EP0081129A1 - Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung - Google Patents

Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung Download PDF

Info

Publication number
EP0081129A1
EP0081129A1 EP82110736A EP82110736A EP0081129A1 EP 0081129 A1 EP0081129 A1 EP 0081129A1 EP 82110736 A EP82110736 A EP 82110736A EP 82110736 A EP82110736 A EP 82110736A EP 0081129 A1 EP0081129 A1 EP 0081129A1
Authority
EP
European Patent Office
Prior art keywords
groups
solvent
substrate surfaces
organometallic compound
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82110736A
Other languages
English (en)
French (fr)
Other versions
EP0081129B1 (de
Inventor
Kirkor Dr. Sirinyan
Henning Dr. Giesecke
Gerhard Dieter Dr. Wolf
Harold Dr. Ebneth
Rudolf Dr. Merten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0081129A1 publication Critical patent/EP0081129A1/de
Application granted granted Critical
Publication of EP0081129B1 publication Critical patent/EP0081129B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Definitions

  • the invention relates to a method for activating substrate surfaces for the purpose of chemical metallization.
  • the polymer surface is changed so that caverns and vacuoles are formed.
  • This is only possible with certain polymers, for example with 2-phase multicomponent grafts or copolymers, such as ABS polymers, impact-resistant polystyrene or 2-phase homopolymers, such as partially crystalline polypropylene.
  • 2-phase multicomponent grafts or copolymers such as ABS polymers, impact-resistant polystyrene or 2-phase homopolymers, such as partially crystalline polypropylene.
  • working with chromosulfuric acid or other oxidants is associated with a deterioration in the physical properties, such as notched impact strength, electrical surface resistance of the polymeric base material.
  • the ionogenic palladium is reduced either in an acidic tin (II) chloride bath or by introducing tin (II) chloride into a strong hydrochloric acid palladium (II) chloride solution.
  • the excess protective colloid must be removed from the substrate surface so that a reduction in the metal ions, e.g. Copper, nickel, gold and cobalt in the metallization bath is possible through the catalytic action of active palladium centers on the substrate surface.
  • the metal ions e.g. Copper, nickel, gold and cobalt in the metallization bath
  • the object of the present invention was to provide a new, gentle and procedurally simple method for activating substrate surfaces for the purpose of electroless metallization, with which even surfaces that are difficult to metallize can be provided with a well-adhering metal coating, preferably without prior etching.
  • organometallic compounds of sub-groups 1 and 8 of the Periodic Table of the Elements the organic part of which has at least one further functional group in addition to the groups necessary for metal bonding.
  • the invention therefore relates to a method for activating substrate surfaces for the purpose of electroless metallization, the surface to be metallized wetted with an organometallic compound of elements of the 1st and 8th subgroups of the Periodic Table of the Elements homogeneously distributed in a solvent, in particular an organic solvent, the solvent is removed and the organometallic compound adhering to the surface to be metallized is reduced, characterized in that the organic part of the organometallic compound has at least one further functional group in addition to the groups required for the metal bond.
  • the other functional group achieves very good adhesive strength on the substrate surface, this adhesive strength being due to a chemical reaction with the substrate surface or to adsorption.
  • Particularly suitable for a chemical anchoring the activator to the substrate surface are functional groups such as carboxylic acid groups, carboxylic acid halide, carboxylic anhydride, carbonate nests groups, carbonamido and Carbonimid phenomenon, aldehyde and ketone groups, ether groups, sulfonamide groups, sulfonic acid groups and sulfonate groups, Sulfonklarehalogenid phenomenon, sulfonic acid ester, halogen-containing heterocyclic groups such as Chlorotriazinyl, pyrazinyl, pyrimidinyl or quinoxalinyl groups, activated double bonds, such as in the case of vinylsulfonic acid or acrylic acid derivatives, amino groups, hydroxyl groups, isocyanate groups, olefin groups and acetylene groups and also mercapto groups and Epoxy groups, also higher-chain alkyl or alkenyl radicals from C 8 , in particular oleic, linoleic
  • the adhesive strength can also be brought about by absorption of the organometallic activators on the substrate surface, the causes of the adsorption being e.g. Hydrogen bonds or van der Waalssche forces come into question.
  • activators with, for example, additional carbonyl or sulfone groups are particularly favorable for metallizing objects based on polyamide or polyester.
  • Functional groups such as carboxylic acid groups and carboxylic acid anhydride groups are particularly suitable for anchoring the activator to the substrate surface by adsorption.
  • the groups of the organic part of the organometallic compound required for the metal bond are known per se. For example, they are C-C or C-N double and triple bonds and groups which can form a chelate complex, e.g. OH, SH, CO, CS or COOH groups.
  • the organometallic compound can, for example, be dissolved or dispersed in the organic solvent, or it can also be a rubbing of the organometallic compounds with the solvent.
  • organometallic compound contains ligands which allow chemical fixation on the substrate surface, activation from the aqueous phase may also be possible.
  • polar, protic and aprotic solvents such as methylene chloride, chloroform, 1,1,1-trichloroethane, trichlorethylene, perchlorethylene, acetone, methyl ethyl ketone, butanol, ethylene glycol and tetrahydrofuran are suitable as organic solvents.
  • Suitable substrates for the process according to the invention are e.g. Steels, titanium, glass, quartz, ceramics, carbon, paper, polyethylene, polypropylene, ABS plastics, epoxy resins, polyesters and textile fabrics, threads and fibers made of polyamide, polyester, polyolefins, polyacrylonitrile, polyvinyl halides, cotton and wool, and mixtures thereof or from copolymers of the monomers mentioned.
  • the organic solvent is removed.
  • Low boiling solvents are preferred by evaporation, e.g. removed in vacuum.
  • other methods such as extraction with a solvent in which the oragnometallic compounds are insoluble, are appropriate.
  • the surfaces pretreated in this way must then be activated by reduction.
  • the reducing agents customary in electroplating such as hydrazine hydrate, formaldehyde, hypophosphite or boranes, can preferably be used for this purpose. Of course there are others too Reducing agent possible.
  • the reduction is preferably carried out in aqueous solution. However, other solvents such as alcohols, ethers, hydrocarbons can also be used. Of course, suspensions or slurries of the reducing agents can also be used.
  • the surfaces activated in this way can be used directly for electroless metallization. However, it may also be necessary to rinse the surfaces of the reducing agent residues.
  • a very particularly preferred embodiment of the method according to the invention consists in that the reduction in the metallization bath is carried out immediately with the reducing agent of the electroless metallization.
  • This version represents a simplification of the electroless metallization that has not been possible until now.
  • This very simple embodiment only consists of the three work steps: immersing the substrate in the solution of the organic compound, evaporating the solvent and immersing the surfaces thus activated in the metallization bath (reduction and Metallization).
  • This embodiment is particularly suitable for nickel baths containing amine borane or copper baths containing formalin.
  • metallising baths with nickel salts, C obaltsalzen, copper salts, gold salts and silver salts, or their mixtures with one another or with iron salts.
  • Such metallization baths are known in the electroless metallization art.
  • the method according to the invention has the advantage of providing an adherent metal deposition by the subsequent electroless metallization, even without prior etching of the substrate surface.
  • the activation and the Anquellun be g or the partial dissolution in a single operation carried out by reacting the organometallic compound used for the activation in such solvent systems consisting Banllust. Solvents exist for the polymer substrate to be metallized, .homogeneously distributed.
  • the organometallic activators can be in the form of real solutions, emulsions or suspensions.
  • the surface change caused by the "swelling adhesion nucleation" is noticeable through a change in the light separation, cloudiness, light permeability (in the case of intermingled foils and plates), change in layer thickness or in scanning electron microscope images in the form of cracks, caverns or vacuoles.
  • the swelling agents suitable for the particular polymer substrate to be metallized must be determined on a case-by-case basis by means of appropriate preliminary tests.
  • a swelling agent behaves optimally if it swells the surfaces of the substrates within reasonable times without completely dissolving the substrate or even negatively influencing its mechanical properties such as impact strength and without changing the organometallic activators.
  • Suitable swelling agents are also in the abovementioned patent literature, for example the so-called solvents Solvents or their blends with precipitants, such as a "Polymer Handbook" J. Brandrup et al, New York, IV, 157-175, (1974) are described.
  • Suitable swelling or solvents are lower and higher alcohols, aldehydes, ethers, ketones, halogenated hydrocarbons, simple or saturated hydrocarbons, organic acids, esters or their halogenated derivatives, liquid gases such as butane, propylene, 1,4-cis-butadiene.
  • solvents and blends with other solvents such as gasoline, ligroin, toluene, n-hexane, etc. can of course also be used.
  • solvents such as gasoline, ligroin, toluene, n-hexane, etc.
  • such media can be provided with organic and / or inorganic additives.
  • Anicnic emulsifiers such as Alkali salts of palmitic acid, stearic acid, oleic acid, salts of sulfonic acids, which are produced by sulfochlorination on the basis of paraffins containing 6-20 carbon atoms; non-ionic emulsifiers which can be prepared, for example, by ethoxylation of long-chain alcohols or phenols; cationic emulsifiers, e.g. Salts of long-chain, particularly unsaturated amines with 12 to 20 C atoms or quaternary ammonium compounds with long-chain olefins or paraffin esters;
