WO2009115284A1 - Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur - Google Patents

Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur Download PDF

Info

Publication number
WO2009115284A1
WO2009115284A1 PCT/EP2009/001932 EP2009001932W WO2009115284A1 WO 2009115284 A1 WO2009115284 A1 WO 2009115284A1 EP 2009001932 W EP2009001932 W EP 2009001932W WO 2009115284 A1 WO2009115284 A1 WO 2009115284A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
tube
exchanger
heat exchanger
axis
Prior art date
Application number
PCT/EP2009/001932
Other languages
English (en)
Inventor
Aurélie Bellenfant
Jimmy Lemee
Lionel Renault
Frédéric Bernard
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to JP2011500106A priority Critical patent/JP5555220B2/ja
Priority to US12/933,152 priority patent/US9920999B2/en
Priority to EP09721889.5A priority patent/EP2260253B1/fr
Priority to CN200980118592.4A priority patent/CN102037305B/zh
Publication of WO2009115284A1 publication Critical patent/WO2009115284A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to a heat exchanger for an air conditioning circuit. It also relates to a use of said heat exchanger as an internal exchanger of an air conditioning circuit, an integrated assembly for an air conditioning circuit operating with a refrigerant, and an air conditioning circuit comprising such an integrated assembly.
  • the invention finds a particularly advantageous application in the field of air conditioning circuits operating with a supercritical refrigerant fluid, such as carbon dioxide (CO2).
  • a supercritical refrigerant fluid such as carbon dioxide (CO2).
  • Air conditioning circuits of this type generally include a compressor, a gas cooler, an internal heat exchanger, a pressure reducer, an evaporator and an accumulator.
  • the refrigerant fluid carried at high pressure by the compressor is sent to the gas cooler to be cooled.
  • the high-pressure fluid from the cooler then flows into a first branch of the internal exchanger, and is then expanded by the expander.
  • the low pressure fluid then passes through the evaporator, then the accumulator before circulating in a second branch of the internal exchanger.
  • the refrigerant then returns to the compressor to undergo a new cycle.
  • the hot fluid at high pressure flowing in the first branch exchanges heat with the cold fluid at low pressure flowing in the second branch.
  • the accumulator disposed at the outlet of the evaporator is designed to store the excess liquid present in the cold fluid at low pressure leaving the evaporator.
  • This accumulator is generally in the form of a reservoir adapted to separate the liquid portion of the refrigerant fluid from the gas portion.
  • the accumulator sends the gaseous portion of the refrigerant fluid at low temperature to the compressor after passing through the internal exchanger.
  • the internal exchanger has a general shape. of spiral. A spacing is provided between the windings of the internal exchanger to allow the circulation of the cold fluid, while the hot fluid circulates inside the spirally wound tube in parallel channels arranged perpendicularly to the axis of the tube.
  • a heat exchanger for air conditioning circuit comprising a tube defining a path for the circulation of a fluid, called high pressure, and a second fluid, called low pressure, the tube being wound around an axis so as to define successive windings.
  • the successive windings of the tube are closely clamped together so as to delimit so-called secondary channels, sealed for the circulation of the second fluid, these secondary channels being located between projecting areas of the tube.
  • the tube also has channels, said main, arranged in the projecting areas, to be traversed by the first fluid.
  • This known heat exchanger comprises an inner core of substantially cylindrical shape placed in the center of the tube and consisting of several nested elements which ensure, at the same time, the winding of the tube, the evacuation of the first fluid at the exit of the main channels and the second fluid supply to the inlet of the secondary channels.
  • an object of the invention is to provide a heat exchanger for air conditioning circuit that would in particular simplify the architecture of the aforementioned known exchanger at the outlet of the first fluid and the inlet of the second fluid.
  • a heat exchanger for an air conditioning circuit comprising a first tube defining a path for the circulation of a first fluid, called a high pressure fluid, said first tube being wound in a spiral about an axis, said axis of the exchanger, remarkable in that said heat exchanger further comprises at least a second tube defining a path for the circulation of a second fluid, called low pressure fluid, said second tube being attached to a face of the first tube and spirally wound with said first tube about said axis.
