EP0061779A2 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0061779A2
EP0061779A2 EP82102715A EP82102715A EP0061779A2 EP 0061779 A2 EP0061779 A2 EP 0061779A2 EP 82102715 A EP82102715 A EP 82102715A EP 82102715 A EP82102715 A EP 82102715A EP 0061779 A2 EP0061779 A2 EP 0061779A2
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchanger
exchanger according
another
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82102715A
Other languages
English (en)
French (fr)
Other versions
EP0061779A3 (de
Inventor
Herbert Dr. Jovy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feraton Anstalt
Original Assignee
Feraton Anstalt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feraton Anstalt filed Critical Feraton Anstalt
Publication of EP0061779A2 publication Critical patent/EP0061779A2/de
Publication of EP0061779A3 publication Critical patent/EP0061779A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/027Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers by helically or spirally winding elongated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • F28F1/045Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular with assemblies of stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove

Definitions

  • the invention relates to a heat exchanger in which the fluids participating in the heat exchange are guided in a single tube in cocurrent or countercurrent.
  • the surface sections through which heat is transferred from one fluid to the other should be dimensioned as large as possible in a heat exchanger.
  • this requirement means that the larger the total heat exchange surface, the larger the space occupied by the respective heat exchanger.
  • the fluids in a heat exchanger are usually guided in elongated components, for example pipes, such heat exchangers not only require a large amount of space, but also e.g. cylindrical shape, which means a disproportionately large space requirement, especially in small systems.
  • coaxial condensers and evaporators have coaxial tubes, which are arranged helically or helically. To produce these heat exchangers, a first tube is pushed into a second so that there is a coaxial arrangement and then these tubes are bent into a spiral.
  • the disadvantage of this design is that the inner tube with its outer jacket comes to rest on the inner jacket of the outer tube, which has the consequence that there is a severe impairment of the heat transfer from one fluid to the other at the linear contact point of the two tubes.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the problem of creating a heat exchanger in which the fluids participating in the heat exchange are each guided in a single tube, in which the respective tubes lie flat against one another along their entire length.
  • the advantages achieved by the invention are essentially to be seen in the fact that the heat exchanger takes up a small space for a given flow volume and given total heat exchange surface, and that the shape of the heat exchanger can be easily adapted to predetermined spatial conditions.
  • the heat exchanger according to FIG. 1 has a first tube 1 and a second tube 2.
  • the first tube 1 has an inlet or outlet 3 and an outlet or inlet 5.
  • the second tube 2 has an inlet or outlet 4 and an outlet or inlet 6.
  • the fluids flowing through this heat exchanger obviously flow in cocurrent or countercurrent, depending on the respective technical circumstances.
  • the two tubes 1, 2 are close together and are spirally laid in turns. The spiral described by the pipes, i.e. the two spirals, on a flat surface. Because this form of training can be regarded as practically two-dimensional, because the third dimension depends only on the tube thickness, this heat exchanger takes up a relatively small space.
  • the tubes do not have a circular cross-sectional shape. Accordingly, an embodiment with tubes of square cross-sectional shape is shown in FIG. 2. These tubes, which are arranged in the spiral shape mentioned and have a square cross-sectional shape, abut one another with side walls. The tubes are soldered together to achieve good heat transfer. Correspondingly, a solder, a solder metal 7 is arranged between the side walls of the tubes. Obviously, the soldering also gives the heat exchanger the necessary mechanical strength.