  • Protective colloids based on macromolecular compounds such as gelatin, pectins, alginates, methyl cellulose, ionic and neutral polyurethane dispersions or their oligomeric derivatives, polyvinyl alcohols, polyvinyl pyrrolidone, polymethyl vinyl acetate; finely divided water-soluble minerals such as alumina, diatomaceous earth, calcium phosphates; Alkali and alkaline earth salts CaCl 2 , MgS0 4 , K 3 P0 4 g ut suitable.
  • macromolecular compounds such as gelatin, pectins, alginates, methyl cellulose, ionic and neutral polyurethane dispersions or their oligomeric derivatives, polyvinyl alcohols, polyvinyl pyrrolidone, polymethyl vinyl acetate; finely divided water-soluble minerals such as alumina, diatomaceous earth, calcium phosphates; Alkali and alkaline earth salts CaCl 2 , Mg
  • the amount of the additives listed above can be varied, based on the medium at hand, from 0.01 to 20% by weight.
  • anoragnic compounds such as C1 2 , HCl, H 2 0, HF, HJ, H 2 SO 4 , H 3 PO 4 , H 3 PO 3 , H 3 SO 3
  • boric acids NaOH or KOH.
  • Their amount can be varied from 0.1 to 30% by weight (based on the respective medium), the additions of anoragnic compounds in some cases being above or below.
  • the surfaces of the substrates to be metallized are wetted with these media, the exposure time preferably being 1 second to 90 minutes.
  • Methods such as immersing the substrate in the media or spraying, vapor deposition of substrate surfaces with the activation media are particularly suitable for this purpose.
  • the adhesive seeding according to the invention can be carried out at a temperature of from -20 ° C. to 100 ° C., low temperatures being preferred for low-boiling solvents and chemically susceptible substrates, whereas chemically resistant substrates require higher temperatures. In exceptional cases, seeding can also be carried out at lower or higher temperatures from -20 ° C or 100 ° C. Temperatures of 0 ° C to 80 ° C are preferred.
  • the solvent is removed as described above.
  • an additional activation of the substrate surfaces in the activation medium which is a precipitant for the polymer material, can be carried out.
  • Such precipitants are known and can be found in the "Polymer Handbook", IV, 241-267, which has already been given.
  • a 10 x 10 cm square of a knitted fabric made of a polyester polymer (100% polyethylene terephthalate) is at room temperature for 10 seconds in an activation bath which consists of 0.4 g of 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium (II) chloride and 1 1 CH 2 Cl 2 is prepared, immersed, dried at room temperature and then 10 minutes in an aqueous alkaline nickel plating bath which contains 3.5 g of dimethylamine borane, 30 g of nickel chloride and 10 g of citric acid in 1 1 and with conc. Ammonia solution is adjusted to pH 8.2, nickel-plated without current. After about 60 seconds, the surface begins to turn shiny metallic and after 10 minutes 12 g / m 2 had been deposited.
  • an activation bath which consists of 0.4 g of 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium (II) chloride and 1 1 CH 2 Cl 2 is prepared, immersed, dried at room
  • a 150 x 100 mm injection-molded ABS plate (acrylonitrile-butadiene-styrene graft copolymer) is degreased in an aqueous 15% by weight sodium hydroxide solution, neutralized with distilled water, for 30 seconds in an activation solution of 0.8 g of 4-cyclohexene 1,2-dicarboxylic acid anhydride silver (I) nitrate immersed in 1 liter of methanol, dried at room temperature and then nickel-plated according to Example 1. The specimen is covered with a very fine nickel layer after only 60 seconds. After approx. 10 minutes the chemical nickel layer has an average thickness of approx. 0.20 ⁇ m.
  • a 120 x 120 mm square of a cotton fabric is activated for 20 seconds according to Example 1 and then nickel-plated.
  • a piece of shiny metallic material with a metal coating of about 11% by weight of nickel is obtained.
  • a 35 x 100 mm rectangle made of a polyester film is activated for 20 seconds in accordance with Example 1 and nickel-plated for 7 minutes after the solvent has evaporated.
  • a shiny metallic foil with a 0.15 ⁇ m thick nickel is obtained.
  • a 40 x 60 mm rectangle of a roughened polycarbonate film with 10% by weight of polybutadiene is immersed in a solution of 0.5 g of 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium dichloride in 1 liter of methanol, dried and then according to the example 1 nickel-plated.
  • a 150 x 150 mm square of a cotton fabric is immersed in a solution of 0.5 g of isobutyl vinyl ether palladium dichloride in 1 liter of 1,1,1-trichloroethane for 30 seconds, dried at room temperature and then nickel-plated in a nickel bath according to Example 1 for 20 minutes.
  • a 100 x 100 mm square of a glass fiber reinforced epoxy resin plate is sprayed with a solution of 0.6 g of isobutyl vinyl ether palladium dichloride in 1 1 1,1,1-trichloroethane, dried at room temperature and then nickel-plated in a chemical nickel bath according to Example 1.
  • the surface of the plate begins to turn dark after only about 30 seconds, after 60 seconds it is covered with a fine layer of nickel and after about 10 minutes it has chemically deposited Nickel layer about 0.2 ⁇ m thick.
  • a 150 x 50 mm rectangle of a polyethylene plastic part is immersed in an activation bath which is made up of 0.75 g of 9-octadecen-1-olpalladium dichloride and 1 1 1,1,1-trichloroethane, and then in a chemical nickel bath according to Example 1 nickel plated.
  • a shiny metallic plastic part is obtained, which is switched in a galvanic semi-gloss nickel bath as the cathode at 50 ° C. and 1 ampere in 30 minutes to a thickness of approximately 8.1 ⁇ m.
  • Isobutyl vinyl ether palladium dichloride is obtained in an analogous manner from the acetonitrile palladium dichloride and isobutyl vinyl ether, melting point: 57-60 ° C.
  • a plastic plate made of polyamide 6/6 with the dimensions 15 x 10 cm and 3 mm thickness is degreased in 25% sodium hydroxide solution at room temperature.
  • the plastic plate is then immersed for one minute in an adhesive seeding solution which contains 67.5% by volume of methanol, 22.5% by volume of methylene chloride, 10% of chloral hydrate and 0.3 g / 1 of butadiene palladium chloride.
  • the substrate activated in this way is dried and then immersed in an electroless nickel plating bath which contains 25 g / 1 nickel chloride, 3 g / l dimethylamine borane, 10 g / 1 citric acid and was adjusted to pH 7.9 with ammonia. After 20 minutes, a uniform, shiny nickel layer is deposited.
  • the adhesive strength determined by the peel force according to DIN 53494, is 7.7 N / 2.5 cm.
  • a plastic plate according to Example 9 is degreased at room temperature in 25% sodium hydroxide solution. It is then immersed for 5 minutes in an adhesive seeding solution which consists of 72.5% by volume of dimethylformamide, 22.5% by volume of water, 5% by volume of 37% aqueous HC1 and 0.3 g / 1 of butadiene palladium dichloride . The sample is then nickel-plated in a metallization bath according to Example 9 for 60 minutes. A uniform, matt nickel surface is obtained, in which the pull-off force increases DIN 53494 can no longer be determined because the adhesive strength of the galvanically reinforced nickel layer is higher than the tensile strength of the metal film.
  • a polyamide 6/6 plate according to Example 9 is degreased at room temperature with 25% sodium hydroxide solution. The plate is then immersed for 10 minutes in a solution which contains 80% by volume of methanol and 20% by volume of methylene chloride, 40 g / 1 calcium chloride and 0.3 g / 1 butadiene palladium chloride. The plate is then dried with a cloth and then nickel-plated in a metallization bath according to Example 9 for 20 minutes. A uniform, shiny nickel layer is obtained. Adhesive strength after galvanic reinforcement cannot be determined on this sample either, since the required pull-off force is higher than the tensile strength of the metal layer.
  • a test plate 10 x 15 cm, 3 mm layer thickness, one with 10% mineral-reinforced polyamide 6 plastic is degreased at room temperature with 25% sodium hydroxide solution.
  • the plate is then immersed for 1 hour in a solution containing per liter of methanol, 100 g of calcium chloride and 0.3 g of bis (alyl palladium) dichloride.
  • the plate is washed with methanol, dried and on finally immersed in an electroless nickel plating bath according to Example 9. After 20 minutes, an even, matt nickel layer has deposited. After galvanic reinforcement, the pull-off force of the metal layer is higher than the tensile strength of the metal layer.
  • a polymer plate made of polyamide 6 with 30% by weight of glass fibers is degreased in 20% sodium hydroxide solution at room temperature (RT). Then it is immersed for 8 minutes in an adhesive seeding solution consisting of 40% by weight hydrochloric acid (37% pure), 60% by weight methanol and 0.9 g / l 4-cyclohexene-1,2-dicarboxylic anhydride palladium (II) chloride exists.
  • the sample is then nickel-plated for 20 minutes in a metallization bath which contains 30 g / 1 nickel sulfate, 3.8 g / l dimethylaminobrorane, 10 g / l citric acid and is adjusted to pH 7.6 with concentrated aqueous ammonia solution.
  • the adhesive strength of the metal pad which is determined by the peel force according to DIN 53494, is ⁇ 6N / 2.5 cm.
  • a polymer plate made of polyamide 6 with 35 wt .-% butadiene graft polymer is at room temperature in 15% sodium. alkali degreased. Then it is 10 minutes in a bath which is made up of 90 g HC1 (travels 37%), 410 g ethylene glycol and 0.5 g 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium (II) chloride, acti fourth and then metallized in a metallization bath according to Example 13 over the course of 20 minutes. After galvanic reinforcement, the pull-off force of the metal layer is higher than the tensile strength of the metal layer.
  • a test plate 10 x 10 cm, 3 mm layer thickness, of an ABS (acrylonitrile-butadiene-styrene) plastic is degreased at room temperature with 22% NaOH solution.
  • the plate is then immersed for 10 minutes in a solution containing 700 ml of methanol, 100 ml of acetoacetic ester, 50 ml of DMF (dimethylformamide) and 0.9 ml of 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium (II) chloride.
  • the plate is washed with methanol, dried and then neutralized in an electroless nickel plating bath according to Example 13. After 25 minutes, an even, matt Ni coating has deposited.
  • the adhesive strength, determined by the peel force according to DIN 53494, is 5N / 2.5 cm.