  • the invention also relates to a use of the heat exchanger according to the invention as an internal exchanger of an air conditioning circuit, remarkable in that said first fluid is a high pressure fluid and said second fluid a fluid to low pressure.
  • said first and second fluids are constituted by the same refrigerant fluid, in particular a supercritical fluid.
  • said first tube comprises a plurality of parallel main channels each delimiting a flow path of the first fluid spiral around the axis of the exchanger.
  • said main channels have a substantially circular section for a better resistance to the pressure of the first tube in which the first high pressure fluid flows.
  • said second tube comprises a plurality of parallel secondary channels each defining a flow path of the second fluid spiral around the axis of the exchanger.
  • said secondary channels have a substantially rectangular section for a better heat exchange surface between the second low pressure fluid flowing in the second tube and the first high pressure fluid flowing in the first tube.
  • the heat exchanger comprises two second tubes respectively contiguous to one face of the first tube.
  • This embodiment makes it possible in fact to obtain, by increasing the passage sections offered to the second fluid, a reduction in the pressure drop in the second branch of the exchanger, the one in which the second low-level fluid circulates. pressure.
  • the invention nevertheless remains open to any number of second circulation tubes of the second fluid at low pressure.
  • the invention further relates to an integrated assembly for an air conditioning circuit operating with a refrigerant fluid, characterized in that said integrated assembly comprises a housing in which is housed an internal exchanger according to the invention, between a cover and a bottom, said bottom being provided with an inlet of the second fluid inside the windings constituted by said first and second tubes, and in that said housing comprises a secondary outlet pipe of the second fluid, parallel to the axis of the exchanger and having an outlet opening.
  • the integrated assembly according to the invention comprises a secondary inlet pipe of said second fluid, parallel to the axis of the exchanger and one end communicates with said outlet through said bottom.
  • said integrated assembly comprises an accumulator connected to the bottom of said integrated assembly, into which said secondary inlet pipe opens so as to communicate with said outlet orifice.
  • the main pipes and the secondary pipes are arranged to make a circulation of the first fluid in the first tube co-current with the circulation of the second fluid in the second tube.
  • the main pipes and the secondary pipes are arranged to make a circulation of the first fluid in the first tube against the current with the circulation of the second fluid in the second tube.
  • said air conditioning circuit comprises an integrated element according to the invention, the main tubing. inlet pipe being connected to the gas cooler and the main outlet pipe being connected to the expansion valve, while the secondary inlet pipe is connected to the evaporator and the secondary outlet pipe is connected to the compressor.
  • Figure 1 is a diagram of an air conditioning circuit according to the invention.
  • FIG. 2 is an exploded perspective view of an integrated assembly for the air conditioning circuit of FIG. 1.
  • FIG. 3 is a view from above of the integrated assembly of FIG. 2.
  • FIG. 4 is a schematic perspective view of the heat exchange device of the integrated assembly of FIGS. 2 and 3.
  • FIG 1 is shown an air conditioning circuit 10 operating with a refrigerant, in particular a supercritical refrigerant fluid, for example carbon dioxide (CO2).
  • a refrigerant in particular a supercritical refrigerant fluid, for example carbon dioxide (CO2).
  • CO2 carbon dioxide
  • the air conditioning circuit 10 can be installed in a motor vehicle to cool the air of the passenger compartment, according to the needs of the passengers.
  • Such an air conditioning circuit operating according to a supercritical refrigerant cycle essentially comprises a compressor 14, a gas cooler 11 associated with a fan 16, an internal heat exchanger 9, a pressure reducer 12, an evaporator 13, and an accumulator 17 .
  • the compressor 14 compresses the refrigerant fluid to a discharge pressure, called high pressure.
  • the fluid then passes through the gas cooler 11 where it undergoes a gas phase cooling under high pressure. During this cooling, the fluid is not condensed unlike air conditioning circuits that use fluorinated compounds as refrigerant.
  • the fluid thus cooled by the gas cooler 11 then flows into a first branch 90 of the internal heat exchanger 9, called "hot" branch, to be further cooled.
  • the fluid then passes into the regulator 12 which lowers its pressure, bringing it at least partly in the liquid state.