  • the manufacture of the heat exchanger is carried out as follows. First, the pipes 1, 2, in their original, rectilinear shape, are placed parallel next to each other. A ribbon-shaped solder, a ribbon-shaped solder metal, is inserted between these tubes in such a way that the arrangement shown in FIG. 2 is present, but only two tubes are present on average. The tubes and the solder are then connected to one another at points, for example at one end. The tubes 1, 2 with the solder 7 located between them are then laid in turns so that they assume the shape shown in FIG. 1. Thereafter, tubes with 1, 2 are fixed in the wound position with the solder 7 by at least one further punctiform connection. The entire arrangement is then immersed in an induction bath. The solder melts in it, so that the pipes 1, 2 are soldered along their entire longitudinal extent and the heat exchanger is thus produced.
  • the tubes 1, 2 do not necessarily have to have the square cross-sectional shape shown in FIG. 2.
  • 3 shows an embodiment in which the tubes are in a triangular cross-sectional shape, the solder 7 again being arranged between the abutting side walls of the tubes.
  • This embodiment according to FIG. 3 is also a space-saving design.
  • these walls are structured according to a further embodiment.
  • Such a design is shown in FIG. 4.
  • the cross-sectional area of the first tube 1 is different from the cross-sectional surface of the second tube 2.
  • a vaporous fluid flows through the first pipe 1 and water flows through the second pipe 2, an application which is present, for example, in heat pump systems.
  • Side walls of the pipes 1, 2 which abut one another have successive depressions 9 and projections 8. These tooth-like designs mesh with one another, so that the area dimension of the heat transfer areas is increased.
  • the tubes are not soldered to one another here.
  • the tubes 1, 2 again have the same cross-sectional area and are connected to one another again with a solder 7.
  • the difference to the embodiment of FIG. 4 is that the two side walls of the pipes 1, 2 through which the heat transfer takes place have an increased areal area, the walls here being simply wave-shaped, the respective wave troughs and wave peaks engaging with one another.
  • FIG. 6 A further embodiment of the heat exchanger is shown in FIG. 6. It has been said in the description of FIG. 1 that the spiral, ie the two Spirals, which are described by the tubes 1,2, lie on a flat surface. 6, the tubes are also deformed in such a way that they describe the envelope of a hollow circular cone.
  • the advantage of this design is that there is a clear gradient in the pipes. A gradient is often necessary due to a given medium, for example if a medium enters in the gaseous state and is liquefied in the heat exchanger, and thus must have a gradient with respect to the horizontal.
  • the envelope of the heat exchanger i.e. at least its projection onto a surface, not circular (it should be understood that here the envelope of the spiral is viewed as a circle for simplicity).
  • the envelope curve can thus describe a rectangle, as in FIG. 6 or a hexagon as in FIG. 7, or any other polygon, polygon.
  • the heat exchanger can now be designed in any spatial and planar form, such that it can be arranged in an entire system, for example a heat pump system, in such a way that it takes up the smallest amount of space.
  • FIG. 9 shows an embodiment in which the tubes 1, 2 are arranged in the form of a hollow cylinder.
  • This embodiment has the particular advantage that apparatus, e.g. Pumps and other units of a plant containing the heat exchanger, e.g. a heat pump system, can be arranged in the cylindrical cavity circumscribed by the pipes 1,2. Significant space savings are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die zwei Rohre (1, 2) des Wärmetauschers verlaufen parallel zueinander und sind in Windungen gelegt. Die Rohre (1, 2) weisen eine unrunde Querschnittsform auf. Zwischen den aneinander anliegenden Flächen der Rohre (1, 2), durch welche die Wärmeübertragung stattfindet, ist ein bandförmiges Lötmittel (7) angeordnet, welches sich entlang der gesamten Längsausdehnung der Rohre erstreckt und diese fest miteinander verbindet. Die Seitenwände der Rohre (1, 2) sind zur Erhöhung des Ausmasses der wärmeübertragenden Fläche strukturiert ausgebildet und kämmen miteinander. Damit ist eine raumsparende Formgebung des Wärmetauschers erzielt.

