ist, Messwerte von verschiedenen Meldertypen nach einem einheitlichen Verfahren zu verarbeiten, ist aus DE 25 33 354 auch bekannt geworden, den einzelnen Meldern Zeitglieder zuzuordnen, wie das auch bei dem oben beschriebenen Stand der Technik der Fall ist. Die Zeitglieder werden zur Übertragung von Steuerbefehlen auf der Linie zu den einzelnen Meldern benutzt, wobei die Melder nur während der Laufzeit der einzelnen Zeitglieder empfangsbereit sind. Mit im Melder vorgesehenen Steuereinrichtungen ist innerhalb eines Steuerzyklus auf der Meldelinie jeweils nur ein Zeitglied einschaltbar, wobei der Startzeitpunkt der einzelnen Zeitglieder in der Zentrale als Adresse ausgewertet wird. In diesem Zusammenhang ist aus EP 0 098 552 ferner bekannt geworden, bei einer zyklischen Abfrage einer Gefahrenmeldeanlage in jedem Melder ein vom Messwert über einen Messwandler beeinflussbares Zeitglied an die Meldeleitung zu schalten und in der Zentrale aus der Anzahl der dadurch bewirkten Erhöhungen des Leitungsstroms die Melderadresse abzuleiten. In jedem Melder wird mit einem in einem Signalumformer gebildeten Ausgangssignal, das die Summe aus dem Meldermesswert und einem Melderkennungssignal darstellt, die Laufzeit des Zeitgliedes gesteuert und in der Zentrale neben der Melderadresse aus der jeweiligen Schaltverzögerung sowohl der Meldermesswert als auch die Melderkennung des betreffenden Melders abgeleitet.
Damit eine größere Anzahl von Brandmeldern an einzelnen Meldelinien angeschlossen werden kann oder um einen höheren Strom durch eine Meldelinie schikken zu können, ist aus EP 0 042 501 bekannt geworden, die Meldeleitung ringförmig zu schließen. Bei Ausbleiben von Signalen auf einer Meldelinie wird die Abfragerichtung umgekehrt. Die Messwertübertragung erfolgt entweder durch eine entsprechende Zeitverzögerung bis zur Anschaltung des nachfolgenden Melders oder in Form einer kodierten Impulsfolge, die zur Zentrale weitergeleitet wird.
Aus EP 0 212 106 ist ferner bekannt geworden, den Meldern in einer kettenförmigen Linie Adressenspeicher zuzuordnen, welche in vorgegebener Reihenfolge von der Zentrale aus mit den Adressen belegt werden. Dies geschieht in der Weise, dass eine Weiterschaltung zum nächsten Melder erst erfolgt, wenn eine Adresse im voraufgegangenen Melder verriegelt ist. Zu diesem Zweck ist in jedem Melder ein Schalter angeordnet, der eine Ader zur Durchschaltung an den nächsten Melder kurzschliesst.
Aus DE 32 25 032 ist bekannt geworden, die gewünschte Unterscheidung von Meldertyp, Kennung und Messwert dadurch herbeizuführen, dass mit den von der Zentrale zu den Meldern übertragenen Steuerbefehlen im einzelnen Melder gezielt Umschalteinrichtungen angesteuert werden, die von der Meldermesswertübertragung auf die Melderkennungsübertragung umschalten. Über einen Abfragezyklus wird dann die jeweilige Melderkennung zur Zentrale übertragen, wo sie gespeichert und weiterverarbeitet wird. Dabei ist in jedem Melder eine Einrichtung vorgesehen, mit der die Melderkennung, z.B. Melderart oder Melderzustand, eingestellt wird.
Allen beschriebenen Meldern ist gemeinsam, dass sie einen in Reihe mit einer Ader liegenden Schalter enthalten, der geschlossen werden muss, damit der in der Linie nächstfolgende Melder mit der Zentrale verbunden ist. Demgegenüber sind auch Lösungen bekannt, die andere Schaltmittel für ein kettenförmiges Zuschalten von einzelnen Meldern vorsehen.
In der DE 32 11 550 ist eine zweiadrige Meldelinie vorgesehen, bei der jeder Melder einen Reihenwiderstand aufweist sowie einen Schalter, der zwischen den Adern der Meldeleitung liegt und im Alarmfall geschlossen wird. Das Ansprechen des Melders bewirkt eine Änderung des Gesamtwiderstands der Meldelinie. Eine in der Zentrale angeordnete Mess- und Auswertungseinrichtung weist jedem Melder zugeordnet einen Fensterdiskriminator auf. Ein Auslösen der Melder bewirkt mit dem für ihn charakteristischen Widerstandswert eine entsprechende Messspannung. Der dieser Messspannung zugeordnete Fensterdiskriminator schaltet dann seinen Ausgang auf die dem alarmierten Melder zugeordnete Anzeigevorrichtung.