  • the fluid passing through the evaporator 13 then passes to the gaseous state under constant pressure.
  • the heat exchange in the evaporator 13 makes it possible to produce a flow of conditioned air which is sent towards the passenger compartment of the vehicle.
  • the refrigerant flowing out of the evaporator is not fully vaporized.
  • the accumulator 17 is provided at the outlet of the evaporator 13 to store the excess of liquid still contained in the fluid.
  • the conventional accumulators are in the form of a reservoir adapted to separate the liquid portion of the refrigerant fluid from the gaseous portion.
  • the accumulator 17 then sends the gaseous portion of the refrigerant fluid at low temperature into a second branch 92 of the internal heat exchanger 9, called the "cold" branch, for a heat exchange with the high temperature refrigerant circulating in the "hot" branch 90.
  • the accumulator 17 and the internal heat exchanger 9 can be combined into a single component 100. This is called an "integrated assembly".
  • FIG. 2 shows such an integrated assembly 100 comprising, in the same housing 130, an accumulator 17 surmounted by an internal heat exchanger 9.
  • the internal exchanger 9 of Figure 2 is essentially organized around a device 140 for heat exchange between the high pressure fluid and the low pressure fluid.
  • this device 140 comprises a first tube 110 which delimits a path for the circulation of the fluid at high pressure, this first tube 110 being wound in a spiral around an axis A which will be referred to in the following axis of the invention. exchanger.
  • the heat exchange device 140 further comprises two second tubes 120a, 120b each defining a path for the circulation of the second fluid at low pressure.
  • These second tubes are contiguous to a respective face of the first tube 110 and spirally wound simultaneously with said first tube about the axis A of the internal exchanger 9.
  • the inner wall of the second inner tube 120a can come in contact with the outer wall of the second outer tube 120b.
  • the coolant is identical in the first tube 110 and in the second tube 120a, 120b with the exception of its pressure level. Indeed, this fluid is subjected to a pressure (called high pressure) in the first tube 110 greater than the pressure (so-called low pressure) of the fluid in the second tube 120a, 120b.
  • the first high pressure tube 110 is "sandwiched" between the two second tubes 120a, 120b low pressure so as to promote an exchange between the high pressure fluid and the low pressure fluid.
  • the manner in which the different tubes are arranged relative to each other within the heat exchange device 140 is also illustrated in FIG. 4.
  • the tubes 110, 120a, 120b can be extruded and joined together by brazing or gluing.
  • the circulation of the high-pressure fluid in the first tube 110 is provided by a plurality of parallel main channels each delimiting a flow path of the high-pressure fluid spirally around the axis A of the exchanger. These main channels are contained in successive planes perpendicular to the axis A. Although they are not shown in the figures, French Patent Application No. 2,752,921 describes a structure of such channels. key.
  • said main channels have a substantially circular section, in order to offer a better resistance to pressure.
  • This same channel structure can also be implemented to produce in each second tube 120a, 120b of the secondary channels each delimiting a flow path of the fluid at low pressure spiral around the axis A of the exchanger, these main channels being contained in successive planes perpendicular to the axis A.
  • said secondary channels have a substantially rectangular section, so as, on the one hand, to offer a larger heat exchange surface with the first tube 110 and, on the other hand, to reduce the pressure drop the along the path followed by the fluid at low pressure by maximizing the useful cross section of the fluid through the second tubes 120a, 120b.
  • the ends of the main channels of the first tube 110 extend between a main inlet pipe 111 capable of receiving the high pressure fluid coming from the gas cooler 11 of the air conditioning circuit. , and a main outlet pipe 112 capable of delivering the high pressure fluid outside the exchanger, in particular to the expander 12 of the air conditioning circuit.
  • These main pipes 111, 112 have a substantially cylindrical shape with an axis parallel to the axis A of the exchanger and respectively have an opening 113, 114, shown in Figures 3 and 4, adapted to receive one of the ends of the first tube 110.
  • the main pipes 111, 112 are not in contact with the inner or outer faces of the second tubes 120a, 120b.
  • the main pipes 111, 112 are brazed or glued to the ends of the first tube 110.
