EP0089010B1 - Semikontinuierliches Verfahren zur Herstellung von reinem Silicium - Google Patents
Semikontinuierliches Verfahren zur Herstellung von reinem Silicium Download PDFInfo
- Publication number
- EP0089010B1 EP0089010B1 EP83102341A EP83102341A EP0089010B1 EP 0089010 B1 EP0089010 B1 EP 0089010B1 EP 83102341 A EP83102341 A EP 83102341A EP 83102341 A EP83102341 A EP 83102341A EP 0089010 B1 EP0089010 B1 EP 0089010B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slag
- silicon
- aluminum
- quartz
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 39
- 239000010703 silicon Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000002893 slag Substances 0.000 claims abstract description 83
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 claims abstract 4
- 238000006243 chemical reaction Methods 0.000 claims description 55
- 239000010453 quartz Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000378 calcium silicate Substances 0.000 claims description 6
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 6
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052916 barium silicate Inorganic materials 0.000 claims description 3
- HMOQPOVBDRFNIU-UHFFFAOYSA-N barium(2+);dioxido(oxo)silane Chemical compound [Ba+2].[O-][Si]([O-])=O HMOQPOVBDRFNIU-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 3
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 36
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 17
- 239000012535 impurity Substances 0.000 abstract description 9
- 239000002904 solvent Substances 0.000 abstract description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 3
- 239000006004 Quartz sand Substances 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 229910002804 graphite Inorganic materials 0.000 description 12
- 239000010439 graphite Substances 0.000 description 12
- 239000011541 reaction mixture Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- COOGPNLGKIHLSK-UHFFFAOYSA-N aluminium sulfide Chemical compound [Al+3].[Al+3].[S-2].[S-2].[S-2] COOGPNLGKIHLSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001914 calming effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- -1 kaolinites Chemical class 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003886 thermite process Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/023—Preparation by reduction of silica or free silica-containing material
Definitions
- the invention relates to a semi-continuous process for the production of pure silicon by reducing quartz with aluminum.
- Silicon is currently still far too expensive as the basic material for cheap terrestrial solar cells.
- An important reason for the high price is the previously usual complex cleaning process, according to which the raw silicon initially obtained by reducing quartz with coal is converted into trichlorosilane by the action of hydrogen chloride. This can be purified by distillation and finally decomposed to high-purity polycrystalline silicon in the presence of hydrogen.
- the silicon obtained in this way then meets the strict purity requirements for electronic components.
- Such a high level of purity is not required for silicon as the base material for the solar cell, especially if polycrystalline silicon with grain boundaries that get contaminants is used.
- quartz can be reduced to elemental silicon by aluminum in the presence of an aluminum sulfide slag.
- the aluminum acts both as a reducing agent for the quartz and as a solvent for the resulting silicon, which can then be crystallized from the solution in an already very pure form by cooling.
- this process has a high aluminum requirement and requires additional protective measures due to the smell and toxicity of the aluminum sulfide, cf. EP-A-29 182.
- the invention was therefore based on the object of specifying a process which can be used on an industrial scale and which, based on quartz, allows the production of pure silicon for solar cells while avoiding the expensive gas phase deposition without having the disadvantages of the previously known processes.
- This object is achieved by a process which is characterized in that a molten alkaline earth silicate slag is placed in a reaction vessel, that batches of quartz and aluminum are introduced into the slag, and that the silicon which forms and separates from the slag is withdrawn in portions from the reaction vessel and that for the regeneration of the slag containing the resulting alumina dissolved, alumina-poor slag material is recharged and a corresponding amount of the slag enriched with alumina is removed from the reaction vessel.
- a particular advantage of the process according to the invention over the classic arc process is that it is not absolutely necessary to use lumpy quartz, but that even quartz sands, preferably in grain sizes of 0.1 to 5 mm, can advantageously be used. Heavily contaminated quartz sands, although they can in principle also be used directly, are expediently pre-cleaned to a purity of at least 98% by weight of quartz in order to avoid premature overloading of the slag used in the process. However, it is more advantageous to use the quartz sands, which are present in large quantities and have purities of over 99.9%. Numerous silicates, such as kaolinites, various types of mica, feldspars or layered silicates, are also suitable as starting material after suitable chemical and physical processing to give silicon dioxide powder.
- the aluminum serving as a reducing agent is expediently used in the purest form possible, in order to avoid introducing additional impurities.
- the use of electrolytically cleaned aluminum with a purity of at least 99.9% has proven particularly useful. If the impurities are substances that accumulate primarily in the slag, even lower levels of purity of the aluminum can be accepted. On the other hand, with regard to impurities that only dissolve slightly in the slag, such as iron or phosphorus, care must be taken from the outset to be as pure as possible.