Aus DE 40 38 992 ist ein Verfahren zur automatischen Zuordnung von Melderadressen bei einer Gefahrenmeldeanlage bekannt geworden, bei der eine Zentrale mit einer zweiadrigen Meldeleitung verbunden ist, an die kettenartig einzelne Melder angeschlossen sind. Jeder Melder weist eine Übertragungseinrichtung, einen Messwertspeicher, einen Adressspeicher und eine Spannungsmesseinrichtung auf sowie einen Schalter. In einer ersten Phase wird von der Zentrale eine Ruhespannung an die Leitung gelegt, wodurch die Melder mit Energie versorgt werden durch Aufladung eines Kondensators. In einer zweiten Phase wird eine Kurzschliessspannung an die Leitung gelegt, wodurch alle Melder, deren Adressenspeicher leer ist, die Leitung mittels ihres Schalters kurzschliessen. In einer dritten Phase wird der Leitung ein Messstrom eingeprägt und die dadurch am ersten Melder mit geschlossenem Schalter abfallende Spannung wird von der Spannungsmesseinrichtung ermittelt. Ihr Wert wird in dem Messwertspeicher gespeichert. In einer vierten Phase wird eine Abfragespannung an die Leitung gelegt, wodurch der Melder, dessen Messwertspeicher belegt ist, dessen Adressspeicher aber leer ist, kommunikationsfähig wird und von der Zentrale eine Adresse zugeteilt bekommt, die im Adressspeicher abgelegt wird. Dieser Vorgang wird von der Zentrale so oft wiederholt, bis alle Melder mit Adressen versehen sind. Das Ende des Vorgangs kann von der Zentrale daran erkannt werden, dass in der dritten Phase kein Kurzschlussstrom mehr fließt.
Die zuletzt beschriebene bekannte Lösung erfordert zum einen einen nicht unerheblichen Schaltungsaufwand in den Meldern. Ferner erfordert sie einen längeren Zeitraum für die Adressierung. Die oben beschriebenen Phasen 2 bis 4 müssen für jeden Melder einer Linie wiederholt werden, was eine längere Zeit in Anspruch nimmt, insbesondere bei einer größeren Zahl von Meldern eines Netzes.
Zum Stand der Technik gehören noch weitere Adressier- bzw. Melderkennungsverfahren. Ein solches ist etwa in der EP 0 546 401 beschrieben, das darin besteht, dass in einem Meldersockel eines jeden Melders ein Identifikationsmodul vorhanden ist, das für jeden einzelnen Meldersockel eine nicht veränderbare Identifikationsnummer vorgesehen ist, welche von der der anderen Meldersockel unterschiedlich ist. Im Detektor sind Mittel vorgesehen, welche die ldentifikationsnummer erkennen. Das im Meldersockel angebrachte Identifikationsmodul wird entweder aus einer Widerstandskombination, einem ROM, einem PROM, einem EPROM, einem EEPROM oder einer optischen Strichmarkierung gebildet. Die Ablesung der Identifikationsnummer erfolgt über Kontakte oder eine optische Übertragungseinrichtung. Die Lokalisierung des Meldersockels erfolgt entweder durch Einsetzen des Melders in vorgegebener Reihenfolge bei Erstbetriebnahme durch erstmalige Detektoralarmierung z.B. mit Prüfgas in der vorgegebenen Reihenfolge oder durch Zuweisung der Adresse mit Hilfe eines Programmiergeräts vor dem Einsetzen. In der EP 0 362 985 wird versucht, das oben beschriebene problematische Adressierverfahren dadurch zu verbessern, dass im Meldesockel eine manuell auf einen Binärcode einstellbare mechanische Vorrichtung auf entsprechende federnde Elemente des eingesteckten Messkopfs zur Übertragung der Melderadresse drückt. Zwar wird der Meldertausch zu Wartungszwecken dadurch erleichtert. Eine zeitaufwendige manuelle Einstellung der Kodierung für die Sockeladresse ist auch bei dieser Lösung erforderlich. Ferner stellen die labilen Federelemente und Kontaktstellen ein Sicherheitsrisiko dar.
Aus EP 0 485 878 ist schließlich ein Verfahren zur Ermittlung der Konfiguration der Melder einer Gefahrenmeldeanlage bekannt geworden, bei dem in jedem Melder herstellerseitig eine binäre Seriennummer gespeichert wird. Bei der Installation werden 12 zum Teil sehr zeitaufwendige und komplexe Verfahrensschritte zur Ermittlung der in der Anlage vorhandenen Melderanzahl deren Lage bzw. Vernetzung über die Feststellung ihrer Seriennummern durchgeführt. Je komplexer die Vernetzung von Ring- und Stichleitungen ist, um so langwieriger ist das bekannte Verfahren.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage anzugeben, das einen geringen schaltungstechnischen Aufwand in den einzelnen Meldern erfordert, innerhalb kurzer Zeit durchführbar ist und auch bei langen Übertragungsleitungen mit einer großen Anzahl von Meldern fehlerfrei arbeitet.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.