  • the main pipes 111, 112 are closed at one of their ends by means of plugs 115, 116, the latter are made by means of shutter reported or directly integrated in the tubing 111 or 112 for example by folding and soldering the end.
  • the heat exchange device 140 provided with the main pipes 111, 112 is housed inside the housing 130 between a cover 150 and a bottom 160. In this space are also housed secondary pipes 121, 122 for controlling the flow of fluid at low pressure in the internal exchanger 9.
  • a secondary tubing 121 of low-pressure fluid inlet parallel to the axis A of the exchanger, for receiving the low-pressure fluid from the evaporator 13 of the air conditioning circuit, and to pass it through the accumulator 17 through the bottom 160 of the exchanger.
  • the low-pressure fluid freed from its liquid phase leaves the accumulator 17 via a low-pressure fluid inlet orifice 161a, 161b in the heat exchange device 140, inside the windings constituted by the first tube 110 and the second tubes 120a, 120b.
  • the low pressure fluid After circulating in the two second tubes 120a, 120b and exchanging heat therewith with the high pressure fluid flowing in the first tube 110, the low pressure fluid opens secondary channels into the housing 130 where it is collected by a secondary outlet pipe 122 provided with an opening 123. The low pressure fluid is then driven through the secondary outlet pipe 122 outside the exchanger towards the compressor 14 of the air conditioning circuit.
  • the bottom 160 comprises two plates 160a, 160b.
  • the plate 160a said upper bottom plate, has holes 163a, 164a on which are brazed respectively the secondary tubing 122 of the low pressure fluid outlet and the main pipe 111 inlet of the high pressure fluid.
  • Another hole referenced 162a is formed in the upper bottom plate 160a through which passes the secondary tubing 121 inlet fluid low pressure.
  • Another hole 161a located substantially in the center of the windings of the tubes participates in the inlet port 160 of the fluid at low pressure in the heat exchange device 140.
  • the plate 160b called bottom bottom plate, has a hole 162b for the passage of the secondary tubing 121 of low pressure fluid inlet, a hole 164b for the housing of the plug 115 of the main pipe 111 of the fluid inlet at high pressure and a hole 161b constituting with the hole 161a of the upper plate 160a bottom opening 160 of the fluid at low pressure.
  • the secondary tubing 122 of low pressure fluid outlet simply bears against the bottom plate 160b.
  • the cover 150 of the exchanger consists of two plates referenced 150a, 150b.
  • the plate 150a called the lower lid plate, has four holes 151a, 152a, 153a, 154a on which the main outlet pipe 112 for the high-pressure fluid, the secondary pipe 121 for the inlet of the low-pressure fluid, are respectively brazed.
  • the plate 150b makes it possible to bind the inlets / outlets of the high and low pressure fluids of the internal exchanger 9 to the corresponding user-side inlets / outlets which are located on a plug 170 which can be fixed on studs. 151b, 152b of the top cover plate 150b by means of screws passing through holes 171, 172 of the plug 170.
  • the connection between the plug 170 and the top plate 150b is performed by soldering at the studs 151b and 152b .
  • the accumulator is a separate part mechanically connected to the bottom 160 of the integrated assembly.
  • it is the accumulator which delimits the housing 130 of the integrated assembly, this housing having the shape of a tank where the lower part delimits a fluid receiving chamber subjected to low pressure, this lower part extending to the right of the internal heat exchanger to end with an overlap zone with the cap 170, the latter entering the accumulator.
  • the integrated assembly according to the invention is then either arranged and connected to the top of the accumulator, or completely integrated in the accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur de chaleur pour circuit de climatisation, comprenant un premier tube (110) délimitant un parcours pour la circulation d'un fluide, ledit premier tube étant enroulé en spirale autour d'un axe (A), dit axe de l'échangeur. Selon l'invention, ledit echangeur (9) de chaleur comprend en outre au moins un second tube (120a, 120b) délimitant un parcours pour la circulation d'un second fluide, ledit second tube étant accolé à une face du premier tube (110) et enroulé en spirale avec ledit premier tube (110) autour dudit axe (A). Application aux circuits de climatisation fonctionnant avec un fluide réfrigérant supercritique, notamment le dioxyde de carbone (CO2).