Abstract

Eine schonende und verfahrenstechnisch einfache Methode zur Aktivierung von Substratoberflächen zum Zwecke der stromlosen Metallisierung besteht darin, daß man zur Aktivierung metallorganische Verbindungen von Elementen der 1. und 8. Nebengruppe des Periodensystems der Elemente verwendet, deren organischer Teil über die zur Metallbindung erforderlichen Gruppen hinaus wenigstens eine weitere funktionelle Gruppe aufweist.

Description

  • Die Erfindung betrifft ein Verfahren zur Aktivierung von Substratoberflächen zum Zweck der chemischen Metallisierung.
  • Es ist bekannt, daß polymere Werkstoffe vor dem chemischen und dem nachfolgenden galvanischen Metallisieren vorbehandelt werden müssen, R. Weiner Kunststoff-Galvanisierung, Eugen G. Leuze Verlag, Saulgau/Württ. (1973). Dies sind im wesentlichen das Ätzen der Polymeroberfläche z.B. mit Chromschwefelsäure, das einfache und mehrfache Spülen mit Wasser, das Entgiften mit verdünnter Natriumbisulfitlösung, das weitere Spülen mit Wasser und die Behandlung der Substratoberfläche mit einem geeigneten Aktivierungsbad, beispielsweise einer Palladiumsalzlösung oder einem Palladiumsol.
  • Bei der Ätzung wird die Polymeroberfläche so verändert, daß es zur Bildung von Kavernen und Vakuolen kommt. Dies ist nur bei bestimmten Polymeren möglich z.B. bei 2-Phasen-Mehrkomponenten-Pfropf- oder Copolymerisaten, wie ABS-Polymerisaten, schlagfestem Polystyrol oder 2-Phasen-Homopolymerisaten, wie teilkristallinem Polypropylen. Weiterhin ist das Arbeiten mit Chromschwefelsäure oder anderen Oxidantien mit einer Verschlechterung der physikalischen Eigenschaften, wie Kerbschlagfestigkeit, elektrischer Oberflächenwiderstand des polymeren Basismaterials, verbunden.
  • Darüber hinaus führt das in das Aktivierungs- und Metallisierungsbad eingeschleppte sechswertige Chrom zu einer Vergiftung der Bäder.
  • Die gleichen Nachteile stellen sich bei Verfahren ein, bei denen die Polymeroberflächen mittels eines starken gasförmigen Oxidationsmittels z.B. heißem S03-Dampf chemisch verändert werden.
  • Damit das an der Substratoberfläche fixierte ionogene Palladium eine katalytische Reduktion des Metallions im chemischen Metallisierungsbad ermöglicht, muß es zum Metall reduziert werden. Die Reduktion des ionogenen Palladiums erfolgt entweder in einem sauren Zinn (II)-chloridbad oder durch Einbringen von Zinn (II)-chlorid in eine starke salzsaure Palladium (II)-chlorid-Lösung.
  • Da nach der Reduktion des ionogenen Palladiums die Substratoberfläche gewaschen werden muß, ist es anzunehmen, daß dabei ein Gel aus Zinnhydroxid entsteht, was zur zusätzlichen Fixierung des Palladiums beiträgt.
  • Bei dem nachfolgenden Arbeitsvorgang muß das überschüssige Schutzkolloid von der Substratoberfläche entfernt werden, damit eine Reduktion der Metallionen, z.B. Kupfer, Nickel, Gold und Cobalt im Metallisierungsbad durch katalytische Einwirkung von aktiven Palladiumzentren an der Substratoberfläche möglich ist.
  • Die bekannten Verfahren zur stromlosen Metallisierung von Werkstoffen bestehen somit aus verhältnismäßig vielen Verfahrensstufen und haben zudem den Nachteil, daß sie auf Substrate beschränkt sind, die wegen ihrer physikalischen Beschaffenheit oder des chemischen Aufbaues eine chemische oder physikalische Aufrauhung ermöglichen.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung einer neuen, schonenden und verfahrenstechnisch einfachen Methode zur Aktivierung von Substratoberflächen zum Zwekke der stromlosen Metallisierung, mit der auch schwer zu metallisierende Oberflächen mit einem gut haftenden Metallüberzug versehen werden können, vorzugsweise ohne vorheriges Ätzen.
  • Die Aufgabe wird dadurch gelöst, daß man zur Aktivierung metallorganische Verbindungen von Elementen der 1. und 8. Nebengruppe des Periodensystems der Elemente verwendet, deren organischer Teil über die zur Metallbindung erforderlichen Gruppen hinaus, wenigstens eine weitere funktionelle Gruppe aufweist.
  • Die Erfindung betrifft daher ein Verfahren zum Aktivieren von Substratoberflächen zum Zwecke der stromlosen Metallisierung, wobei die zu metallisierende Oberfläche mit einer in einem Lösungsmittel, insbesondere einem organischen Lösungsmittel homogen verteilten organometallischen Verbindung von Elementen der 1. und 8. Nebengruppe des Periodensystems der Elemente benetzt, das Lösungsmittel entfernt und die an der zu metallisierenden Oberfläche haftende organometallische Verbindung reduziert wird, dadurch gekennzeichnet, daß der organische Teil der metallorganischen Verbindung über die zur Metallbindung erforderlichen Gruppen hinaus wenigstens eine weitere funktionelle Gruppe aufweist.
  • Mit der weiteren funktionellen Gruppe wird eine sehr gute Haftfestigkeit auf der Substratoberfläche erreicht, wobei diese Haftfestigkeit auf eine chemische Reaktion mit der Substratoberfläche oder auf eine Adsorption zurückgehen kann.
  • Besonders geeignet für eine chemische Verankerung des Aktivators an der Substratoberfläche sind funktionelle Gruppen wie Carbonsäuregruppen, Carbonsäurehalogenidgruppen, Carbonsäureanhydridgruppen, Carbonestergruppen, Carbonamid- und Carbonimidgruppen, Aldehyd- und Ketongruppen, Ethergruppen, Sulfonamidgruppen, Sulfonsäuregruppen und Sulfonatgruppen, Sulfonsäurehalogenidgruppen, Sulfonsäureestergruppen, halogenhaltige heterocyclische Reste, wie Chlortriazinyl-, -pyrazinyl-, -pyrimidinyl-oder -chinoxalinylgruppen, aktivierte Doppelbindungen, wie bei Vinylsulfonsäure- oder Acrylsäurederivaten, Aminogruppen, Hydroxylgruppen, Isocyanatgruppen, Olefingruppen und Acetylengruppen sowie Mercaptogruppen und Epoxidgruppen, ferner höherkettige Alkyl- oder Alkenylreste ab C8, insbesondere Olein-, Linolein-, Stearin- oder Palmitingruppen.
  • Wenn keine Verankerung durch eine chemische Reaktion stattfindet, kann die Haftfestigkeit auch durch Absorption der organometallischen Aktivatoren an der Substratoberfläche bewirkt werden, wobei als Ursachen für die Adsorption z.B. Wasserstoffbrückenbindungen oder van der Waalssche-Kräfte infrage kommen.
  • Es ist zweckmäßig, die die Adsorption hervorrufenden funktionellen Gruppen auf das jeweilige Substrat abzustimmen. So verbessern z.B. langkettige Alkyl- oder Alkenyl-Gruppen im Aktivatormolekül die Haftfestigkeiten auf Substraten aus Polyethylen oder Polypropylen. Zur Metallisierung von Gegenständen auf Polyamid- oder Polyesterbasis sind dagegen Aktivatoren mit beispielsweise zusätzlichen Carbonyl- oder Sulfon-Gruppen besonders günstig.
  • Besonders geeignet für eine Verankerung des Aktivators an der Substratoberfläche durch Adsorption sind funktionelle Gruppen wie Carbonsäuregruppen, Carbonsäureanhydridgruppen.
  • Die für die Metallbindung erforderlichen Gruppen des organischen Teiles der metallorganischen Verbindung sind an sich bekannt. Es handelt sich zum Beispiel um C-C- oder C-N-Doppel- und Dreifachbindungen und um Gruppen, die einen Chelat-Komplex ausbilden können, z.B. OH-, SH-, CO-, CS- oder COOH-Gruppen.
  • Die organometallische Verbindung kann in dem organischen Lösungsmittel beispielsweise gelöst oder dispergiert sein, es kann sich auch um eine Anreibung der organometallischen Verbindungen mit dem Lösungsmittel handeln.