Description

  • Die Erfindung betrifft einen Wärmetauscher, in welchem die am Wärmetausch teilnehmenden Fluide in jeweils einem einzigen Rohr im Gleich- oder Gegenstrom geführt sind.
  • Um eine gute Wirksamkeit zu erreichen, sollten in einem Wärmetauscher die Flächenabschnitte, durch die hindurch die Wärmeübertragung von einem zum anderen Fluid stattfindet, so gross als möglich bemessen sein. Bei gegebenen Durchflussvolumen der am Wärmetausch teilnehmenden Fluide und bei gegebener struktureller Ausbildung der Rohre zwecks Erhöhung der wärmeübertragenden Fläche, beispielsweise Rippen, bedeutet diese Forderung, dass je grösser die gesamte Wärmetauschfläche ist desto grösser der vom jeweiligen Wärmetauscher eingenommene Raum ist. Da die Fluide in einem Wärmetauscher üblicherweise in langgestreckten Bauteilen, beispielsweise Rohren, geführt sind, weisen solche Wärmetauscher nicht nur einen grossen Raumbedarf auf, sondern eine z.B. zylindrische Form, welche insbesondere bei kleinen Anlagen einen unverhältnismässig grossen Raumbedarf bedeutet.
  • Um diesen Nachteil zu beheben, sind verschiedene Ausbildungen bekannt, die bei gegebener Wärmetauschfläche und gegebenem Durchflussvolumen einen verhältnismässig kleinen Raum beanspruchen. Beispielsweise sind sogenannte Koaxial-Kondensatoren und -Verdampfer bekannt. Diese weisen koaxial zueinander verlaufende Rohre auf, welche wendel- bzw. schraubenlinienförmig angeordnet sind. Zur Herstellung dieser Wärmetauscher wird ein erstes Rohr in ein zweites hineingeschoben, so dass eine koaxiale Anordnung vorliegt und danach werden diese Rohre zur Wendel gebogen. Der Nachteil dieser Ausbildung ist jedoch, dass das innere Rohr mit seinem Aussenmantel an den Innenmantel des äusseren Rohres zu liegen kommt, welches zur Folge hat, dass an der linienförmigen Berührungsstelle der zwei Rohre eine starke Beeinträchtigung des Wärmeüberganges von dem einen zum anderen Fluid stattfindet.
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen Wärmetauscher zu schaffen, in welchem die am Wärmetausch teilnehmenden Fluide in jeweils einem einzigen Rohr geführt sind, bei dem die jeweiligen Rohre entlang ihrer gesamten Länge flächig aneinanderliegen.
  • Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass der Wärmetauscher bei gegebenem Durchflussvolumen und gegebener, gesamten Wärmetauschfläche einen kleinen Raum einnimmt, und dass der Wärmetauscher formmässig an vorgegebene räumliche Bedingungen leicht angepasst werden kann.
  • Bei einem Verfahren zum Herstellen eines solchen Wärmetauschers, bei welchem die Rohre entlang ihrer gesamten Länge miteinander verlötet sind, werden die jeweiligen Fluid führenden Rohre parallel zueinander verlaufendnebeneinander angeordnet, darauf zwischen.den nebeneinanderliegenden Rohren ein bandförmiges Lötmittel angeordnet, und nachfolgend die Rohre mit dem dazwischen gelegenen Lötmittel in Windungen gelegt und in dieser Form derart zusammengehalten, dass die Rohre und das Lötmittel aneinander anliegen und ausschliesslich werden nachfolgend die Rohre und das Lötmittel in ein Induktionsbad getaucht, um eine Verlötung der Rohre zu erzeugen.
  • Im folgenden wird die Erfindung anhand von mehrere Ausführungswege darstellenden Zeichnungen näher erläutert. Es zeigt:
    • Fig. 1 eine Aufsicht auf einen Wärmetauscher mit spiralförmig verlaufenden Rohren,
    • Fig. 2 einen Schnitt durch den in der Fig. gezeigten Wärmetauscher, .
    • Fig. 3 einen Schnitt gleich dem der Fig. 2, wobei jedoch die Querschnittsform der Rohre ein Dreieck ist,