Description

ECHANGEUR DE CHALEUR ET ENSEMBLE INTEGRE DE CLIMATISATION COMPRENANT UN TEL ECHANGEUR
La présente invention concerne un échangeur de chaleur pour circuit de climatisation. Elle concerne également une utilisation dudit échangeur de chaleur en tant qu'échangeur interne d'un circuit de climatisation, un ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant, et un circuit de climatisation comportant un tel ensemble intégré.
L'invention trouve une application particulièrement avantageuse dans le domaine des circuits de climatisation fonctionnant avec un fluide réfrigérant supercritique, comme le dioxyde de carbone (CO2).
Les circuits de climatisation de ce type comprennent généralement un compresseur, un refroidisseur de gaz, un échangeur interne, un détendeur, un évaporateur et un accumulateur. Le fluide réfrigérant porté à haute pression par le compresseur est envoyé vers le refroidisseur de gaz pour y être refroidi.
Le fluide à haute pression issu du refroidisseur circule ensuite dans une première branche de l'échangeur interne, puis est détendu par le détendeur. Le fluide à basse pression traverse alors l'évaporateur, puis l'accumulateur avant de circuler dans une seconde branche de l'échangeur interne. Le fluide réfrigérant retourne ensuite vers le compresseur pour subir un nouveau cycle.
Dans l'échangeur interne, le fluide chaud à haute pression circulant dans la première branche échange de la chaleur avec le fluide froid à basse pression circulant dans la seconde branche.
L'accumulateur disposé en sortie de l'évaporateur est prévu pour stocker l'excédent de liquide présent dans le fluide froid à basse pression sortant de l'évaporateur. Cet accumulateur se présente généralement sous la forme d'un réservoir adapté pour séparer la partie liquide du fluide réfrigérant de la partie gazeuse. L'accumulateur envoie la partie gazeuse du fluide réfrigérant à basse température vers le compresseur après avoir traversé l'échangeur interne.
COPIE DE CONFSRMATSON Parmi les nombreux échangeurs internes connus, on peut citer celui qui, associé à un accumulateur horizontal, constitue l'ensemble intégré décrit dans la demande de brevet français n° 2 752 921. Dans cet ensemble intégré, l'échangeur interne présente une forme générale de spirale. Un écartement est prévu entre les enroulements de l'échangeur interne pour permettre la circulation du fluide froid, tandis que le fluide chaud circule à l'intérieur du tube enroulé en spirale dans des canaux parallèles disposés perpendiculairement à l'axe du tube.
Cette solution implique cependant d'aménager un espace entre chaque enroulement pour créer le canal du fluide à basse pression. Elle génère par conséquent un encombrement diamétral important.
Pour remédier à cet inconvénient, il a été proposé un échangeur de chaleur pour circuit de climatisation, comprenant un tube délimitant un parcours pour la circulation d'un fluide, appelé haute pression, et d'un second fluide, appelé basse pression, le tube étant enroulé autour d'un axe de manière à définir des enroulements successifs.
Il est prévu par ailleurs dans cet échangeur que les enroulements successifs du tube sont étroitement serrés entre eux de manière à délimiter des canaux, dits secondaires, étanches pour la circulation du second fluide, ces canaux secondaires se situant entre des zones saillantes du tube. Le tube présente également des canaux, dits principaux, aménagés dans les zones saillantes, destinés à être traversés par le premier fluide.
Cet échangeur de chaleur connu comporte un noyau interne de forme sensiblement cylindrique placé au centre du tube et constitué de plusieurs éléments imbriqués qui assurent, à la fois, l'enroulement du tube, l'évacuation du premier fluide en sortie des canaux principaux et l'alimentation en second fluide à l'entrée des canaux secondaires.