  • Wenn die organometallische Verbindung Liganden enthält, die eine chemische Fixierung auf der Substratoberfläche ermöglichen, kann eine Aktivierung auch aus wäßriger Phase möglich sein.
  • Ohne den Umfang der Erfindung einzuschränken, empfiehlt sich jedoch, bei der Durchführung des Verfahrens im technischen Maßstab folgende Bedingungen einzuhalten:
    • 1. Die verwendeten metallorganischen Verbindungen sollten an der Luft und gegenüber Feuchtigkeit stabil sein. Sie sollten in organischen Lösungsmitteln gut löslich, in Wasser aber schwach löslich sein. Sie sollten außerdem mit gebräuchlichen Reduktionsmitteln zu einer bei der stromlosen Metallisierung katalytisch wirksamen Verbindung reduzierbar sein.
    • 2. Die Lösungen der metallorganischen Verbindungen in organischen Lösungsmitteln sollten an der Luft und gegenüber Feuchtigkeit stabil sein.
    • 3. Das organische Lösungsmittel sollte leicht entfernbar sein.
    • 4. Bei der Reduktion der organometallischen Verbindung dürfen keine Liganden frei werden, die die Metallisierungsbäder vergiften.
    • 5. Die reduzierten aktiven Keime sollten in wäßriger Lösung fest an der Oberfläche haften, um eine Zersetzung der Bäder durch eingeschleppte Metalle zu verhindern.
  • Das erfindungsgemäß neue Verfahren wird im allgemeinen folgendermaßen durchgeführt:
    • Eine metallorganische Verbindung von Elementen der 1. und 8. Nebengruppe des Periodensystems, insbesondere von Cu, Ag, Au, Pd und Pt mit zusätzlicher funktioneller Gruppe wird in einem organischen Lösungsmittel gelöst. Selbstverständlich können auch Mischungen von Verbindungen eingesetzt werden. Die Konzentration an metallorganischer Verbindung soll zwischen 0,01 g und 10 g pro Liter betragen, kann aber in besonderen Fällen auch darunter oder darüber liegen.
  • Als organische Lösungsmittel sind besonders polare, protische und aprotische Lösungsmittel wie Methylenchlorid, Chloroform, 1,1,1-Trichlorethan, Trichlorethylen, Perchlorethylen, Aceton, Methylethylketon, Butanol, Ethylenglykol und Tetrahydrofuran geeignet.
  • Selbstverständlich können auch Gemische obiger Lösungsmittel und Verschnitte mit anderen Lösungsmitteln, wie Benzin, Ligroin, Toluol, usw. verwendet werden. Mit diesen Lösungen werden bei dem erfindungsgemäßen Verfahren die Oberflächen der zu metallisierenden Substrate benetzt, wobei die Einwirkungsdauer vorzugsweise 1 Sekunde bis 10 Minuten beträgt. Besonders geeignet sind dazu Verfahren wie das Eintauchen des Substrats in die Lösungen oder das Besprühen von Substratoberflächen mit den Aktivierungslösungen. Selbstverständlich ist es bei dem neuen Verfahren auch möglich, die Aktivierungslösungen durch Stempeln oder durch Druckverfahren aufzubringen.
  • Als Substrate für das erfindungsgemäße Verfahren eignen sich z.B. Stähle, Titan, Glas, Quarz, Keramik, Kohlenstoff, Papier, Polyethylen, Polypropylen, ABS-Kunststoffe, Epoxyharze, Polyester und textile Flächengebilde, Fäden und Fasern aus Polyamid, Polyester, Polyolefinen, Polyacrylnitril, Polyvinylhalogeniden, Baumwolle und Wolle, sowie deren Mischungen oder aus Mischpolymerisaten der genannten Monomeren.
  • Nach der Benetzung wird das organische Lösungsmittel entfernt. Dabei werden niedrig siedene Lösungsmittel bevorzugt durch Verdampfen, z.B. im Vakuum entfernt. Bei höher siedenden Lösungsmitteln sind andere Verfahren, wie Extraktion mit einem Lösungsmittel, in dem die oragnometallischen Verbindungen unlöslich sind, angebracht.
  • Die so vorbehandelten Oberflächen müssen anschließend durch Reduktion aktiviert werden. Dazu können bevorzugt die in der Galvanotechnik üblichen Reduktionsmittel, wie Hydrazinhydrat, Formaldehyd, Hypophosphit oder Borane verwendet werden. Natürlich sind auch andere Reduktionsmittel möglich. Bevorzugt wird die Reduktion in wässriger Lösung durchgeführt. Es sind aber auch andere Lösungsmittel wie Alkohole, Ether, Kohlenwasserstoffe einsetzbar. Selbstverständlich können auch Suspensionen oder Aufschlämmungen der Reduktionsmittel verwendet werden.
  • Die so aktivierten Oberflächen können direkt zur stromlosen Metallisierung eingesetzt werden. Es kann aber auch erforderlich sein, die Oberflächen durch Spülen von den Reduktionsmittelresten zu reinigen.
  • Eine ganz besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß die Reduktion im Metallisierungsbad gleich mit dem Reduktionsmittel der stromlosen Metallisierung durchgeführt wird. Diese Ausführung stellt eine bisher nicht mögliche Vereinfachung der stromlosen Metallisierung dar. Diese ganz einfache Ausführungsform besteht nur noch aus den drei Arbeitsgängen: Eintauchen des Substrates in die Lösung der organischen Verbindung, Verdampfen des Lösungsmittels und Eintauchen der so aktivierten Oberflächen in das Metallisierungsbad (Reduktion und Metallisierung).
  • Diese Ausführungsform ist ganz besonders für aminboranhaltige Nickelbäder oder formalinhaltige Kupferbäder geeignet.
  • Als in dem erfindungsgemäßen Verfahren einsetzbare Metallisierungsbäder kommen bevorzugt Bäder mit Nickelsalzen, Cobaltsalzen, Kupfersalzen, Gold- und Silbersalzen oder deren Gemische untereinander oder mit Eisensalzen in Betracht. Derartige Metallisierungsbäder sind in der Technik der stromlosen Metallisierung bekannt.
  • Das erfindungsgemäße Verfahren hat den Vorteil, auch ohne vorheriges Ätzen der Substratoberfläche, eine haftfeste Metallabscheidung durch die nachfolgende stromlose Metallisierung zu ergeben.
  • Andererseits ist es häufig von Vorteil, die Substratoberflächen durch Behandlung mit geeigneten Lösungsittel anzuquellen bzw. anzulösen, ohne dabei - wie bei der Ätzung - die Polymersubstrate wesentlich chemisch zu verändern oder gar abzubauen.
  • Solche Verfahren sind allgemein bekannt und beispielsweise in der folgenden Patentliteratur beschrieben: US-PS 3 574 070, 3 445 350, und 3 574 070 sowie GB-PS 1 124 556.
  • Nach einer besonders bevorzugten Variante des erfin- dungsgemä5en Verfahrens werden die Aktivierung und die Anquellung bzw. das Anlösen in einem Arbeitsgang durchgeführt, indem man die zur Aktivierung verwendete metallorganische Verbindung in solchen Lösungsmittelsystemen, die aus Quellbzw. Lösungsmitteln für das zu metallisierende Polymersubstrat bestehen,.homogen verteilt.
  • Die metallorganischen Aktivatoren können dabei in Form von echten Lösungen, Emulsionen oder Suspensionen vorliegen.
  • Durch die Einwirkung der Aktivatorsysteme mit ihrer charakteristischen Quellwirkung auf die Substrate wird eine Art "Haftbekeimung" erzielt, die man sich vielleicht so vorstellen kann, daß dabei an der Substratoberfläche den Aktivierungskeimen zugängliche Zwischenräume entstehen, an denen die bei der stromlosen Metallisierung abgeschiedenen Metalle verankert sind.
  • Die durch die "quellende Haftbekeimung" hervorgerufene Oberflächenveränderung macht sich durch eine Veränderung der Lichttrennung, Trübung, Lichtdurchlässigkeit (bei durchsischtigen Folien und Platten), Schichtdickenver- änderung oder bei rasterelektronenmikroskopischen Aufnahmen in Form von Rissen, Kavernen oder Vakuolen bemerkbar.