    • Fig. 4 eine weitere Querschnittsform von Rohren,
    • Fig. 5 eine noch weitere Querschnittsform von Rohren,
    • Fig. 6 einen Schnitt durch einen Wärmetauscher, dessen Rohre einen hohlen Kreiskegel beschreiben,
    • Fig. 7 eine Aufsicht auf eine weitere Grundrissform eines Wärmetauschers,
    • Fig. 8 den Grundriss einer noch weiteren Ausbildungsform des Wärmetauschers, und
    • Fig. 9 einen Schnitt durch einen hohlzylindrischen Wärmetauscher.
  • Der Wärmetauscher nach Fig. l weist ein erstes Rohr 1 und ein zweites Rohr 2 auf. Das erste Rohr 1 weist einen Eintritt bzw. Austritt 3 und einen Austritt bzw. Eintritt 5 auf. Das zweite Rohr 2 weist einen Eintritt bzw. Austritt 4 und einen Austritt bzw. Eintritt 6 auf. Die diesen Wärmetauscher durchströmenden Fluide strömen offensichtlich im Gleich- oder Gegenstrom, abhängig von den jeweiligen technischen Gegebenheiten. Die zwei Rohre 1,2 liegen eng aneinander und sind spiralförmig in Windungen gelegt. Dabei liegt die von den Rohren beschriebene Spirale, d.h. die zwei Spiralen, in einer ebenen Fläche. Dadurch, dass diese Ausbildungsform als praktisch zweidimensional angesehen werden kann, weil die dritte Dimension lediglich von der Rohrdicke abhängig ist, nimmt dieser Wärmetauscher einen verhältnismässig kleinen Raum ein.
  • Im Gegensatz zu bekannten Ausbildungen weisen die Rohre jedoch keine kreisförmige Querschnittsform auf. Demgemäss ist in der Fig. 2 eine Ausführung mit Rohren quadratischer Querschnittsform gezeigt. Diese, in der erwähnten Spiralform angeordneten Rohre mit quadratischer Querschnittsform, liegen mit Seitenwänden aneinander an. Zur Erreichung einer guten Wärmeübertragung sind die Rohre miteinander verlötet. Entsprechend ist zwischen den Seitenwänden der Rohre ein Lötmittel, ein Lotmetall 7 angeordnet. Offensichtlich gibt die Verlötung dem Wärmetauscher auch die notwendige mechanische Festigkeit.
  • Die Herstellung des Wärmetauschers wird folgendermassen durchgeführt. Zuerst werden die Rohre 1,2 in ihrer usprünglichen, geradlinig verlaufenden Form parallel nebeneinander gelegt. Zwischen diesen Rohren wird ein bandförmiges Lötmittel, ein bandförmiges Lotmetall eingefügt, derart, dass die in der Fig. 2 gezeigte Anordnung vorliegt, wobei jedoch im Schnitt nur zwei Rohre vorhanden sind. Danach werden die Rohre und das Lötmittel an beispielsweise einem Ende miteinander punktförmig verbunden. Darauf werden die Rohre 1,2 mit dem dazwischen gelegenen Lötmittel 7 in Windungen gelegt, so dass sie die in Fig. 1 gezeigte Formgebung annehmen. Danach werden Rohre mit 1,2 mit dem Lötmittel 7 durch mindestens eine weitere punktförmige Verbindung in der gewundenen Stellung fixiert. Darauf wird die ganze Anordnung in ein Induktionsbad getaucht. Darin schmilzt das Lötmittel, so dass ein Verlöten der Rohre 1,2 entlang ihrer gesamten Längsausdehnung stattfindet und somit ist der Wärmetauscher hergestellt.
  • Die Rohre 1,2 müssen nicht unbedingt die in der Fig. 2 gezeigte, quadratische Querschnittsform aufweisen. In der Fig. 3 ist eine Ausführung gezeigt, bei welcher die Rohre in einer dreieckigen Querschnittsform vorliegen, wobei wieder das Lötmittel 7 zwischen den aneinander anliegenden Seitenwänden der Rohre angeordnet sind. Auch diese Ausführung nach der Fig. 3 ist eine raumsparende Ausbildung.