Toutefois, cette solution nécessite la mise en oeuvre d'un noyau interne relativement complexe. Aussi, un but de l'invention est de proposer un échangeur de chaleur pour circuit de climatisation qui permettrait notamment de simplifier l'architecture de l'échangeur connu précité au niveau de la sortie du premier fluide et de l'entrée du second fluide. Ce but est atteint, conformément à l'invention, grâce à un échangeur de chaleur pour circuit de climatisation, comprenant un premier tube délimitant un parcours pour la circulation d'un premier fluide, appelé fluide haute pression, ledit premier tube étant enroulé en spirale autour d'un axe, dit axe de l'échangeur, remarquable en ce que ledit échangeur de chaleur comprend en outre au moins un second tube délimitant un parcours pour la circulation d'un second fluide, appelé fluide basse pression, ledit second tube étant accolé à une face du premier tube et enroulé en spirale avec ledit premier tube autour dudit axe. Ainsi, comme on le verra en détail plus loin, du fait que le premier et le second fluides circulent dans des tubes indépendants, il est possible de séparer la sortie du premier tube et l'entrée du second tube et donc de prévoir des moyens indépendants d'évacuation du premier fluide et d'alimentation du second fluide, au lieu d'avoir recours à une pièce complexe unique assurant simultanément ces deux fonctions.
L'invention concerne également une utilisation de l'échangeur de chaleur selon l'invention en tant qu'échangeur interne d'un circuit de climatisation, remarquable en ce que ledit premier fluide est un fluide à haute pression et ledit second fluide un fluide à basse pression. En particulier, lesdits premier et second fluides sont constitués par un même fluide réfrigérant, notamment un fluide supercritique.
Selon un mode de réalisation de l'invention, ledit premier tube comporte une pluralité de canaux principaux parallèles délimitant chacun un parcours de circulation du premier fluide en spirale autour de l'axe de l'échangeur. Avantageusement, lesdits canaux principaux présentent une section sensiblement circulaire pour une meilleure résistance à la pression du premier tube dans lequel circule le premier fluide à haute pression.
De même, l'invention prévoit que ledit second tube comporte une pluralité de canaux secondaires parallèles délimitant chacun un parcours de circulation du second fluide en spirale autour de l'axe de l'échangeur. Avantageusement lesdits canaux secondaires présentent une section sensiblement rectangulaire pour une meilleure surface d'échange de chaleur entre le second fluide à basse pression circulant dans le second tube et le premier fluide à haute pression circulant dans le premier tube.
Dans un mode de réalisation préféré de l'invention, l'échangeur de chaleur comprend deux seconds tubes accolés respectivement à une face du premier tube.
Ce mode de réalisation permet en effet d'obtenir, grâce à l'augmentation des sections de passage offertes au second fluide, une diminution de la perte de charge dans la seconde branche de l'échangeur, celle dans laquelle circule le second fluide à basse pression. Bien entendu, l'invention reste néanmoins ouverte à un nombre quelconque de seconds tubes de circulation du second fluide à basse pression.
L'invention concerne en outre un ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant, remarquable en ce que ledit ensemble intégré comporte un boîtier dans lequel est logé un échangeur interne selon l'invention, entre un couvercle et un fond, ledit fond étant muni d'un orifice d'entrée du second fluide à l'intérieur des enroulements constitués par lesdits premier et second tubes, et en ce que ledit boîtier comporte une tubulure secondaire de sortie du second fluide, parallèle à l'axe de l'échangeur et comportant une ouverture de sortie.
Selon un mode de réalisation particulier, l'ensemble intégré selon l'invention comporte une tubulure secondaire d'entrée dudit second fluide, parallèle à l'axe de l'échangeur et dont une extrémité communique avec ledit orifice de sortie à travers ledit fond. Dans ce mode de réalisation particulier, l'invention prévoit notamment que ledit ensemble intégré comporte un accumulateur raccordé au fond dudit ensemble intégré, dans lequel débouche ladite tubulure secondaire d'entrée de manière à communiquer avec ledit orifice de sortie.