Bei dem erfindungsgemäßen Verfahren wird in einer ersten Phase wie bei dem gattungs gemäßen Stand der Technik in der Zentrale eine Spannung an die Leitung gelegt, durch welche die Kondensatoren aufgeladen werden. Damit ist eine Energieversorgung der Melder kurzfristig sichergestellt. In einer zweiten Phase sendet die Zentrale ein Schaltsignal zum Schließen der Schalter aller Melder. Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird dies Schaltsignal von einem spannungsmodulierten Datenwort der Zentrale gebildet. In einer dritten Phase werden unmittelbar nach dem Schließen der Schalter in einem vorgegebenen Wechsel konstante Ströme mit unterschiedlichem Pegel der Leitung eingeprägt. Der Konstantstrom mit wechselndem Pegel erzeugt am Messwiderstand aller Melder, deren Schalter geöffnet ist, und somit am zu adressierenden Melder wechselnde Spannungsabfälle. welche von einem Pulsempfänger im Melder, in ein ein Datenwort bildendes digitales Signal umgewandelt werden. Dieses digitale Signal wird als Adresse unmittelbar in den Speicher gegeben, sofern dieser nicht schon mit einer Adresse belegt ist. Sobald dieser Vorgang abgeschlossen ist, öffnet die Logikschaltung den Schalter und sperrt die Einspeicherung eines weiteren Datenwortes in den Adreßspeicher.
Während des beschriebenen Adressiervorgangs erhalten die nachfolgenden Melder keine auswertbaren Spannungsimpulse über ihre Widerstände und damit auch keine Kommunikationsadresse, da der Schalter des adressierten Melders die Übertragungsleitung zu den nachfolgenden Meldern kurzschliesst. Nachdem der adressierte Melder seine Adresse gespeichert hat, wird, wie erwähnt, sein Schalter geöffnet.
Die Zentrale kann einen der eingeprägten Ströme weiter fließen lassen. Die Zentrale registriert das Öffnen des Schalters durch einen Spannungssprung an den Klemmen. Dieser kann als Quittiersignal verwendet werden dafür, dass der erste Melder seine Kommunikationsadresse ordnungsgemäß erhalten hat. Unmittelbar im Anschluss sendet die Zentrale eine weitere Kommunikationsadresse, die ebenfalls durch ein eingeprägtes strommoduliertes serielles Signal aus den beiden Konstantströmen gebildet ist. Da der Schalter des ersten Melders geöffnet ist, erhält auch der zweite Melder über seinen Messwiderstand auswertbare Spannungsimpulse. Alle anderen Melder erhalten keine verwertbaren Spannungsimpulse über ihre Messwiderstände. Nach Abspeicherung seiner Adresse öffnet der zweite Melder seinen Schalter. Für jeden weiteren Melder wiederholt die Zentrale den zuletzt beschriebenen Schritt mit jeweils einem anderen Datenwort. Dadurch wird durch eine zügige Aussendung der Kommunikationsadressen einer Vielzahl von Meldern eine Kommunikationsadresse zugeteilt. Ist die Zuweisung der Kommunikationsadressen abgeschlossen, erhält die Zentrale keinen Spannungssprung mehr. Dadurch kann die Zentrale den automatischen Vorgang als beendet ansehen.
Eine Schaltungsanordnung zur Lösung der erfindungsgemäßen Aufgabe sieht für jeden an die zweiadrige Meldeleitung angeschlossenen Melder einen in Reihe mit einer Diode geschalteten Kondensator, einen steuerbaren Schalter zwischen den Adern, einen Messwiderstand im Zuge einer Ader, einen Pulsempfänger, eine Logikschaltung und einen an die Logikschaltung angeschlossenen Adressspeicher vor. Wie schon erläutert, werden durch die eingeprägten Konstantströme am Messwiderstand Spannungsimpulse erzeugt, die der Pulsempfänger auswertet. Die Logikschaltung sorgt für die Einspeisung in den Adressspeicher. Für den Pulsempfänger kann ein einfacher Standardverstärker mit einem festen Verstärkungsfaktor und eine nachgeschaltete Transistorstufe vorgesehen werden. In einer Ausgestaltung der Erfindung ist alternativ vorgesehen, hierfür den Mikroprozessor zu verwenden, der üblicherweise in jedem Melder angeordnet ist für die Durchführung der Messungen und die Kommunikation mit der Zentrale. Für den Pulsempfänger werden der A/D-Wandler des Mikroprozessors vorgesehen sowie ein entsprechendes Programm des Mikroprozessors. Ein zusätzlicher Schaltungsaufwand ist daher für den Pulsempfänger nicht erforderlich. Das Einprägen von Konstantströmen in die Meldeleitung sorgt dafür, daß an jedem Messwiderstand der Melder gleich große Spannungsabfälle erzeugt werden, und zwar völlig unabhängig von der Anzahl der Melder, der Länge der Meldeleitung und weiterer Leitungsparameter.