- Silicates of the alkaline earth metals magnesium, calcium, strontium and barium which can be used both in pure form and as mixtures of two or more components, have proven to be the most suitable base material for the slag serving as the reaction and extraction medium.
- the base material for a particularly inexpensive slag for example, cheap calcium silicate is recommended, to which other silicates, such as magnesium silicate, can then be added.
- the particularly pure barium silicate for example, is particularly suitable for a very pure slag.
- the slag contains up to 30 mol% Alkaline earth fluorides or other substances which increase the solubility of the aluminum oxide in the slag are added.
- the alkaline earth silicate slag is initially placed in a reaction vessel which preferably consists of graphite or carbon tamping mass. It can be prepared in a separate vessel and then added in an already molten form, but can also first be brought to the preferred reaction temperature of 1420 to 1600 ° C. in an induction-heated reaction vessel, for example. This temperature range is particularly favorable since the silicon produced is then obtained in the molten form and, on the other hand, side reactions such as e.g. Do not interfere with SiO formation and evaporation of volatile slag components. In principle, however, the choice of higher reaction temperatures is also possible.
- the quantity of slag presented is expediently chosen to be large enough that the aluminum oxide formed in the first reaction cycle is completely dissolved therein. It is particularly advantageous if the melting temperature of the mixture of slag and aluminum oxide which is formed always remains in the temperature range indicated above, so that solidification of the slag is avoided and it can therefore always be added to a liquid sump.
- the corresponding proportions and melting temperatures can be found in the associated phase diagrams (see, for example, "Phase Diagrams for Ceramists, The American Ceramic Society, Inc., Volume 1 (1964), Volume 2 (1969), Volume 3 (1975)).
- the reaction material is now added to the molten slag, which is at the working temperature.
- quartz and aluminum are premixed in an approximately or exactly stoichiometric ratio and incorporated into the slag in portions. It is advisable to ensure that quartz and aluminum are in a molar ratio of at least 3: 4. Namely, while a small deficit of aluminum has no adverse effects, since the remaining unreacted quartz dissolves in the slag, an excess of aluminum can lead to a reductive attack of the aluminum on the slag, which is unfavorable because of the silicide formation, when all the quartz is used up is. If air is also used, excess aluminum can be oxidized from the atmospheric oxygen to aluminum oxide and is therefore lost as a reducing agent.
- reaction material in the particularly favorable embodiment of the invention is already weighed out and mixed in a suitable quantitative ratio outside the reaction vessel, it is basically even possible to dispense with stirring when the reaction material is introduced in portions thereafter. Nevertheless, the dissolution of the reaction material in the slag can be improved by using a suitable stirrer, for example a paddle stirrer made of carbon or graphite.
- a particularly good stirring effect can also be achieved by a perforated plate made of, for example, graphite, which is preferably moved vertically through the reaction mixture.
- the reaction vessel only needs to be completely externally heated during the start-up phase, i.e. during the melting of the slag and at the start of the reaction.
- the rate of refilling and the intensity of stirring can be used to design the temperature profile so that the external heating can be largely reduced. Only when the reaction has subsided must heating be increased again in order to prevent the temperature from dropping below the melting point of the reactants and thus preventing the reaction mixture from solidifying.
- the system is allowed time to separate.
- the stirrer is stopped and, if necessary, moved out of the reaction mixture, so that the slag begins to settle below in the reaction vessel due to the density ratio.
- the silicon formed collects on the surface of the slag, whereby it always remains separated from the wall of the reaction vessel by a thin layer of slag.
- a particular advantage in this connection is that the oxides of the impurities formed on the surface of the silicon formed by reaction with the present atmosphere, for example atmospheric oxygen, are excellently dissolved in the surrounding slag. For this reason, it is not absolutely necessary to carry out the method according to the invention under vacuum or protective gas in a closed system. Particularly good results are achieved even in an open system with air access.
- the silicon formed is withdrawn from the reaction vessel.
- a drainage system such as a drainpipe extending from below or laterally into the molten silicon, for example made of graphite.
- Another elegant possibility is to insert a suitable tube made of, for example, graphite, as a rule from above into the silicon to be removed, and by applying a vacuum Vacuum silicon into another container, where it can then be subjected to directional solidification or vacuum evaporation, for example.
- the silicon obtained by the process according to the invention is a base material which is particularly well suited for further processing into solar cells.
- the mixed individual components in the case of a calcium silicate slag, for example calcium oxide and silicon dioxide, but also the corresponding compound, for example calcium silicate or mixtures of calcium silicate, calcium oxide and silicon dioxide, can advantageously be added together with the reaction mixture, but also separately.