  • Die für das jeweilige zu metallisierende Polymersubstrat geeigneten Quellmittel müssen von Fall zu Fall durch entsprechende Vorversuche ermittel werden. Ein Quellmittel verhält sich dann optimal, wenn es innerhalb vernünftiger Zeiten die Oberflächen der Substrate anquellt, ohne das Substrat völlig aufzulösen oder auch nur dessen mechanische Eigenschaften wie Kerschlagfestigkeit negativ zu beeinflussen und ohne die metallorganischen Aktivatoren zu verändern.
  • Geeignete Quellmittel sind außerdem in der obengenannten Patentliteratur angegebenen Lösungsmittel beispielsweise die sogenannten
    Figure imgb0001
    -Lösungsmittel bzw. ihre Verschnitte mit Fällungsmitteln, wie etwa ein "Polymer Handbook" J. Brandrup et al, New York, IV, 157-175, (1974) beschrieben sind.
  • Geeignete Quell- bzw. Lösungsmittel sind niedere und höhere Alkohole, Aldehyde, Ether, Ketone, halogenierte Kohlenwasserstoffe, einfache oder gesättigte Kohlenwasserstoffe, organische Säuren, Estern bzw. ihre halogenierten Derivate, flüssige Gase wie Butan, Propylen, 1,4 cis-Butadien.
  • Selbstverständlich können auch Gemische dieser Lösungsmittel und Verschnitte mit anderen Lösungsmitteln, wie Benzin, Ligroin, Toluol, n-Hexan usw. verwendet werden. Um eine bessere Wechselwirkung zwischen der Substratoberfläche und dem Haftbekeimungsmedium zu erzielen, können solche Medien mit organischen und/oder anorganischen Zusatzstoffen versehen werden. Hierzu sind anicnische Emulgatoren, wie z.B. Alkalisalze von Palmitinsäure, Stearinsäure, ölsäure, Salze von Sulfonsäuren, die auf der Basis von 6 - 20 Kohlenstoff-Atome enthaltenden Parafinen durch Sulfochlorierung hergestellt werden; nicht-ionogene Emulgatoren, die beispielsweise durch Ethoxylierung von langkettigen Alkohlen oder Phenolen herstellbar sind; kationische Emulgatoren, wie z.B. Salze langkettiger, besonders ungesättigter Amine mit 12 bis 20 C-Atomen oder quarterne Ammoniumverbinduncen mit langkettigen Olefinen oder Parafinestern;
  • Schutzkolloide auf der Basis von makromolekularen Verbindungen, wie z.B. Gelatine, Pektine, Alginate, Methylcellulose, ionische und neutrale Polyurethandispersionen bzw. ihre oligomeren Derivate, Polyvinylalkohole, Polyvinylpyrrolidon, Polymethylvinylacetat; feinverteilte wasserlösliche Mineralien wie Tonerde, Kieselgur, Calciumphosphate; Alkali- und Erdalkalisalze CaCl2, MgS04, K3P04 gut geeignet.
  • Die Menge der oben aufgeführten Zusatzstoffe kann, bezogen auf vorliegendes Medium von 0,01 - 20 Gew.-% variiert werden.
  • Zur Erhöhung der Beständigkeit der organometallischen Aktivatoren in den organischen Medien kann es notwendig sein, diese zusätzlich mit bis zu 10 % an Dimethylformamid, Dimethylsulfoxid oder Tetramethylharnstoff anzureichern.
  • Zur Erhöhung der Haftbekeimungswirkung der organischen Medien kann es erforderlich sein, diese zusätzlich mit anoragnischen Verbindungen wie C12, HCl, H20, HF, HJ, H2SO4, H3PO4, H3PO3, H3SO3, Borsäuren, NaOH oder KOH zu versetzen. Ihre Menge kann von 0,1 bis 30 Gew.-% (bezogen auf das jeweilige Medium) variiert werden, wobei die Zusätze an anoragnischen Verbindungen in einigen Fällen darüber oder darunter liegen können. Um eine gleichmäßige Verteilung dieser anorganischen Zusätze in den organischen Medien zu erreichen, kann es erforderlich sein, diesen geringe Mengen an Wasser als Lösungsvermittler zuzusetzen.
  • Mit diesen Medien werden bei dem erfindungsgemäßen Verfahren die Oberflächen der zu metallisierenden Substrate benetzt, wobei die Einwirkungsdauer vorzugsweise 1 Sekunde bis 90 Minuten beträgt. Besonders geeignet sind dazu Verfahren wie das Eintauchen des Substrates in die Medien oder das Besprühen, das Aufdampfen von Substratoberflächen mit den Aktivierungsmedien.
  • Weiterhin ist es bei diesem Haftbekeimungsverfahren auch möglich, die Aktivierungslösungen durch Stempeln oder durch Druckverfahren aufzubringen.
  • Die erfindungsgemäße Haftbekeimung kann bei Temperatur von -20°C bis 100°C durchgeführt werden, wobei niedrige Temperturen bei niedrig siedenden Lösungsmitteln und chemisch leicht angreifbaren Substraten bevorzugt angewendet werden, wogegen chemisch resistente Substrate höhere Temperaturen erfordern. In Ausnahmefällen kann eine Haftbekeimung auch bei niedrigeren oder höheren Temperaturen ab -20°C bzw. 100°C durchgeführt werden. Bevorzugt werden Temperaturen von 0°C bis 80°C.
  • Nach der Benetzung der Substratoberflächen wird das Lösungsmittel wie oben beschrieben entfernt.
  • Um die Abscheidungsgeschwindigkeit der Metallisierungsreaktion zu erhöhen, kann eine zusätzliche Aktivierung der Substratoberflächen im Aktivierungsmedium, welches für das Polymermaterial ein Fällungsmittel ist, vorgenommen werden. Solche Fällungsmittel sind bekannt und können aus dem bereits angegebenen "Polymer Handbook", IV, 241-267 entnommen werden.
  • Beispiel 1
  • Ein 10 x 10 cm großes Quadrat eines Gestrickes aus einem Polyesterpolymerisat (100 % Polyethylenterephthalat) wird bei Raumtemperatur 10 Sekunden in ein Aktivierungsbad, welches aus 0,4 g 4-Cyclohexen-1,2-dicarbonsäure-anhydrid-palladium(II)chlorid und 1 1 CH2Cl2 angesetzt wird, getaucht, bei Raumtemperatur getrocknet und dann 10 Minuten in einem wäßrigen alkalischen Vernickelungsbad, das in 1 1 3,5 g Dimethylaminboran, 30 g Nickelchlorid und 10 g Citronensäure enthält und mit konz. Ammoniaklösung auf pH 8,2 eingestellt ist, stromlos vernickelt. Nach etwa 60 Sekunden beginnt sich die Oberfläche metallisch glänzend zu färben und nach 10 Minuten waren 12 g/m2 abgeschieden worden.
  • Beispiel 2
  • Eine 150 x 100 mm große spritzgegossene ABS-Platte Acrylnitril-Butadien-Styrol-Pfropfcopolymerisat) wird in einer wäßrigen 15 Gew.-%igen Natriumhydroxidlösung entfettet, mit destilliertem Wasser neutralisiert, 30 Sekunden in eine Aktivierungslösung von 0,8 g 4-Cyclohexen-1,2-dicarbonsäureanhydrid-silber-(I)-nitrat in 1 1 Methanol getaucht, bei Raumtemperatur getrocknet und dann gemäß Beispiel 1 vernickelt. Bereits nach 60 Sekunden ist der Probekörper mit einer sehr feinen Nickelschicht bedeckt. Nach ca. 10 Minuten hat die chemische Nickelschicht eine mittlere Stärke von ca. 0,20 µm. Nachdem der Probekörper dem chemischen Metallisierungsbad entnommen, mit destilliertem Wasser gespült wurde, wurde er als Kathode in einen galvanischen Kupferbad geschaltet und bei 0,5 A/dm2 in 30 Minuten galvanisch auf eine Stärke von ca. 6,6 µm verstärkt.
  • Beispiel 3
  • Ein 120 x 120 mm großes Quadrat eines Baumwoll-Gewebes wird 20 Sekunden gemäß Beispiel 1 aktiviert und dann vernickelt. Man erhält ein metallisch glänzendes Stoffstück mit einer Metallauflage von etwa 11 Gew.-% Nickel.
  • Beispiel 4
  • Ein 35 x 100 mm großes Rechteck aus einer Polyesterfolie wird 20 Sekunden gemäß Beispiel 1 aktiviert und nach dem Verdampfen des Lösungsmittels 7 Minuten vernickelt. Man erhält eine metallisch glänzende Folie mit einem 0,15 µm starken Nickel.
  • Beispiel 5
  • Ein 40 x 60 mm großes Rechteck einer aufgerauhten Polycarbonatfolie mit 10 Gew.-% Polybutadienanteil wird in eine Lösung von 0,5 g 4-Cyclohexen-1,2-dicarbonsäure- anhydridpalladium-dichlorid in 1 1 Methanol getaucht, getrocknet und dann gemäß Beispiel 1 vernickelt.