Würde ein mechanischer Schalter, beispielsweise eines Relais, für jeden Melder vorgesehen, ergäben sich aufgrund seiner nahezu idealen Widerstandsverhältnisse auch eindeutige Spannungsverhältnisse zwischen dem jeweiligen zum Adressenempfang anstehenden Messwiderstand, der für alle Melder identisch ist, und denen der kurzgeschlossenen nachfolgenden Melder. Aus Kosten- aber auch technischen Gründen werden vorzugsweise Halbleiterschalter, z.B. FET-Schalter. eingesetzt. Diese haben im eingeschalteten, d.h. leitfähigen Zustand einen Durchgangswiderstand, der unter 50 Milliohm liegen kann. Dadurch bilden sich entsprechende kleine Spannungsabfälle über den Anschlüssen eines jeden elektrischen Schalters aus. Diese Restspannungen sind auch an dem nachfolgenden Messwiderstand der noch kurzgeschlossenen Melder messbar. Somit fließt nicht der gesamte Strom, der von der Zentrale der Leitung eingeprägt wird, durch den jeweils kurzgeschlossenen Melder. Daher ist nach einer Ausgestaltung der Erfindung vorgesehen, dass das Verhältnis des Widerstandswertes vom Messwiderstand zum Widerstand des durchgeschalteten Halbleiterschalters größer als 10:1 ist. Auf diese Weise wird eine eindeutige Identifizierung des von der Zentrale aus gesehen zur Adressierung anstehenden Melders erreicht. Bei den erforderlichen Leitungslängen, Kabelquerschnitten und z.B. einer Melderanzahl in einer Ringleitung von 128 Stück ist bei üblichen Versorgungsspannungen von z.B. 24 Volt eine Adressierung sämtlicher Melder nach dem erfindungsgemäßen Verfahren in kurzer Zeit automatisch durchführbar. Bei üblichen Installationsverhältnissen ist das Spannungssignal, das durch die eingeprägten Konstantströme über den Messwiderstand des zu adressierenden Melders erzeugt wird, um ein Vielfaches höher als der Spannungsabfall am nachfolgenden noch mit einem Halbleiterschalter kurzgeschlossenen Melder.
Zusammenfassend kann festgestellt werden, dass das erfindungsgemäße Verfahren mit einem geringen Schaltungsaufwand auch bei ausgedehnten Gefahrenmeldeanlagen innerhalb kurzer Zeit eine automatische Zuweisung von Adressen ermöglicht. Wegen der geringen zeitlichen Inanspruchnahme jedes Melders für den Adressiervorgang kann der Kondensator relativ klein ausgelegt werden, was den Aufwand weiter reduziert.
Die Erfindung soll nachfolgend anhand eines in Zeichnungen dargestellten Ausrührungsbeispiels erläutert werden.
Fig. 1
zeigt schematisch eine Schaltungsanordnung zur Durchführung des Verfahrens nach der Erfindung.
Fig. 2
zeigt eine andere Ausführungsform für eine Adressierschaltung eines Melders der Gefahrenmeldeanlage nach Fig. 1.
In Fig. 1 ist eine Zentrale Z einer Gefahrenmeldeanlage, beispielsweise einer Brandmeldeanlage, dargestellt, mit der eine Übertragungsleitung verbunden ist mit den Adern A und B. Die Übertragungsleitung kann eine Stich- oder eine Ringleitung sein, wie dies an sich bekannt ist. Die Zentrale weist eine Spannungsversorgung in Form eines Netzteils NT, einen Mikroprozessor µC, eine Konstantstromquelle K, einen Modulator M und eine Spannungsmesseinrichtung VM auf. Auf die Funktion der einzelnen Bausteine wird weiter unten noch eingegangen.
An die Übertragungsleitung ist eine Vielzahl von Meldern angeschlossen, beispielsweise 128. In Fig. 1 sind jedoch lediglich zwei Melder M1 und M2 dargestellt. Jeder der Melder M1 und M2 weist einen Widerstand Rm1 bzw. Rm2 im Zuge einer Ader auf, einen Kondensator C1 bzw. C2 in Reihe mit einer Diode D1 bzw. D2 zwischen den Adern, einen steuerbaren Schalter SK1 bzw. SK2, einen Pulsempfänger PE, eine Logikschaltung L und einen Adressenspeicher SP. Jeder Melder enthält eine Reihe weiterer Bauelemente, die für seinen Betrieb erforderlich sind. Da hier jedoch nur die Zuweisung einer Adresse an jeden Melder beschrieben wird, sind diese Bausteine nicht gezeigt und werden auch nicht beschrieben.