- a calcium silicate slag for example calcium oxide and silicon dioxide
- the corresponding compound for example calcium silicate or mixtures of calcium silicate, calcium oxide and silicon dioxide
- An amount of used slag corresponding approximately to the fresh slag addition is removed from the reaction vessel.
- a drain system is provided in the reaction vessel, which in a particular embodiment of the invention can work, for example, according to the siphon principle.
- a dividing wall, preferably made of graphite, protruding from the top down into the melt is provided in the reaction vessel, which leaves an opening, generally designed as a gap, above the bottom of the reaction vessel in order to allow the slag to flow through. This means that the same level of slag can build up on both sides of the partition.
- the gap height so small, for example 5 mm, that only slag, but not silicon, can escape due to the wetting conditions. All silicon remains on one side of the partition, while only slag is found on the other side.
- a partition made of, for example, graphite can also advantageously be used, which is provided with small holes of approximately 5 mm in diameter and likewise only allows the slag to pass through, but not the silicon.
- the slag discharge chamber which is separated from the reaction space by the partition, a graphite tube, for example, is provided as the outlet for the slag. It has proven to be particularly favorable if the height of the outlet pipe is adjustable, since the desired height of the slag level can then be set extremely easily in the entire reaction vessel.
- the used slag flowing out of the slag discharge chamber finally arrives in a slag processing chamber, where it is processed to recover the aluminum oxide contained in solution.
- the aluminum oxide can be crystallized out by cooling and separated, for example, by filtration using a suitable graphite filter or by centrifugation. Another suitable method is e.g. the deposition of the aluminum oxide on cooled plates made of, for example, graphite, which are immersed in the molten slag.
- the aluminum oxide content of the used slag is up to 60% by weight, preferably 35 to 50% by weight, prior to processing.
- the separated aluminum oxide is finally subjected to the reduction, that is to say, for example, the classical melt electrolysis in molten cryolite, in order to recover aluminum.
- the resulting pure aluminum can then be reintroduced into the reaction cycle.
- the cycle process is again shown schematically for better clarification:
- a molten slag 2 made of alkaline earth silicates is placed in the reaction vessel 1.
- the reaction mixture 4 made of quartz and aluminum is added to this slag from a storage vessel 3.
- the silicon 5 formed has separated from the slag and can be discharged into the mold 8 via a drain pipe 6 with flow regulator 7 and further treated.
- part of the used slag is now displaced into the slag discharge chamber 10, which is divided off by a partition 9, from where it flows out into the slag preparation chamber 12 via a drain pipe 11.
- the aluminum oxide dissolved in the slag is separated off and fed to the melt electrolysis 13, from which recovered aluminum is added to the reaction mixture 4 again.
- the silicon obtained and the starting materials had the following impurities (data in ppm by weight):
- the silicon obtained and the starting materials had the following impurities (data in ppm by weight):
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Glass Compositions (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Saccharide Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83102341T ATE22875T1 (de) | 1982-03-11 | 1983-03-10 | Semikontinuierliches verfahren zur herstellung von reinem silicium. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19823208878 DE3208878A1 (de) | 1982-03-11 | 1982-03-11 | Semikontinuierliches verfahren zur herstellung von reinem silicium |
DE3208878 | 1982-03-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0089010A1 EP0089010A1 (de) | 1983-09-21 |
EP0089010B1 true EP0089010B1 (de) | 1986-10-15 |
Family
ID=6157973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83102341A Expired EP0089010B1 (de) | 1982-03-11 | 1983-03-10 | Semikontinuierliches Verfahren zur Herstellung von reinem Silicium |