Selon une première variante, les tubulures principales et les tubulures secondaires sont agencées pour réaliser une circulation du premier fluide dans le premier tube à co-courant avec la circulation du second fluide dans le second tube. Selon une deuxième variante, les tubulures principales et les tubulures secondaires sont agencées pour réaliser une circulation du premier fluide dans le premier tube à contre-courant avec la circulation du second fluide dans le second tube. L'invention concerne enfin un circuit de climatisation fonctionnant avec un fluide réfrigérant, comprenant un compresseur, un refroidisseur de gaz, un détendeur et un évaporateur, remarquable en ce que ledit circuit de climatisation comporte un élément intégré selon l'invention, la tubulure principale d'entrée étant reliée au refroidisseur de gaz et la tubulure principale de sortie étant reliée au détendeur, tandis que la tubulure secondaire d'entrée est reliée à l'évaporateur et la tubulure secondaire de sortie est reliée au compresseur.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
La figure 1 est un schéma d'un circuit de climatisation conforme à l'invention.
La figure 2 est une vue en perspective éclatée d'un ensemble intégré pour le circuit de climatisation de la figure 1. La figure 3 est une vue de dessus de l'ensemble intégré de la figure 2.
La figure 4 est une vue schématique en perspective du dispositif d'échange de chaleur de l'ensemble intégré des figures 2 et 3.
Sur la figure 1 est représenté un circuit 10 de climatisation fonctionnant avec un fluide réfrigérant, en particulier un fluide réfrigérant supercritique, par exemple du dioxyde de carbone (CO2).
Le circuit 10 de climatisation peut être installé dans un véhicule automobile pour refroidir l'air de l'habitacle, en fonction des besoins des passagers.
Un tel circuit de climatisation fonctionnant selon un cycle réfrigérant supercritique comprend pour l'essentiel un compresseur 14, un refroidisseur de gaz 11 associé à un ventilateur 16, un échangeur interne 9 de chaleur, un détendeur 12, un évaporateur 13, et un accumulateur 17. Le compresseur 14 comprime le fluide réfrigérant jusqu'à une pression de décharge, dite haute pression. Le fluide traverse ensuite le refroidisseur de gaz 11 où il subit un refroidissement en phase gazeuse sous haute pression. Au cours de ce refroidissement, le fluide n'est pas condensé contrairement aux circuits de climatisation qui utilisent des composés fluorés comme fluide réfrigérant.
Le fluide ainsi refroidi par le refroidisseur de gaz 11 circule ensuite dans une première branche 90 de l'échangeur interne 9 de chaleur, dite branche "chaude", pour y être encore refroidi. Le fluide passe ensuite dans le détendeur 12 qui abaisse sa pression, en l'amenant au moins en partie à l'état liquide.
Le fluide traversant l'évaporateur 13 passe alors à l'état gazeux sous pression constante. L'échange de chaleur dans l'évaporateur 13 permet de produire un flux d'air climatisé qui est envoyé vers l'habitacle du véhicule. Généralement, le fluide réfrigérant qui sort de l'évaporateur n'est pas entièrement vaporisé. L'accumulateur 17 est prévu en sortie de l'évaporateur 13 pour stocker l'excédent de liquide encore contenu dans le fluide. Les accumulateurs classiques se présentent sous la forme d'un réservoir adapté pour séparer la partie liquide du fluide réfrigérant de la partie gazeuse. L'accumulateur 17 envoie ensuite la partie gazeuse du fluide réfrigérant à basse température dans une seconde branche 92 de l'échangeur interne 9 de chaleur, dite branche "froide", pour un échange de chaleur avec le fluide réfrigérant à haute température circulant dans la branche "chaude" 90.
Comme l'indique la figure 1 , l'accumulateur 17 et l'échangeur interne 9 de chaleur peuvent être réunis en un seul composant 100. On parle alors d'« ensemble intégré ».