Nachfolgend wird die Zuweisung von Adressen zu den einzelnen Meldern M1 bis Mn anhand von Fig. 1 beschrieben.
In einer ersten Phase schaltet die Zentrale Z eine Versorgungsspannung an die Übertragungsleitung. Über die identisch bemessenen Messwiderstände Rm1, Rm2...Rinn gelangt die Versorgungsspannung an alle Melder M1, M2...Mn. Ihre Kondensatoren C1, C2...Cn laden sich über die Dioden D1, D2...Dn auf. Die aufgeladenen Kondensatoren versorgen die Logikschaltungen L, die Adressspeicher SP und die Pulsempfänger PE mit elektrischer Energie während der Adressierphase. Die Schalter SK1, SK2...SKn sind geöffnet und führen keinen Strom.
In einer zweiten Phase sendet die Zentrale Z mit Hilfe des Modulators M ein spannungsmoduliertes Datenwort als Sammelbefehl "Initialisierung" an alle Melder M1, M2...Mn. Die dafür erforderliche Schaltung entspricht dem Stand der Technik und wird nicht weiter beschrieben. Die für den Empfang notwendigen Demodulatoren in den Meldern sind für die Adressenzuweisung an die Melder nicht relevant und deshalb in Fig. 1 nicht dargestellt. Nach Empfang dieses Befehls schalten alle Melder M1, M2...Mn ihre Schalter SK1, SK2...SKn ein.
In einer dritten Phase sendet die Zentrale mit Hilfe der Konstantstromquelle K und des Mikroprozessors µC ein Datenwort auf die Übertragungsleitung. Das Datenwort besteht aus einem vorgegebenen Wechsel von zwei eingeprägten Strömen Ik0 und Ikl. Die beiden Ströme verursachen am Widerstand Rm1 des Melders M1 Spannungsimpulse, die mit Hilfe des Pulsempfängers PE in digitale Signale umgesetzt werden. Die Logikeinheit L leitet das als Kommunikationsadresse interpretierte Datenwort an den nicht flüchtigen Adressspeicher SP weiter. Der Melder M2 und alle nachfolgenden Melder erhalten keine auswertbaren Spannungsimpulse über ihre Widerstände Rm2...Rmn und damit keine Kommunikationsadresse, da der Schalter SK1 die Übertragungsleitung zu den nachfolgenden Meldern M2...Mn kurzschliesst.
Nachdem der Melder M1 seine Adresse in SP gespeichert hat, wird SK1 geöffnet. Dies kann zum Beispiel dadurch geschehen, dass unmittelbar nach dem Aussenden der Adresse von der Zentrale Z und Speicherung im Melder M1 die Zentrale ein strommodulierendes Logiksignal sendet, was die Logik L im Melder M1 zur Öffnung seines Schalters SK1 veranlasst. Auf diese Weise findet am Ausgang der Zentrale Z ein Spannungssprung statt, der als Quittierung für eine erfolgte Adressenvergabe an den Melder M1 gewertet wird. Die Messung des Spannungssprungs erfolgt an der Strommesseinrichtung VM, die mit dem Mikroprozessor µC verbunden ist.
Anschließend sendet die Zentrale Z eine weitere Adresse, die ebenfalls durch ein eingeprägtes strommoduliertes serielles Signal aus den Konstantströmen Ik0 und Ik1 gebildet ist. Da der Schalter SK1 geöffnet ist, erhält auch der zweite Melder M2 über seinen Messwiderstand Rm2 auswertbare Spannungsimpulse, die vom Pulsempfänger PE ausgewertet werden. Die Logikschaltung des ersten Melders M1 ignoriert dieses Adresssignal, da sein Adressspeicher bereits belegt ist. Der Adressiervorgang läuft dann weiter, wie bereits zu M1 beschrieben. Für jeden Melder wiederholt die Zentrale diesen Schritt. Dadurch wird durch eine zügige Aussendung der Kommunikationsadressen eine Vielzahl von Meldern innerhalb kurzer Zeit mit einer Adresse versehen. Ist die Zuweisung der Adressen abgeschlossen, kann dies von der Zentrale dadurch festgestellt werden, dass ein Spannungssprung an seinen Anschlüssen von der Spannungsmessvorrichtung VM nicht mehr registriert wird.
In Fig. 2 ist ein Melder im Hinblick auf seine Adressierschaltung dargestellt, der zum Teil gleiche Bauelemente aufweist wie die Melder M1 und M2 nach Fig. 1. Wie erkennbar, ist anstelle des Pulsempfängers PE eine Logikschaltung L dargestellt mit integriertem A/D-Wandler. Es handelt sich hierbei um "Komponenten" eines üblicherweise im Melder eingebauten Mikroprozessors, dessen A/D-Wandler und dessen Programm die am Messwiderstand Rm abfallenden Spannungen mit vorgegebenen digitalen Werten vergleicht. Das daraus entstehende Datenwort wird als Adresse interpretiert und in dem Adressspeicher SP abgelegt, sofern dieser leer ist. Die übrigen Verfahrensschritte sind mit den bereits beschriebenen identisch.