  • Nach 7 Minuten war eine haftende, metallisch glänzende ca. 0,2 um starke Nickelschicht abgeschieden worden. Diese Schicht wurde in einem galvanischen Kupferbad als Kathode geschaltet und bei 1,0 Ampere innerhalb von 30 Minuten auf 30 µm mit galvanischem Kupfer verstärkt. Das galvanische Kupferbad wird aus 200 g CuS04 und 30 g H2S04 (96 %ig), mit destilliertem Wasser auf 1 1 aufgefüllt, angesetzt.
  • Beispiel 6
  • Ein 150 x 150 mm großes Quadrat eines Baumwoll-Gewebes wird 30 Sekunden in eine Lösung von 0,5 g Isobutylvinyletherpalladiumdichlorid in 1 1 1,1,1-Trichlorethan getaucht, bei Raumtemperatur getrocknet und dann 20 Minuten in einem Nickelbad gemäß Beispiel 1 vernickelt.
  • Nach etwa 20 Sekunden beginnt sich die Oberfläche dunkel zu färben und nach 10 Minuten war eine metallisch glänzende Nickelschicht abgeschieden worden.
  • Beispiel 7
  • Ein 100 x 100 mm großes Quadrat einer glasfaserverstärkten Epoxidharzplatte wird mit einer Lösung von 0,6 g Isobutylvinyletherpalladiumdichlorid in 1 1 1,1,1-Trichlorethan besprüht, bei Raumtemperatur getrocknet und dann in einem chemischen Nickelbad gemäß Beispiel 1 vernickelt. Bereits nach ca. 30 Sekunden beginnt sich die Oberfläche der Platte dunkel zu färben, nach 60 Sekunden ist sie mit einer feinen Nickelschicht bedeckt und nach ca. 10 Minuten hat die chemisch abgeschiedene Nickelschicht eine Stärke von ca. 0,2 µm.
  • Beispiel 8
  • Ein 150 x 50 mm großes Rechteck eines Polyethylenkunststoffteiles wird in ein Aktivierungsbad, das aus 0,75 g 9-Octadecen-1-olpalladiumdichlorid und 1 1 1,1,1-Trichlorethan angesetzt wird, getaucht und dann in einem chemischen Nickelbad gemäß Beispiel 1 vernickelt.
  • Man erhält ein metallisch glänzendes Kunststoffteil, welches in einem galvanischen Halbglanznickelbad als Kathode geschaltet bei 50°C und 1 Ampere in 30 Minuten auf eine Stärke von ca. 8,1 µm verstärkt wird.
  • Die in den Beispielen verwendeten metallorganischen Verbindungen werden wie folgt erhalten:
    • 4-Cyclohexen-1,2-dicarbonsäureanhydrid-palladium(II)-chlorid:
    • 4-Cyclohexen-1,2-dicarbonsäureanhydrid wird in der dreifachen Menge Dimethylformamid gelöst, im Verlaufe von 2 Stunden mit der äquimolaren Menge Acetonitrilpalladiumdichlorid bei 40°C versetzt. Dimethylformamid und Acetonitril werden bei 45°C/25 mbar abdestilliert. Man erhält mit 90 %iger Ausbeute einen bräunlichen Feststoff vom Schmelzpunkt 53-54°C.
  • Isobutylvinyletherpalladiumdichlorid wird in analoger Weise aus dem Acetonitrilpalladiumdichlorid und Isobutylvinylether erhalten, Schmelzpunkt: 57-60°C.
  • Beispiel 9
  • Eine Kunststoffplatte aus Polyamid 6/6 mit den Abmessungen 15 x 10 cm und 3 mm Dicke wird in 25 %-iger Natronlauge bei Raumtemperatur entfettet. Anschließend wird die Kunststoffplatte eine Minute in eine Haftbekeimungslösung getaucht, die 67,5 Vol.-% Methanol, 22,5 Vol.-% Methylenchlorid, 10 % Chloralhydrat und 0,3 g/1 Butadienpalladiumchlorid enthält. Das so aktivierte Substrat wird getrocknet und anschließend in ein stromloses Vernickelungsbad getaucht, das 25 g/1 Nickelchlorid, 3 g/l Dimethylaminboran, 10 g/1 Citronensäure enthält und mit Ammoniak auf pH 7,9 eingestellt wurde. Nach 20 Minuten ist eine gleichmäßige glänzende Nickelschicht abgeschieden. Die Haftfestigkeit, bestimmt durch die Abzugskraft nach DIN 53494, beträgt 7,7 N/2,5 cm.
  • Beispiel 10
  • Eine Kunststoffplatte gemäß Beispiel 9 wird bei Raumtemperatur in 25 %-iger Natronlauge entfettet. Anschließend wird sie 5 Minuten in eine Haftbekeimungslösung getaucht, die aus 72,5 Vol.-% Dimethylformamid, 22,5 Vol.-% Wasser, 5 Vol.-% 37 %-ige wässrige HC1 und 0,3 g/1 Butadienpalladiumdichlorid besteht. Anschließend wird die Probe 60 Minuten in einem Metallisierungsbad gemäß Beispiel 9 vernickelt. Man erhält eine gleichmäßige, matte Nickeloberfläche, bei der die Abzugskraft nach DIN 53494 nicht mehr bestimmbar ist, da die Haftfestigkeit der galvanisch verstärkten Nickelschicht höher ist als die Zerreißfestigkeit des Metallfilmes.
  • Beispiel 11
  • Eine Polyamid 6/6-Platte gemäß Beispiel 9 wird bei Raumtemperatur mit 25 %-iger Natronlauge entfettet. Anschließend wird die Platte 10 Minuten in eine Lösung getaucht, die in 80 Vol.-% Methanol und 20 Vol.-% Methylenchlorid, 40 g/1 Calciumchlorid und 0,3 g/1 Butadienpalladiumchlorid enthält. Danach wird die Platte mit einem Tuch getrocknet und anschließend in einem Metallisierungsbad gemäß Beispiel 9 20 Minuten lang vernickelt. Man erhält eine gleichmäßige, glänzende Nickelschicht. Eine Haftfestigkeit nach galvanischer Verstärkung ist auch an dieser Probe nicht bestimmbar, da die erforderliche Abzugskraft höher ist als die Zerreißfestigkeit der Metallauflage.
  • Beispiel 12
  • Eine Prüfplatte 10 x 15 cm, 3 mm Schichtdicke, eines mit 10 % mineralverstärkten Polyamid 6-Kunststoffs wird bei Raumtemperatur mit 25 %-iger Natronlauge entfettet. Anschließend wird die Platte 1 Stunde lang in eine Lösung getaucht, die pro Liter Methanol, 100 g Calciumchlorid und 0,3 g Bis-(Alylpalladium)dichlorid enthält. Die Platte wird mit Methanol gewaschen, getrocknet und anschließend in ein stromloses Vernickelungsbad gemäß Beispiel 9 getaucht. Nach 20 Minuten hat sich eine gleichmäßige, matte Nickelschicht abgeschieden. Nach galvanischer Verstärkung ist die Abzugskraft der Metallauflage höher als die Zerreißfestigkeit der Metallschicht.
  • Beispiel 13
  • Eine Polymerplatte aus Polyamid 6 mit 30 Gew.-% Glasfasern wird bei Raumtemperatur (RT) in 20 %-iger Natronlauge entfettet. Anschließend wird sie 8 Minuten in eine Haftbekeimungslösung getaucht, die aus 40 Gew.-% Salzsäure (reinst 37 %-ig), 60 Gew.-% Methanol und 0,9 g/l 4-Cyclohexen-1,2-dicarbonsäureanhydrid-palladium(II)-chlorid besteht. Anschließend wird die Probe 20 Minuten in einem Metallisierungsbad, welches 30 g/1 Nickelsulfat, 3,8 g/l Dimethylaminobroran, 10 g/l Citronensäure enthält und mit konzentrierter wäßriger Ammoniaklösung auf pH 7,6 eingestellt wird, vernickelt. Die Haftfestigkeit der Metallauflage, die durch die Abzugskraft nach DIN 53494 bestimmt wird, beträgt ~6N/2,5 cm.
  • Beispiel 14
  • Eine Polymerplatte aus Polyamid 6 mit 35 Gew.-% Butadienpfropfpolymerisat wird bei RT in 15 %-iger Natron-. lauge entfettet. Anschließend wird sie 10 Minuten in einem Bad, welches aus 90 g HC1 (reist 37 %-ig), 410 g Ethylenglykol und 0,5 g 4-Cyclohexen-1,2-dicarbonsäureanhydrid-palladium-(II)-chlorid angesetzt wird, aktiviert und dann in einem Metallisierungsbad nach Beispiel 13 im Verlaufe von 20 Minuten metallisiert. Nach galvanischer Verstärkung ist die Abzugskraft der Metallauflage höher als die Zerreißfestigkeit der Metallschicht.
  • Beispiel 15
  • Eine Prüfplatte 10 x 10 cm, 3 mm Schichtdicke, eines ABS-(Acrylnitril-Butadien-Styrol)-Kunststoffes wird bei RT mit 22 %-iger NaOH-Lösung entfettet. Anschließend wird die Platte 10 Minuten in eine Lösung getaucht, die 700 ml Methanol, 100 ml Acetessigester, 50 ml DMF (Dimethylformamid) und 0,9 ml 4-Cyclohexen-1,2-dicarbonsäureanhydrid-palladium-(II)-chlorid enthält. Die Platte wird mit Methanol gewaschen, getrocknet und anschließend in einem stromlosen Vernickelungsbad gemäß Beispiel 13 neutralisiert. Nach 25 Minuten hat sich eine gleichmäßige, matte Ni-Auflage abgeschieden. Die Haftfestigkeit, bestimmt durch die Abzugskraft nach DIN 53494, beträgt 5N/2,5 cm.