  • Zur Erhöhung der Wärmetauschfläche, d.h. derjenigen Flächen der Rohre, durch welche der Wärmeübergang stattfindet, sind diese Wände gemäss einer weiteren Ausführung strukturiert ausgebildet. In der Fig. 4 ist eine solche Ausbildung gezeigt. Dabei ist die Querschnittsfläche des ersten Rohres 1 von der Querschnittsoberfläche des zweiten Rohres 2 verschieden. Beispielsweise ist das erste Rohr 1 von einem dampfförmigen Fluid und das zweite Rohr 2 von Wasser durchströmt, eine Anwendung, die beispielsweise in Wärmepumpenanlagen vorhanden ist. Aneinander anliegende Seitenwände der Rohre 1,2 weisen aufeinanderfolgende Senkungen 9 und Vorsprünge 8 auf. Diese zahnförmigen Ausbildungen kämmen miteinander, so dass das Flächenmass der Wärmedurchtrittsflächen erhöht ist. Im Gegensatz zu den in den Fig. 2 und 3 gezeigten Ausführungsformen sind hier die Rohre nicht miteinander verlötet. Bei dieser Ausbildungsform liegen die Rohre lediglich unter Ausübung eines gegenseitigen Druckes eng aneinander. Auch muss bemerkt werden, dass die Rohrseiten 10 und 11, durch die kein Wärmetausch erfolgt, dennoch am Wärmetausch teilnehmen. Da die Rohre offensichtlich aus einem gut wärmeleitenden Material hergestellt sind, erfolgt auch eine Wärmeübertragung bei den Wänden 10, 11 durch das jeweilige Metall.
  • Bei der Ausführung nach der Fig. 5 weisen die Rohre 1,2 wieder dieselbe Querschnittsfläche auf und sind wieder mit einem Lötmittel 7 miteinander verbunden. Der Unterschied zur Ausführung der Fig. 4 ist her der, dass beide Seitenwände der Rohre 1,2, durch welche die Wärmeübertragung stattfindet, ein vergrössertes Flächenmass aufweisen, wobei hier die Wände einfach wellenförmig ausgebildet sind, wobei die jeweiligen Wellentäler und Wellenberge ineinander eingreifen.
  • In der Fig. 6 ist eine noch weitere Ausführung des Wärmetauschers dargestellt. Es ist bei der Beschreibung der Fig. 1 gesagt worden, dass die Spirale, d.h. die zwei Spiralen, die von den Rohren 1,2 beschrieben sind, in einer ebenen Fläche liegen. In der Fig. 6 sind nun die Rohre zudem derart verformt, dass sie die Hüllkurve eines hohlen Kreiskegels beschreiben. Der Vorteil dieser Formgebung ist der, dass ein eindeutiges Gefälle in den Rohren vorliegt. Ein Gefälle ist oft aufgrund eines gegebenen Mediums notwendig, beispielsweise, wenn ein Medium im gasförmigen Zustand eintritt und im Wärmetauscher verflüssigt wird, und somit im Bezug auf die Horizontale ein Gefälle aufweisen muss.
  • In den Fig. 6 und 7 ist gezeigt, dass die Hüllkurve des Wärmetauschers, d.h. mindestens dessen Projektion auf eine Fläche, nicht kreisförmig (wobei zu verstehen ist, dass hier die Hüllkurve der Spirale vereinfachend als Kreis betrachtet ist) sein muss. Die Hüllkurve kann also ein Rechteck, wie nach der Fig. 6 oder ein Sechseck wie nach der Fig. 7, oder irgendwelches anderes Vieleck, Polygon beschreiben. Dadurch, dass die Möglichkeit gegeben ist, die Rohre einerseits räumlich, wie beispielsweise in der Fig. 6 gezeigt, anzuordnen und andererseits die Möglichkeit gegeben ist, die Hüllkurve des Wärmetauschers zu wählen, lässt sich nun der Wärmetauscher in beliebigen räumlichen und flächigen Formen auslegen, derart, dass er in einer gesamten Anlage, beispielsweise einer Wärmepumpenanlage, derart angeordnet werden kann, dass er ein kleinstes Mass an Raum beansprucht.
  • In der Fig. 9 ist eine Ausführungsform gezeigt, bei welcher die Rohre 1,2 in Form eines Hohlzylinders angeordnet sind. Diese Ausführungsform weist insbesondere den Vorteil auf, dass Apparate, z.B. Pumpen und andere Einheiten einer der Wärmetauscher enthaltenden Anlage, z.B. einer Wärmepumpenanlage, im von den Rohren 1,2 umschriebenen, zylindrischen Hohlraum angeordnet werden können. Damit sind bedeutende Raumersparnisse möglich.