Claims (9)

  1. Verfahren zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage, die eine Zentrale und mindestens eine damit verbundene zweiadrige Meldeleitung umfasst, an die eine Vielzahl von Meldern angeschlossen ist, wobei jeder Melder einen Kondensator zur Energiespeicherung, einen Messwiderstand in einer Ader, eine den Spannungsabfall am Messwiderstand auswertende Auswertevorrichtung, mit der ein Adressenspeicher verbunden ist und einen von der Auswertevorrichtung steuerbaren Schalter zwischen den Adern aufweist, mit den folgenden Verfahrensschritten:
    in einer ersten Phase wird von der Zentrale eine Spannung an die Leitung gelegt und werden die Kondensatoren aufgeladen
    in einer zweiten Phase sendet die Zentrale ein Schaltsignal zum Schliessen der Schalter aller Melder an der Meldeleitung
    in einer dritten Phase werden von der Zentrale in einem vorgegebenen Wechsel zwei Konstantströme mit unterschiedlichem Pegel der Meldeleitung eingeprägt und mit Hilfe eines Pulsempfängers im Melder in ein ein Datenwort bildendes digitales Signal umgewandelt, das im Adressspeicher gespeichert wird und eine Logikschaltung eine weitere Einspeicherung in den Adressspeicher sperrt und den Schalter öffnet und
    für jeden empfangsbereiten Melder, dessen Adressspeicher nicht belegt ist, die dritte Phase mit einem anderen Datenwort wiederholt wird.
  2. Verfahren nach Anspruch 1, bei dem der Schalter durch ein strommoduliertes Signal der Zentrale, das in der Auswertevorrichtung erfasst und von dieser zur Erzeugung eines Steuerbefehls für den Schalter verwendet wird, geöffnet wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem beim oder nach dem Öffnen des Schalters einer der beiden Ströme weiterfließt und die Zentrale aus dem Spannungssprung ein Quittiersignal ermittelt zwecks Erzeugung eines aus den Konstantströmen bestehenden nächsten seriellen Signals für den nachfolgenden Melder.
  4. Verfahren nach Anspruch 3, bei dem die Zentrale die Zuweisung von Adressen beendet, wenn kein Spannungssprung mehr festgestellt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem das Schaltsignal von einem spannungsmodulierten Datenwort der Zentrale gebildet wird.
  6. Schaltungsanordnung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage mit:
    einer Zentrale (Z), die eine Spannungsversorgung (NT), einen Mikroprozessor (µC), eine Konstantstromquelle (K) und einen Strommodulator (M) aufweist
    einer Vielzahl von Meldern (M1, M2...Mn), die an mindestens eine zweiadrige Meldeleitung (A, B) angeschlossen ist, wobei
    jeder Melder (M1, M2...Mn) einen zwischen den Adern (A, B) in Reihe mit einer Diode (D1, D2...Dn) geschalteten Kondensator (C1, C2...Cn), einen steuerbaren Schalter (SK, SK2...SKn) zwischen den Adern (A, B), einen Messwiderstand (Rm1, Rm2...Rmn), einen zum Messwiderstand parallel liegenden Pulsempfänger (PE), eine Logikschaltung (L) und einen an die Logikschaltung (L) angeschlossenen Adressenspeicher (SP) aufweist und wobei
    die Logikschaltung (L) so ausgebildet ist, dass sie bei einer ersten vom Pulsempfänger (PE) kommenden Pulsfolge den Schalter (SK1, SK2...SKn) schließt, bei einer zweiten vom Pulsempfänger (PE) kommenden Pulsfolge diesen in den Adressspeicher (SP) eingibt, wenn dieser noch nicht mit einer Adresse belegt ist.
  7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, dass als Schalter ein Halbleiterschalter, vorzugsweise ein FET vorgesehen ist und das Verhältnis des Widerstands vom Messwiderstand (Rm1, Rm2...Rmn) zum Widerstandswert des durchgeschalteten Halbleiterschalters größer als 10:1 ist.
  8. Schaltungsanordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Melder (M) einen Mikroprozessor enthält und der Pulsempfänger von dem A/D-Wandler sowie vom Programm des Mikroprozessors gebildet ist.
  9. Schaltungsanordnung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Zentrale (Z) eine mit den Adern (A, B) verbundene Spannungsmesseinrichtung (VM) aufweist.
EP00940321A 1999-08-27 2000-06-06 Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage Expired - Lifetime EP1206765B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19940700 1999-08-27
DE19940700A DE19940700C2 (de) 1999-08-27 1999-08-27 Verfahren und Vorrichtung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage
PCT/EP2000/005179 WO2001016911A1 (de) 1999-08-27 2000-06-06 Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage

Publications (2)

Publication Number Publication Date
EP1206765A1 EP1206765A1 (de) 2002-05-22
EP1206765B1 true EP1206765B1 (de) 2003-01-08

Family

ID=7919816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00940321A Expired - Lifetime EP1206765B1 (de) 1999-08-27 2000-06-06 Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage

Country Status (12)

Country Link
US (1) US6838999B1 (de)
EP (1) EP1206765B1 (de)
JP (1) JP2003517163A (de)
CN (1) CN1138246C (de)
AT (1) ATE230877T1 (de)
AU (1) AU5529700A (de)
DE (2) DE19940700C2 (de)
ES (1) ES2190418T3 (de)
MX (1) MXPA01005391A (de)
PL (1) PL196162B1 (de)
RU (1) RU2214000C2 (de)
WO (1) WO2001016911A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284556A1 (de) * 2001-08-17 2003-02-19 Saia-Burgess Murten AG Verfahren zur Initialisierung eines Steuerungssystem und ein Steuerungssystem
EP1335337A1 (de) * 2002-02-07 2003-08-13 Arturo Schettino Computer- oder telefonsteuerbares und programmierbares Sichercheitssystem, mit Statuserkennung der einzelnen Schutzeinrichtungen
DE10310250A1 (de) * 2003-03-04 2004-11-25 Valeo Schalter Und Sensoren Gmbh Verfahren zur Identifizierung einer elektronischen Einheit
US20050052927A1 (en) * 2003-09-08 2005-03-10 Simplexgrinnell Lp Method and apparatus for assigning addresses to alarm system devices
ATE409378T1 (de) * 2004-06-03 2008-10-15 Elmos Semiconductor Ag Verfahren zur adressierung der teilnehmer eines bussystems
ES2287818T3 (es) * 2005-02-07 2007-12-16 Siemens Schweiz Ag Procedimiento para la determinacion de la posicion de dispositivos de sistemas de deteccion de peligros.
DE102006030706B4 (de) * 2006-06-30 2014-01-23 Eaton Industries Gmbh System und Verfahren zur Steuerung von busvernetzten Geräten über einen offenen Feldbus
JP5182859B2 (ja) * 2007-01-29 2013-04-17 株式会社ステップテクニカ 評価装置及び評価システム
DE102007028926B3 (de) * 2007-06-22 2008-10-16 Siemens Ag Slavegerät zur Verwendung in einer Reihenschaltung sowie Busanordnung mit Reihenschaltung in einem Subbussystem
DE102007028928A1 (de) * 2007-06-22 2009-01-02 Siemens Ag Slavegerät für Reihenschaltung und Verfahren zum Ermitteln der Position von Slavengeräten in einer Reihenschaltung
CN101690019B (zh) 2007-07-06 2014-01-08 默勒有限公司 通过开放式现场总线控制总线联网的设备的系统和方法
PT2927815T (pt) * 2008-05-21 2017-08-04 Hewlett Packard Development Co Lp Barramento de série de pontos múltiplos e processo de deteção de localização
US8122159B2 (en) * 2009-01-16 2012-02-21 Allegro Microsystems, Inc. Determining addresses of electrical components arranged in a daisy chain
US9454504B2 (en) 2010-09-30 2016-09-27 Hewlett-Packard Development Company, L.P. Slave device bit sequence zero driver
GB2484288A (en) * 2010-10-04 2012-04-11 Thorn Security Isolator Circuit for detector
DE102011018630B4 (de) * 2011-04-21 2013-02-07 Phoenix Contact Gmbh & Co. Kg Sicherheits-Kommunikationssystem zur Signalisierung von Systemzuständen
US8775689B2 (en) * 2011-05-02 2014-07-08 Deere & Company Electronic modules with automatic configuration
EP3499250B1 (de) * 2011-09-22 2021-08-04 ZTE Corporation Verfahren und vorrichtung zur identifizierung eines gleichrichters
RU2635093C2 (ru) * 2012-08-31 2017-11-09 Филипс Лайтинг Холдинг Б.В. Система распределения электрической мощности постоянного тока (dc)
US9787495B2 (en) 2014-02-18 2017-10-10 Allegro Microsystems, Llc Signaling between master and slave components using a shared communication node of the master component
US9172565B2 (en) 2014-02-18 2015-10-27 Allegro Microsystems, Llc Signaling between master and slave components using a shared communication node of the master component
EP3419225B1 (de) * 2017-06-21 2020-03-18 Nxp B.V. System und verfahren zur ermöglichung der bestimmung der relativen positionen von slave-einheiten entlang eines stich-busses
US10747708B2 (en) 2018-03-08 2020-08-18 Allegro Microsystems, Llc Communication system between electronic devices
US11231968B2 (en) * 2018-06-05 2022-01-25 Elmos Semiconductor Se Method for identifying bus nodes in a bus system
CN112956160B (zh) * 2018-10-29 2022-08-02 昕诺飞控股有限公司 用于在网络中提供节点序列的系统
DE102019203521A1 (de) * 2019-03-15 2020-09-17 Ellenberger & Poensgen Gmbh Verfahren zum Betrieb eines Stromverteilers

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533330C3 (de) * 1975-07-25 1981-08-13 Siemens AG, 1000 Berlin und 8000 München Verfahren und Einrichtung zur Übertragung von Meßwerten in einem Brandmeldesystem
DE2533382C2 (de) * 1975-07-25 1980-07-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren und Einrichtung zur Übertragung von Meßwerten in einem Brandmeldesystem
DE2533354C3 (de) * 1975-07-25 1979-08-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Einrichtung zum Übertragen von Steuerbefehlen in einem Brandschutzsystem
CH651688A5 (de) * 1980-06-23 1985-09-30 Cerberus Ag Verfahren zur uebertragung von messwerten in einer brandmeldeanlage und einrichtung zur durchfuehrung des verfahrens.
DE3211550C2 (de) * 1982-03-29 1985-02-14 Siemens AG, 1000 Berlin und 8000 München Gleichstrommeldeanlage
CH664637A5 (de) * 1982-04-28 1988-03-15 Cerberus Ag Verfahren zur uebertragung von messwerten in einem ueberwachungssystem.
DE3225106C2 (de) * 1982-07-05 1985-04-11 Siemens AG, 1000 Berlin und 8000 München Verfahren und Einrichtung zur automatischen Abfrage des Meldermeßwerts und der Melderkennung in einer Gefahrenmeldeanlage
DE3225032C2 (de) * 1982-07-05 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
CH668496A5 (de) * 1985-07-10 1988-12-30 Cerberus Ag Verfahren zur uebertragung von messwerten in einem ueberwachungssystem.
US4751498A (en) * 1986-03-11 1988-06-14 Tracer Electronics, Inc. Single-wire loop alarm system
EP0362985B2 (de) * 1988-09-05 1998-10-14 Apollo Fire Detectors Limited Anordnung zum Einstellen der Adressierung von Feuerdetektoren
US5450072A (en) 1990-05-10 1995-09-12 Vockenhuber; Peter Addressing device
DE4036639A1 (de) * 1990-11-16 1992-05-21 Esser Sicherheitstechnik Verfahren zur ermittlung der konfiguration der melder einer gefahrenmeldeanlage und fuer die anlagenkonfigurationsbestimmung geeigneter melder
DE4038992C1 (de) * 1990-12-06 1992-02-06 Siemens Ag, 8000 Muenchen, De
ATE161645T1 (de) * 1991-12-10 1998-01-15 Cerberus Ag Adressierung für brand-, gas- und einbruchmeldeanlagen
US5701330A (en) * 1994-12-16 1997-12-23 Delco Electronics Corporation Serial communication method and apparatus
US5831546A (en) * 1996-05-10 1998-11-03 General Signal Corporation Automatic addressing in life safety system
EP0854609A3 (de) 1997-01-21 1999-12-22 Nittan Company, Limited Übertragungssystem
DE19960422C1 (de) * 1999-12-15 2001-01-25 Job Lizenz Gmbh & Co Kg Verfahren und Vorrichtung zur Bestimmung von als Stromsenken wirkenden gestörten Meldern in einer Gefahrenmeldeanlage