Claims (10)

1. Verfahren zum Aktivieren von Substratoberflächen zum Zwecke der stromlosen Metallisierung, wobei die zu metallisierende Oberfläche mit einer in einem Lösungsmittel homogen verteilten organometallischen Verbindung von Elementen der 1. und 8. Nebengruppe des Periodensystems der Elemente benetzt, das Lösungsmittel entfernt und die an der zu metallisierenden Oberfläche haftende organometallische Verbindung reduziert wird, dadurch gekennzeichnet, daß der organische Teil der metallorganischen Verbindung über die zur Metallbindung erforderlichen Gruppe hinaus wenigstens eine weitere funktionelle Gruppe aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß weitere funktionelle Gruppen Carbonsäuregruppen, Carbonsäurehalogenidgruppen, Carbonsäureanhydridgruppen, Carbonestergruppen, Carbonamid- und Carbonimidgruppen, Aldehyd- und Ketongruppen, Ethergruppen, Sulfonamidgruppen, Sulfonsäuregruppen, Sulfonatgruppen, Sulfonsäurehalogenidgruppen, Sulfonsäureestergruppen, halogenhaltige heterocyclische Reste, aktivierte Doppelbindungen, Aminogruppen, Hydroxylgruppen, Isocyanatgruppen, Olefingruppen, Acetylengruppen, Mercaptogruppen, Epoxidgruppen oder höherkettige Alkyl- oder Alkenylgruppen ab C 8 sind.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zusätzlichen funktionellen Gruppen Carbonsäure- und Carbonsäureanhydridgruppen sind.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die organometallische Verbindung in dem Lösungsmittel in einer Menge von 0,01 bis 10 g/1 gelöst oder dispergiert ist.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Lösungsmittel ein reines organisches Lösungsmittel oder Gemische bzw. Verschnitte aus mehreren organischen Lösungsmitteln ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zu metallisierenden Substratoberflächen ohne vorheriges Ätzen aktiviert werden.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Substratoberflächen mit einem Quellmittel behandelt werden.
8. Verfahren nach Anspruch 1 bzw. 7, dadurch gekennzeichnet, daß sich das Quellmittel in dem Aktivierungsbad befindet.
9. Verfahren nach Anspruch 1 bzw. 7, dadurch gekennzeichnet, daß man als Quellmittel ⊝ -Lösungsmittel oder deren Verschnitte mit Fällungsmitteln verwendet.
10. Verfahren nach Anspruch 1 bzw. 7, dadurch gekennzeichnet, daß die Quellmittel zusätzlich Emulgatoren und/oder wasserlösliche Mineralien- vorzugsweise CaCl2 bzw. organische und/oder anorganische Säuren wie HCl, CH3COOH, CNOOH enthalten.
EP82110736A 1981-12-05 1982-11-20 Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung Expired EP0081129B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813148280 DE3148280A1 (de) 1981-12-05 1981-12-05 Verfahren zur aktivierung von substratoberflaechen fuer die stromlose metallisierung
DE3148280 1981-12-05

Publications (2)

Publication Number Publication Date
EP0081129A1 true EP0081129A1 (de) 1983-06-15
EP0081129B1 EP0081129B1 (de) 1987-01-14

Family

ID=6148037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82110736A Expired EP0081129B1 (de) 1981-12-05 1982-11-20 Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung

Country Status (4)

Country Link
US (1) US4764401A (de)
EP (1) EP0081129B1 (de)
JP (1) JPS58104170A (de)
DE (2) DE3148280A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146723A1 (de) * 1983-11-04 1985-07-03 Bayer Ag Verfahren zur Haftaktivierung von Polyamidsubstraten für die stromlose Metallisierung
EP0146724A1 (de) * 1983-11-04 1985-07-03 Bayer Ag Verfahren zur Vorbehandlung von Polyamidsubstraten für die stromlose Metallisierung
EP0153683A2 (de) * 1984-02-28 1985-09-04 Bayer Ag Verfahren zur Herstellung von Leiterplatten
EP0082438B1 (de) * 1981-12-23 1985-10-09 Bayer Ag Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0166327A2 (de) * 1984-06-26 1986-01-02 Bayer Ag Verfahren zur Herstellung von Leiterplatten
EP0195332A2 (de) * 1985-03-21 1986-09-24 Bayer Ag Elektrische Leiterplatten
EP0259754A2 (de) * 1986-09-12 1988-03-16 Bayer Ag Flexible Schaltungen
DE3938710A1 (de) * 1989-11-17 1991-05-23 Schering Ag Komplexverbindungen mit oligomerem bis polymerem charakter
EP0564673A1 (de) * 1992-04-06 1993-10-13 International Business Machines Corporation Verfahren zur Herstellung von katalytisch hochwirksamen Beschichtungen bestehend aus einem Metall der Gruppe der Platinmetalle
US5378268A (en) * 1990-11-16 1995-01-03 Bayer Aktiengesellschaft Primer for the metallization of substrate surfaces
US5487964A (en) * 1993-06-15 1996-01-30 Bayer Aktiengesellschaft Powder mixtures for metallization of substrate surfaces
DE19941043A1 (de) * 1999-08-28 2001-03-01 Bosch Gmbh Robert Bekeimungsbad und Verfahren zur Bekeimung von pulverförmigen Werkstoffen, Verfahren zur Metallisierung eines bekeimten pulverförmigen Werkstoffs und Verfahren zur Herstellung metallisch begrenzter Hohlkörper
CN108624907A (zh) * 2018-04-26 2018-10-09 复旦大学 非金属基体高效催化电极及其制备方法
WO2019063773A1 (en) 2017-09-28 2019-04-04 Srg Global Liria S.L. SURFACE ACTIVATED POLYMERS

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326508A1 (de) * 1983-07-22 1985-02-07 Bayer Ag, 5090 Leverkusen Verfahren zum aktivieren von substratoberflaechen fuer die direkte partielle metallisierung von traegermaterialien
DE3424065A1 (de) * 1984-06-29 1986-01-09 Bayer Ag, 5090 Leverkusen Verfahren zur aktivierung von substratoberflaechen fuer die stromlose metallisierung
US5788812A (en) * 1985-11-05 1998-08-04 Agar; Richard C. Method of recovering furfural from organic pulping liquor
JPS62149884A (ja) * 1985-12-24 1987-07-03 Nippon Mining Co Ltd 無電解銅めつきの前処理方法
EP0233145B1 (de) * 1986-01-30 1989-10-18 Ciba-Geigy Ag Polymerzusammensetzungen enthaltend einen gelösten Dibenzalaceton-Palladiumkomplex
JPH0694592B2 (ja) * 1986-04-22 1994-11-24 日産化学工業株式会社 無電解メッキ法
US5182135A (en) * 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
JPH01104782A (ja) * 1987-07-02 1989-04-21 Fuji Photo Film Co Ltd 無電解メッキ用触媒材料およびそれを用いた金属化材料
US5200272A (en) * 1988-04-29 1993-04-06 Miles Inc. Process for metallizing substrate surfaces
US5238702A (en) * 1988-10-27 1993-08-24 Henning Giesecke Electrically conductive patterns
US5318803A (en) * 1990-11-13 1994-06-07 International Business Machines Corporation Conditioning of a substrate for electroless plating thereon
JP2768390B2 (ja) * 1990-12-11 1998-06-25 インターナショナル・ビジネス・マシーンズ・コーポレイション 無電解金属付着のために基体をコンディショニングする方法
JPH0517081U (ja) * 1991-08-15 1993-03-05 ミサワホーム株式会社 玄関の排水装置
DE4209708A1 (de) * 1992-03-25 1993-09-30 Bayer Ag Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten
JPH0630394U (ja) * 1992-09-24 1994-04-19 ワイケイケイアーキテクチュラルプロダクツ株式会社 浴室ドアユニット
US5624479A (en) * 1993-04-02 1997-04-29 International Business Machines Corporation Solution for providing catalytically active platinum metal layers
DE4328883C2 (de) * 1993-08-27 1996-08-14 Bayer Ag Verfahren zur Vorbereitung von Polyamidformteilen für die nachfolgende stromlose Metallisierung
DE4418016A1 (de) * 1994-05-24 1995-11-30 Wilfried Neuschaefer Nichtleiter-Metallisierung
TW312079B (de) * 1994-06-06 1997-08-01 Ibm
US5645930A (en) * 1995-08-11 1997-07-08 The Dow Chemical Company Durable electrode coatings
US5753304A (en) * 1997-06-23 1998-05-19 The Metal Arts Company, Inc. Activation bath for electroless nickel plating
US6187374B1 (en) 1998-09-02 2001-02-13 Xim Products, Inc. Coatings with increased adhesion
IL126809A (en) * 1998-10-29 2001-08-26 Sarin Technologies Ltd Apparatus and method of examining the shape of gemstones
TWI224120B (en) * 2001-09-11 2004-11-21 Daicel Polymer Ltd Process for manufacturing plated resin molded article
GB2395365B8 (en) * 2002-11-13 2006-11-02 Peter Leslie Moran Electrical circuit board
JP4414346B2 (ja) * 2002-12-20 2010-02-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアセタール物品の表面処理
KR100691558B1 (ko) * 2005-04-22 2007-03-09 한국과학기술연구원 고체 산화물 연료전지의 제조 방법
JP4680824B2 (ja) * 2006-04-21 2011-05-11 日立マクセル株式会社 ポリマー基材のメッキ膜の形成方法及びポリマー基材
US7972652B2 (en) * 2005-10-14 2011-07-05 Lam Research Corporation Electroless plating system
JP4605074B2 (ja) * 2006-03-31 2011-01-05 Tdk株式会社 無電解めっき液及びセラミック電子部品の製造方法
JP5487538B2 (ja) * 2007-10-22 2014-05-07 コニカミノルタ株式会社 めっき方法及び導電性パターンシート
US20170159184A1 (en) * 2015-12-07 2017-06-08 Averatek Corporation Metallization of low temperature fibers and porous substrates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521445A1 (de) * 1965-06-01 1970-10-08 Photocircuits Corp Verfahren und katalytische Komposition zum Metallisieren von Gegenstaenden ohne aeussere Stromzufuhr
CH564093A5 (de) * 1969-11-20 1975-07-15 Kollmorgen Photocircuits
CH592160A5 (de) * 1972-10-31 1977-10-14 Siemens Ag
DE2527096B2 (de) * 1974-06-20 1978-07-13 London Laboratories Ltd. Co., Woodbridge, Conn. (V.St.A.) Verfahren zum Abscheiden von metallischem Kupfer auf einer katalytisch aktivierten Oberfläche