Claims (13)

  1. l. Wärmetauscher, in welchem die am Wärmetauscher teilnehmenden Fluide in jeweils einem einzigen Rohr im Gleich- oder Gegenstrom geführt sind, dadurch gekennzeichnet, dass die jeweiligen Rohre entlang ihrer gesamten Länge flächig aneinander anliegen und in nebeneinander gelegenen Windungen angeordnet sind, wobei der Durchmesser jeder Windung von dem ihrer benachbarten Windungen verschieden ist.
  2. 2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre eine viereckige Querschnittsform aufweisen.
  3. 3. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre entlang ihrer gesamten Länge mit Druck aneinander anliegen.
  4. 4. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre entlang ihrer gesamten Länge miteinander verlötet sind.
  5. 5. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre in Form jeweils einer Spirale angeordnet sind, die in einer ebenen Fläche liegt.
  6. 6. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre derart angeordnet sind, dass ihre Hüllfläche einen Kegelmantel beschreibt.
  7. 7. Wärmetauscher nach Anspruch 6, dadurch gekennzeichnet, dass die Hüllfläche den Mantel eines Kreiskegels beschreibt.
  8. 8. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre derart angeordnet sind, dass ihre Hüllkurve ein Vieleck beschreibt.
  9. 9. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, dass die Hüllkurve ein in einer Ebene liegendes Rechteck beschreibt.
  10. 10. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass einander anliegende Wärmetauschflächenabschnitte der jeweiligen Rohre zur Erhöhung der Wärmetauschfläche einen jeweils selben ungleichförmigen Verlauf aufweisen.
  11. ll. Wärmetauscher nach Anspruch 10, dadurch gekennzeichnet, dass die aneinander anliegenden Wärmetauschflächenabschnitte Senkungen und Vorsprünge aufweisen, die miteinander kämmen.
  12. 12. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre in Form eines Hohlzylinders angeordnet sind.
  13. 13. Verfahren zum Herstellen des Wärmetauschers nach Anspruch 1, wobei die Rohre entlang ihrer gesamten Länge miteinander verlötet sind, dadurch gekennzeichnet, dass die jeweiligen Fluid führenden Rohre parallel zueinander verlaufend nebeneinander angeordnet werden, dass zwischen den nebeneinander liegenden Rohren ein bandförmiges Lötmittel angeordnet wird, dass darauf die Rohre mit dem dazwischen gelegenen Lötmitteln in Windungen gelegt und in dieser Form derart zusammengehalten werden, dass die Rohre und das Lötmittel aneinander anliegen, und dass nachfolgend die Rohre und das Lötmittel in ein Induktionsbad getaucht werden, um eine Verlötung der Rohre zu erzeugen.
EP82102715A 1981-03-31 1982-03-31 Wärmetauscher Withdrawn EP0061779A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH219581 1981-03-31
CH2195/81 1981-03-31

Publications (2)

Publication Number Publication Date
EP0061779A2 true EP0061779A2 (de) 1982-10-06
EP0061779A3 EP0061779A3 (de) 1983-03-30

Family

ID=4228106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102715A Withdrawn EP0061779A3 (de) 1981-03-31 1982-03-31 Wärmetauscher

Country Status (4)

Country Link
EP (1) EP0061779A3 (de)
JP (1) JPS57166497A (de)
DE (2) DE3122947A1 (de)
NO (1) NO821079L (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002315A1 (en) * 1981-12-30 1983-07-07 Daniel Ringqvist Device for the transfer of heat between different polluted fluid media
EP0168637A3 (de) * 1984-06-14 1986-07-02 Etablissement Agura Gasheizofen, insbesondere Kondensationsheizkessel, mit einem spiralig geformten Rauchzug, Verfahren zu dessen Herstellung und nach dem Verfahren hergestellter Gasheizofen
EP0143672A3 (de) * 1983-11-25 1987-12-16 POWER SHAFT ENGINE, Société dite Brennkraftmaschine mit äusserer Verbrennung
CH677968A5 (en) * 1988-03-08 1991-07-15 Sulzer Ag Heat exchanger for mfg. crystals - has plates in circular ring with eccentric drive shaft for scrapers
EP0582835A1 (de) * 1992-08-11 1994-02-16 Steyr Nutzfahrzeuge Ag Wärmetauscher
WO2001019412A1 (de) * 1998-08-20 2001-03-22 Hans Biermaier Vorrichtung zum thermischen sterilisieren von flüssigkeiten
AT409544B (de) * 2000-08-04 2002-09-25 Vaillant Gmbh Sorptionswärmepumpe
AT409669B (de) * 2000-08-04 2002-10-25 Vaillant Gmbh Sorptionswärmepumpe
WO2002101312A1 (en) * 2001-06-09 2002-12-19 Nnc Limited Heat exchanger
AT412171B (de) * 2001-08-16 2004-10-25 Vaillant Gmbh Wärmetauscher
WO2004105455A3 (en) * 2003-05-21 2005-03-24 Molex Inc Memory card connector
WO2009115284A1 (fr) * 2008-03-20 2009-09-24 Valeo Systemes Thermiques Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur
EP2423630A1 (de) * 2010-08-24 2012-02-29 Electricité de France Verbesserter Wärmetauscher
WO2013037381A1 (en) * 2011-09-15 2013-03-21 Patrick Gilbert Conduit assemblies for heat exchangers and the like
US20150330714A1 (en) * 2012-12-05 2015-11-19 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger
US20190063842A1 (en) * 2017-07-28 2019-02-28 Fluid Handling Llc Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing
US20200355397A1 (en) * 2017-08-28 2020-11-12 Cosmogas S.R.L. Heat exchanger for a boiler, and heat-exchanger tube