Country Status (9)
Country | Link |
---|---|
US (1) | US4457903A (es) |
EP (1) | EP0089010B1 (es) |
JP (1) | JPS58156520A (es) |
AT (1) | ATE22875T1 (es) |
AU (1) | AU563532B2 (es) |
CA (1) | CA1194679A (es) |
DE (2) | DE3208878A1 (es) |
ES (1) | ES8308807A1 (es) |
NO (1) | NO158868C (es) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3208877A1 (de) * | 1982-03-11 | 1983-09-22 | Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen | Verfahren zur entfernung des schlackenanteils aus schmelzmischungen von schlacke und silicium |
US4798659A (en) * | 1986-12-22 | 1989-01-17 | Dow Corning Corporation | Addition of calcium compounds to the carbothermic reduction of silica |
NO316020B1 (no) * | 2001-10-10 | 2003-12-01 | Elkem Materials | Anordning for kontinuerlig slaggbehandling av silisium |
NO318092B1 (no) * | 2002-05-22 | 2005-01-31 | Elkem Materials | Kalsium-silikatbasert slagg, fremgangsmate for fremstilling av kalsium-silikatbasert slagg, og anvendelse for slaggbehandling av smeltet silium |
WO2004101434A1 (en) * | 2003-05-15 | 2004-11-25 | Helmut Engel | The metallurgical method of receiving the high purity silicon powder by chemical processing |
EA009888B1 (ru) * | 2004-10-12 | 2008-04-28 | Министерство Образования И Науки Республики Казахстан Республиканское Государственное Предприятие "Центр Химико-Технологических Исследований" Дочернее Государственное Предприятие "Физико-Технический Институт" | Способ получения чистого кремния |
JP4966560B2 (ja) * | 2005-03-07 | 2012-07-04 | 新日鉄マテリアルズ株式会社 | 高純度シリコンの製造方法 |
JP4845480B2 (ja) * | 2005-03-28 | 2011-12-28 | 京セラ株式会社 | 半導体インゴット製造装置及び半導体インゴットの製造方法 |
JP2007204353A (ja) * | 2006-02-06 | 2007-08-16 | Univ Of Tsukuba | シリコン結晶析出方法及びシリコン結晶材料 |
JP4997053B2 (ja) * | 2007-10-02 | 2012-08-08 | 日立造船株式会社 | 高純度シリコンの製造方法 |
KR20130063501A (ko) | 2010-05-20 | 2013-06-14 | 다우 코닝 코포레이션 | 알루미늄-규소 합금을 생성하기 위한 방법 및 시스템 |
WO2012000428A1 (en) * | 2010-06-29 | 2012-01-05 | Byd Company Limited | Method for preparing high purity silicon |
KR101306688B1 (ko) | 2012-04-17 | 2013-09-17 | 연세대학교 산학협력단 | 슬래그로부터 실리콘을 회수하는 방법 및 장치 |
EA029631B1 (ru) * | 2016-09-15 | 2018-04-30 | Геннадий Николаевич Чумиков | Способ получения металлургического кремния повышенной чистоты из кремнийсодержащих полупродуктов (кварцевая мелочь, пыль кремниевого производства (микрокремнезем)) методом алюминотермии |
GB201621609D0 (en) | 2016-12-19 | 2017-02-01 | Norwegian Univ Of Science And Tech (Ntnu) | Process for the production of commercial grade silicon |
RU2690877C1 (ru) * | 2018-09-27 | 2019-06-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ выделения металлического кремния из шлака технического кремния |
EP3643680A1 (en) | 2018-10-23 | 2020-04-29 | SiQAl UG (haftungsbeschränkt) | Coupled production of high purity silicon and alumina |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2904405A (en) * | 1957-10-31 | 1959-09-15 | Bell Telephone Labor Inc | Recovery of silicon from silicon dioxide |
US3322503A (en) * | 1964-05-20 | 1967-05-30 | Bloom Harry | Silicon production process |
US3871872A (en) * | 1973-05-30 | 1975-03-18 | Union Carbide Corp | Method for promoting metallurgical reactions in molten metal |
DE2706175C3 (de) * | 1977-02-14 | 1980-05-29 | Wacker-Chemie Gmbh, 8000 Muenchen | Verfahren zum Verschmelzen und Reinigen von Silicium |
US4124410A (en) * | 1977-11-21 | 1978-11-07 | Union Carbide Corporation | Silicon solar cells with low-cost substrates |
DE2933164A1 (de) * | 1979-08-16 | 1981-02-26 | Consortium Elektrochem Ind | Verfahren zum reinigen von rohsilicium |
DE2945070A1 (de) * | 1979-11-08 | 1981-06-04 | Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen | Semikontinuierliches verfahren zur herstellung von reinem silicium |
-
1982
- 1982-03-11 DE DE19823208878 patent/DE3208878A1/de not_active Withdrawn
- 1982-12-17 ES ES518315A patent/ES8308807A1/es not_active Expired
-
1983
- 1983-01-11 JP JP58001839A patent/JPS58156520A/ja active Granted
- 1983-03-01 US US06/470,981 patent/US4457903A/en not_active Expired - Fee Related
- 1983-03-01 CA CA000422647A patent/CA1194679A/en not_active Expired
- 1983-03-02 AU AU11966/83A patent/AU563532B2/en not_active Ceased
- 1983-03-10 NO NO830842A patent/NO158868C/no unknown
- 1983-03-10 DE DE8383102341T patent/DE3366905D1/de not_active Expired