Also Published As

Publication number Publication date
ATE230877T1 (de) 2003-01-15
PL350823A1 (en) 2003-02-10
US6838999B1 (en) 2005-01-04
MXPA01005391A (es) 2003-03-27
EP1206765A1 (de) 2002-05-22
PL196162B1 (pl) 2007-12-31
RU2214000C2 (ru) 2003-10-10
WO2001016911A1 (de) 2001-03-08
CN1138246C (zh) 2004-02-11
DE19940700C2 (de) 2003-05-08
AU5529700A (en) 2001-03-26
JP2003517163A (ja) 2003-05-20
CN1347543A (zh) 2002-05-01
DE19940700A1 (de) 2001-03-08
DE50001072D1 (de) 2003-02-13
ES2190418T3 (es) 2003-08-01

Similar Documents

Publication Publication Date Title
EP1206765B1 (de) Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage
DE4036639C2 (de)
EP0093872A1 (de) Verfahren zur Übertragung von Messwerten in einem Überwachungssystem
DE19960422C1 (de) Verfahren und Vorrichtung zur Bestimmung von als Stromsenken wirkenden gestörten Meldern in einer Gefahrenmeldeanlage
DE2817089B2 (de) Gefahrenmeldeanlage
EP0067339A2 (de) Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
EP0042501B1 (de) Einrichtung zur Übertragung von Messwerten in einem Brandmeldesystem
EP0322698B1 (de) Verfahren für die Übertragung von Informationen
DE2836760A1 (de) Elektrisches alarmanlagen-system
DE3207993C2 (de) Überwachungsanlage
EP0035277A1 (de) Sequentielles Übertragungssystem zum adressenlosen Anschliessen mehrerer Teilnehmer an eine Zentrale
EP0211344A2 (de) Adressierbare Schaltungsanordnung
EP0098554B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und der Melderkennung in einer Gefahrenmeldeanlage
DE4322841C2 (de) Gefahrenmeldeanlage
DE3614692C2 (de)
DE3424294A1 (de) Abfrageeinrichtung zur identifikation der stellung von schaltern
EP0254125B1 (de) Gefahrenmeldeanlage
DE19631302B4 (de) Sensor-Aktor-Bussystem
DE2946169C2 (de) Verfahren zum Ermitteln des Zustandes betimmter Alarmgeber einer Überwachungsanlage
DE10045097A1 (de) Sensorkopf, Steuermodul und Mehrfachsensor
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
EP0362797B2 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE3030252C2 (de) Verfahren und Schaltungsanordnung zur Erfassung der Schaltzustände einer Vielzahl von peripheren Schaltern
EP0098553B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und/oder der Melderkennung in einer Gefahrenmeldeanlage
DE3806993C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010508

AX Request for extension of the european patent

Free format text: AL PAYMENT 20010508;LT PAYMENT 20010508;LV PAYMENT 20010508;MK PAYMENT 20010508;RO PAYMENT 20010508;SI PAYMENT 20010508

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20010508;LT PAYMENT 20010508;LV PAYMENT 20010508;MK PAYMENT 20010508;RO PAYMENT 20010508;SI PAYMENT 20010508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

REF Corresponds to:

Ref document number: 230877

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50001072

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030606

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030606

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030515

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2190418

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50001072

Country of ref document: DE

Representative=s name: HAUCK PATENTANWALTSPARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50001072

Country of ref document: DE

Owner name: DETECTOMAT GMBH, DE

Free format text: FORMER OWNER: JOB LIZENZ GMBH & CO KG, 22926 AHRENSBURG, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170626

Year of fee payment: 18

Ref country code: FR

Payment date: 20170621

Year of fee payment: 18

Ref country code: GB

Payment date: 20170626

Year of fee payment: 18

Ref country code: IE

Payment date: 20170622

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170621

Year of fee payment: 18

Ref country code: BE

Payment date: 20170621

Year of fee payment: 18

Ref country code: AT

Payment date: 20170620

Year of fee payment: 18

Ref country code: SE

Payment date: 20170626

Year of fee payment: 18

Ref country code: IT

Payment date: 20170622

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170811

Year of fee payment: 18

Ref country code: ES

Payment date: 20170703

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: DETECTOMAT GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: JOB LIZENZ GMBH & CO. KG

Effective date: 20180328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001072

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 230877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180606

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

Ref country code: BE

Ref legal event code: PD

Owner name: DETECTOMAT GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: JOB LIZENZ GMBH & CO. KG

Effective date: 20170626

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180607