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220957A1 (de) * 1982-06-03 1983-12-08 Parca Norrahammar AB, 56200 Norrahammar Spiralrohrwaermetauscher
DE3505789A1 (de) * 1985-02-20 1986-08-21 Grote, Paul, 2901 Friedrichsfehn Spiralwaermetauscher
DE3706941A1 (de) * 1987-03-04 1988-09-15 Seiler Geb Fritz Ursula Gaskuehler mit integrierter kondensat-abscheidung
DE3724790A1 (de) * 1987-07-30 1989-02-09 Schilling Heinz Kg Waermeaustauschmodul fuer gegensinnig durchstroemende medien mit parallel angeordneten rohren in waermeleitendem material eingegossen
DE4142203C2 (de) * 1990-12-24 1996-01-18 Franz R Prof Dr Ing Stupperich Wendelwärmeübertrager mit dreieckigem Rohrquerschnitt
DE102010027338B4 (de) * 2010-07-15 2012-04-05 Benteler Automobiltechnik Gmbh Wärmeaustauscher in einem Kraftfahrzeug

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE668493C (de) * 1938-12-03 Wilhelm Geldbach Dr Ing Spiralwaermeaustauscher fuer Gaszerlegungsanlagen
DE273142C (de) * 1912-10-15 1914-04-20
US2131265A (en) * 1937-03-01 1938-09-27 Dow Chemical Co Spiral heat interchanger and method of making same
GB803759A (en) * 1955-11-24 1958-10-29 Gen Electric Co Ltd Improvements in or relating to refrigerator condensers
FR1350529A (fr) * 1963-03-15 1964-01-24 Ames Crosta Mills & Company Lt Perfectionnements aux échangeurs de chaleur
DE1907881A1 (de) * 1969-02-17 1970-09-03 Becker Dr Ing Kurt Flache Rohrlagenwicklungen fuer Kreuzstrom-Waermeaustauscher
US3602298A (en) * 1969-04-25 1971-08-31 Mecislaus Joseph Ciesielski Heat exchanger
FR2155770A1 (en) * 1971-10-04 1973-05-25 Ind Chauffage Spiral tube heat exchanger - with tubes contacting shell to define shell-side flow
US4253225A (en) * 1979-10-10 1981-03-03 Carrier Corporation Method of manufacturing a heat exchanger element
US4316502A (en) * 1980-11-03 1982-02-23 E-Tech, Inc. Helically flighted heat exchanger