- 1983-03-10 EP EP83102341A patent/EP0089010B1/de not_active Expired
- 1983-03-10 AT AT83102341T patent/ATE22875T1/de active
Also Published As
Publication number | Publication date |
---|---|
ES518315A0 (es) | 1983-10-01 |
ATE22875T1 (de) | 1986-11-15 |
NO158868C (no) | 1988-11-09 |
US4457903A (en) | 1984-07-03 |
JPS6126491B2 (es) | 1986-06-20 |
AU1196683A (en) | 1983-09-15 |
DE3208878A1 (de) | 1983-09-22 |
AU563532B2 (en) | 1987-07-16 |
EP0089010A1 (de) | 1983-09-21 |
NO158868B (no) | 1988-08-01 |
ES8308807A1 (es) | 1983-10-01 |
CA1194679A (en) | 1985-10-08 |
DE3366905D1 (en) | 1986-11-20 |
NO830842L (no) | 1983-09-12 |
JPS58156520A (ja) | 1983-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0089010B1 (de) | Semikontinuierliches Verfahren zur Herstellung von reinem Silicium | |
EP0029182B1 (de) | Semikontinuierliches Verfahren zur Herstellung von reinem Silicium | |
DE60224394T2 (de) | Metallurgisches silizium mittlererer reinheit und verfahren zu seiner herstellung | |
DE2034385C3 (de) | Verfahren zur Gewinnung von schwerschmelzbaren Metallen in kompakter Form aus deren Oxiden | |
DE1213627B (de) | Verfahren zur Raffination von unreinem Silicium und Germanium durch Schmelzflusselektrolyse | |
CH645133A5 (de) | Verfahren und vorrichtung zur entfernung von alkalimetall und erdalkalimetall aus geschmolzenem aluminium. | |
DE2337339C3 (de) | Verfahren zur Herstellung von Aluminium durch carbothermische Reduktion von Kyanit | |
DE2657071C2 (de) | Verfahren zur Herstellung von Aluminiumchlorid | |
DE3822616A1 (de) | Entfernung von lithiumnitrid aus lithiummetall | |
EP0028811B1 (de) | Verfahren zum Reinigen von Rohsilicium | |
EP0089009B1 (de) | Verfahren zur Entfernung des Schlackenanteils aus Schmelzmischungen von Schlacke und Silicium | |
DE602005001323T2 (de) | Rezyklierung von feuerverzinkungsbädern | |
EP0099858A1 (de) | Verfahren zum Reinigen von Aluminium | |
DE1558417C3 (de) | Verfahren zur Gewinnung von Molybdän und Wolfram und ihrer Legierungen über die Amalgame | |
EP0527353B1 (de) | Verfahren zur Erzeugung von Silicium im Elektroniederschachtofen und Rohstoff-Formlinge für die Durchführung des Verfahrens | |
DE2309748A1 (de) | Zubereitung zur behandlung von stahl. | |
EP0335147B1 (de) | Verfahren und Vorrichtung zur Gewinnung von Galliumchlorid aus galliumhaltigen Verbindungen | |
DE578547C (de) | Verfahren zur elektrothermischen Herstellung von Aluminium | |
DE975293C (de) | Verfahren zur gleichzeitigen Herstellung von Natriumaluminium-fluoriden und Silicium-Aluminium-Legierungen | |
DE2252567C2 (de) | Verfahren zur Herstellung von Mangan aus Manganhalogeniden durch Reduktion mit schmelzflüssigem Aluminium | |
DE2711508C3 (es) | ||
AT295171B (de) | Verfahren zur Gewinnung von schwer schmelzbaren Metallen | |
AT269495B (de) | Verfahren zur Gewinnung der Metalle Molybdän und Wolfram | |
AT103895B (de) | Verfahren zur Behandlung von oxydhaltigen Rohstoffen. | |
DE649179C (de) | Verfahren zur schmelzelektrolytischen Erzeugung von Reinaluminium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19830310 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 22875 Country of ref document: AT Date of ref document: 19861115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3366905 Country of ref document: DE Date of ref document: 19861120 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19870219 Year of fee payment: 5 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870331 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19890223 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890224 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890310 Ref country code: AT Effective date: 19890310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19890317 Year of fee payment: 7 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19890331 Ref country code: CH Effective date: 19890331 Ref country code: BE Effective date: 19890331 |
|
BERE | Be: lapsed |
Owner name: HELIOTRONIC FORSCHUNGS- UND ENTWICKLUNGSG. FUR SO Effective date: 19890331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19891001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19900311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19901130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19901201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 83102341.1 Effective date: 19910110 |