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560257A (en) * 1967-01-03 1971-02-02 Kollmorgen Photocircuits Metallization of insulating substrates
US3684534A (en) * 1970-07-06 1972-08-15 Hooker Chemical Corp Method for stabilizing palladium containing solutions
US4006047A (en) * 1974-07-22 1977-02-01 Amp Incorporated Catalysts for electroless deposition of metals on comparatively low-temperature polyolefin and polyester substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521445A1 (de) * 1965-06-01 1970-10-08 Photocircuits Corp Verfahren und katalytische Komposition zum Metallisieren von Gegenstaenden ohne aeussere Stromzufuhr
CH564093A5 (de) * 1969-11-20 1975-07-15 Kollmorgen Photocircuits
CH592160A5 (de) * 1972-10-31 1977-10-14 Siemens Ag
DE2527096B2 (de) * 1974-06-20 1978-07-13 London Laboratories Ltd. Co., Woodbridge, Conn. (V.St.A.) Verfahren zum Abscheiden von metallischem Kupfer auf einer katalytisch aktivierten Oberfläche

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082438B1 (de) * 1981-12-23 1985-10-09 Bayer Ag Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0146723A1 (de) * 1983-11-04 1985-07-03 Bayer Ag Verfahren zur Haftaktivierung von Polyamidsubstraten für die stromlose Metallisierung
EP0146724A1 (de) * 1983-11-04 1985-07-03 Bayer Ag Verfahren zur Vorbehandlung von Polyamidsubstraten für die stromlose Metallisierung
US4554183A (en) * 1983-11-04 1985-11-19 Bayer Aktiengesellschaft Process for pretreating polyamide substrates for electroless metallization
US4568571A (en) * 1983-11-04 1986-02-04 Bayer Aktiengesellschaft Process for the adhesion-activation of polyamide substrates for electroless metallization
EP0153683A2 (de) * 1984-02-28 1985-09-04 Bayer Ag Verfahren zur Herstellung von Leiterplatten
EP0153683A3 (en) * 1984-02-28 1987-07-01 Bayer Ag Process for making circuit boards
EP0166327A2 (de) * 1984-06-26 1986-01-02 Bayer Ag Verfahren zur Herstellung von Leiterplatten
EP0166327A3 (en) * 1984-06-26 1986-10-08 Bayer Ag Process for manufacturing printed circuit boards
EP0195332A2 (de) * 1985-03-21 1986-09-24 Bayer Ag Elektrische Leiterplatten
EP0195332A3 (en) * 1985-03-21 1987-08-05 Bayer Ag Printed circuits
US4728560A (en) * 1985-03-21 1988-03-01 Bayer Aktiengesellschaft Electrical printed circuit boards
EP0259754A2 (de) * 1986-09-12 1988-03-16 Bayer Ag Flexible Schaltungen
EP0259754A3 (de) * 1986-09-12 1989-10-18 Bayer Ag Flexible Schaltungen
DE3938710A1 (de) * 1989-11-17 1991-05-23 Schering Ag Komplexverbindungen mit oligomerem bis polymerem charakter
US5378268A (en) * 1990-11-16 1995-01-03 Bayer Aktiengesellschaft Primer for the metallization of substrate surfaces
EP0564673A1 (de) * 1992-04-06 1993-10-13 International Business Machines Corporation Verfahren zur Herstellung von katalytisch hochwirksamen Beschichtungen bestehend aus einem Metall der Gruppe der Platinmetalle
US5487964A (en) * 1993-06-15 1996-01-30 Bayer Aktiengesellschaft Powder mixtures for metallization of substrate surfaces
DE19941043B4 (de) * 1999-08-28 2004-04-29 Robert Bosch Gmbh Bekeimungsbad und Verfahren zur Bekeimung von pulverförmigen Werkstoffen, Verfahren zur Metallisierung eines bekeimten pulverförmigen Werkstoffs und Verfahren zur Herstellung metallisch begrenzter Hohlkörper
DE19941043A1 (de) * 1999-08-28 2001-03-01 Bosch Gmbh Robert Bekeimungsbad und Verfahren zur Bekeimung von pulverförmigen Werkstoffen, Verfahren zur Metallisierung eines bekeimten pulverförmigen Werkstoffs und Verfahren zur Herstellung metallisch begrenzter Hohlkörper
WO2019063773A1 (en) 2017-09-28 2019-04-04 Srg Global Liria S.L. SURFACE ACTIVATED POLYMERS
WO2019063859A1 (es) 2017-09-28 2019-04-04 Avanzare Innovacion Tencologica S.L. Formulación para el mordentado de materiales poliméricos previo al recubrimiento de los mismo
US10501852B2 (en) 2017-09-28 2019-12-10 Avanzare Innovación Tecnológica, S,L. Formulation for the etching of polymer materials prior to coating of the materials
EP3848483A2 (de) 2017-09-28 2021-07-14 SRG Global Liria, S.L. Oberflächenaktivierte polymere
US11898250B2 (en) 2017-09-28 2024-02-13 Avanzare Innovación Tecnológica, S.L. Formulation for the etching of polymer materials prior to coating of the materials
CN108624907A (zh) * 2018-04-26 2018-10-09 复旦大学 非金属基体高效催化电极及其制备方法

Also Published As

Publication number Publication date
JPS58104170A (ja) 1983-06-21
JPS6354792B2 (de) 1988-10-31
EP0081129B1 (de) 1987-01-14
DE3275105D1 (en) 1987-02-19
US4764401A (en) 1988-08-16
DE3148280A1 (de) 1983-06-09

Similar Documents

Publication Publication Date Title
EP0081129B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0082438B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0043485B1 (de) Verfahren zur Aktivierung von Oberflächen für die stromlose Metallisierung
DE1197720B (de) Verfahren zur Vorbehandlung von insbesondere dielektrischen Traegern vor der stromlosen Metallabscheidung
DE10054544A1 (de) Verfahren zum chemischen Metallisieren von Oberflächen
EP2639333A1 (de) Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP0259754A2 (de) Flexible Schaltungen
DE2160821C3 (de) Verfahren zur Abscheidung von Kupferschichten auf Formkörpern aus Polyimiden
DE2623716A1 (de) Verfahren zur chemischen metallabscheidung auf polymeren substraten und dabei verwendete loesung
EP2639334A1 (de) Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP0815292B1 (de) Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien
EP0153683B1 (de) Verfahren zur Herstellung von Leiterplatten
EP0142691B1 (de) Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung
EP0245684A2 (de) Metallisierte Membransysteme
WO1999013696A1 (de) Verfahren zum metallisieren eines elektrisch nichtleitende oberflächenbereiche aufweisenden substrats
EP0166360A2 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0132677A1 (de) Verfahren zum Aktivieren von Substratoberflächen für die direkte partielle Metallisierung von Trägermaterialien
EP0324189A2 (de) Verfahren zur Herstellung von elektrischen Leiterplatten
DE2627941A1 (de) Aktivierungsloesung auf silberbasis fuer ein verfahren zum stromlosen verkupfern
DE3121015A1 (de) Verfahren zur aktivierung von gebeizten oberflaechen und loesung zur durchfuehrung desselben
EP0195332B1 (de) Elektrische Leiterplatten
EP0146724A1 (de) Verfahren zur Vorbehandlung von Polyamidsubstraten für die stromlose Metallisierung
EP0241754B1 (de) Verfahren zur haftfesten Metallisierung von Polyetherimid
EP0146723A1 (de) Verfahren zur Haftaktivierung von Polyamidsubstraten für die stromlose Metallisierung
DE3137587C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821120

AK Designated contracting states

Designated state(s): DE FR GB IT SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3275105

Country of ref document: DE

Date of ref document: 19870219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921021

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921028

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921103

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921106

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82110736.4

Effective date: 19940610