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002315A1 (en) * 1981-12-30 1983-07-07 Daniel Ringqvist Device for the transfer of heat between different polluted fluid media
EP0143672A3 (de) * 1983-11-25 1987-12-16 POWER SHAFT ENGINE, Société dite Brennkraftmaschine mit äusserer Verbrennung
EP0168637A3 (de) * 1984-06-14 1986-07-02 Etablissement Agura Gasheizofen, insbesondere Kondensationsheizkessel, mit einem spiralig geformten Rauchzug, Verfahren zu dessen Herstellung und nach dem Verfahren hergestellter Gasheizofen
CH677968A5 (en) * 1988-03-08 1991-07-15 Sulzer Ag Heat exchanger for mfg. crystals - has plates in circular ring with eccentric drive shaft for scrapers
EP0582835A1 (de) * 1992-08-11 1994-02-16 Steyr Nutzfahrzeuge Ag Wärmetauscher
WO2001019412A1 (de) * 1998-08-20 2001-03-22 Hans Biermaier Vorrichtung zum thermischen sterilisieren von flüssigkeiten
AT409544B (de) * 2000-08-04 2002-09-25 Vaillant Gmbh Sorptionswärmepumpe
AT409669B (de) * 2000-08-04 2002-10-25 Vaillant Gmbh Sorptionswärmepumpe
WO2002101312A1 (en) * 2001-06-09 2002-12-19 Nnc Limited Heat exchanger
AT412171B (de) * 2001-08-16 2004-10-25 Vaillant Gmbh Wärmetauscher
WO2004105455A3 (en) * 2003-05-21 2005-03-24 Molex Inc Memory card connector
FR2928997A1 (fr) * 2008-03-20 2009-09-25 Valeo Systemes Thermiques Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur.
US9920999B2 (en) 2008-03-20 2018-03-20 Valeo Systemes Thermiques Heat exchanger and integrated air-conditioning assembly including such exchanger
CN102037305B (zh) * 2008-03-20 2015-03-18 法雷奥热系统公司 热交换器和包括这种交换器的集成空调组件
WO2009115284A1 (fr) * 2008-03-20 2009-09-24 Valeo Systemes Thermiques Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur
EP2423630A1 (de) * 2010-08-24 2012-02-29 Electricité de France Verbesserter Wärmetauscher
FR2964183A1 (fr) * 2010-08-24 2012-03-02 Electricite De France Echangeur thermique ameliore
WO2013037381A1 (en) * 2011-09-15 2013-03-21 Patrick Gilbert Conduit assemblies for heat exchangers and the like
JP2014526669A (ja) * 2011-09-15 2014-10-06 ギルバート,パトリック 熱交換器等のための配管アセンブリ
US20150330714A1 (en) * 2012-12-05 2015-11-19 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger
US10094621B2 (en) * 2012-12-05 2018-10-09 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger
US20190063842A1 (en) * 2017-07-28 2019-02-28 Fluid Handling Llc Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing
US11193716B2 (en) * 2017-07-28 2021-12-07 Fluid Handling Llc Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing
US11898804B2 (en) 2017-07-28 2024-02-13 Fluid Handling Llc Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing
US20200355397A1 (en) * 2017-08-28 2020-11-12 Cosmogas S.R.L. Heat exchanger for a boiler, and heat-exchanger tube
US11598555B2 (en) * 2017-08-28 2023-03-07 Cosmogas S.R.L. Heat exchanger for a boiler, and heat-exchanger tube

Also Published As

Publication number Publication date
EP0061779A3 (de) 1983-03-30
NO821079L (no) 1982-10-01
DE3122947A1 (de) 1982-10-07
DE8117144U1 (de) 1981-11-26
JPS57166497A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
EP0061779A2 (de) Wärmetauscher
DE69219421T2 (de) Wärmetauscher
DE69300044T2 (de) Rohrförmige Endkammer und Verfahren zur Herstellung von einem Wärmetauscher durch Eintreiben von Wärmetauscherröhren.
DE1094775B (de) Waermeaustauscherrohr mit innerhalb eines Aussenrohrs eingesetztem und mit diesem inKontakt stehendem Wellrohr
DE69708730T2 (de) Wärmetauscher und Verfahren zu seiner Herstellung
DE102007033166A1 (de) Wärmetauscher
DE2950563C2 (de)
EP0627607B1 (de) Dampfbeheizter Wärmeübertrager
DE3026954C2 (de) Wärmetauschvorrichtung
DE2705178A1 (de) Waermeaustauscher
DE3419304A1 (de) Leitungsrohr zu installationszwecken
WO2020074117A1 (de) Gewickelter wärmeübertrager, verfahren zur herstellung eines gewickelten wärmeübertragers und verfahren zum wärmeaustausch zwischen einem ersten fluid und einem zweiten fluid
DE3221348C2 (de)
EP3367035A1 (de) Rohrwendelwärmetauscher und speicherbehälter mit einem rohrwendelwärmetauscher
DE3016781C2 (de) Wärmetauscher mit einem in einem Luftkanal angeordneten Wärmetauschrohr
DE2822743C2 (de)
DE2352734B2 (de) Turbulenzeinlage für die Rohre von Wärmetauschern
DE3208838C2 (de) Wärmeübertrager
DE2708377A1 (de) Rohrfoermiger waermetauscher
DE881096C (de) Einrichtung zur Ultraviolettbestrahlung von Fluessigkeiten
DE2926578C2 (de) Wärmeübertragungseinrichtung
DE2430584A1 (de) Waermetauschereinsatz
DE3510049C2 (de)
CH173859A (de) Wärmeaustauscher.
DE102010003063A1 (de) Wärmetauscherelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840314

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOVY, HERBERT, DR.