La figure 2 montre un tel ensemble intégré 100 comprenant, dans un même boîtier 130, un accumulateur 17 surmonté d'un échangeur interne 9 de chaleur. L'échangeur interne 9 de la figure 2 est essentiellement organisé autour d'un dispositif 140 d'échange de chaleur entre le fluide haute pression et le fluide basse pression. Conformément à la figure 3, ce dispositif 140 comprend un premier tube 110 qui délimite un parcours pour la circulation du fluide à haute pression, ce premier tube 110 étant enroulé en spirale autour d'un axe A qui sera dénommé dans la suite axe de l'échangeur. Le dispositif 140 d'échange de chaleur comprend en outre deux seconds tubes 120a, 120b délimitant chacun un parcours pour la circulation du second fluide à basse pression. Ces seconds tubes sont accolés à une face respective du premier tube 110 et enroulés en spirale simultanément avec ledit premier tube autour de l'axe A de l'échangeur interne 9. A chaque en roulement, la paroi interne du second tube interne 120a peut venir en contact avec la paroi externe du second tube externe 120b. Le fluide réfrigérant est identique dans le premier tube 110 et dans le deuxième tube 120a, 120b à l'exception de son niveau de pression. En effet, ce fluide est soumis à une pression (dite haute pression) dans le premier tube 110 supérieure à la pression (dite basse pression) du fluide dans le deuxième tube 120a, 120b.
En d'autres termes, le premier tube 110 haute pression est pris « en sandwich » entre les deux seconds tubes 120a, 120b basse pression de sorte à favoriser une échange entre le fluide haute pression et le fluide basse pression. La manière dont sont disposés les différents tubes les uns par rapport aux autres au sein du dispositif 140 d'échange de chaleur est également illustrée sur la figure 4.
En pratique, les tubes 110, 120a, 120b peuvent être extrudés et accolés entre eux par brasage ou collage. La circulation du fluide à haute pression dans le premier tube 110 est assurée par une pluralité de canaux principaux parallèles délimitant chacun un parcours de circulation du fluide à haute pression en spirale autour de l'axe A de l'échangeur. Ces canaux principaux sont contenus dans des plans successifs perpendiculaires à l'axe A. Bien qu'ils ne soient pas représentés sur les figures, on trouvera dans la demande de brevet français n° 2 752 921 une description d'une structure de tels canaux principaux.
Avantageusement, lesdits canaux principaux présentent une section sensiblement circulaire, ceci afin d'offrir une meilleure résistance à la pression. Cette même structure de canaux peut également être mise en œuvre pour réaliser dans chaque second tube 120a, 120b des canaux secondaires délimitant chacun un parcours de circulation du fluide à basse pression en spirale autour de l'axe A de l'échangeur, ces canaux principaux étant contenus dans des plans successifs perpendiculaires à l'axe A.
Avantageusement, lesdits canaux secondaires présentent une section sensiblement rectangulaire, ceci afin, d'une part, d'offrir une plus grande surface d'échange de chaleur avec le premier tube 110 et, d'autre part, de réduire la perte de charge le long du parcours suivi par le fluide à basse pression en rendant maximum la section utile de passage du fluide à travers les seconds tubes 120a, 120b.
Ainsi que le montrent plus particulièrement les figures 3 et 4, les extrémités des canaux principaux du premier tube 110 s'étendent entre une tubulure principale 111 d'entrée apte à recevoir le fluide à haute pression provenant du refroidisseur de gaz 11 du circuit de climatisation, et une tubulure principale 112 de sortie apte à délivrer le fluide à haute pression à l'extérieur de l'échangeur, notamment vers le détendeur 12 du circuit de climatisation. Ces tubulures principales 111 , 112 ont une forme sensiblement cylindrique d'axe parallèle à l'axe A de l'échangeur et présentent respectivement une ouverture 113, 114, représentée sur les figures 3 et 4, apte à recevoir l'une des extrémités du premier tube 110.
Les tubulures principales 111 , 112 ne sont pas en contact avec les faces internes ou externes des seconds tubes 120a, 120b.
En pratique, les tubulures principales 111 , 112 sont brasées ou collées aux extrémités du premier tube 110. De même, on peut voir sur les figures 2 et 4 que les tubulures principales 111 , 112 sont obturées à l'une de leurs extrémités par des bouchons 115, 116, ces derniers sont réalisés par l'intermédiaire d'obturateur rapporté ou directement intégré à la tubulure 111 ou 112 par exemple par un pliage et un brasage de l'extrémité. Comme on peut le voir sur les figures 2 et 3, le dispositif 140 d'échange de chaleur muni des tubulures principales 111 , 112 est logé à l'intérieur du boîtier 130 entre un couvercle 150 et un fond 160. Dans cet espace sont également logées des tubulures secondaires 121 , 122 destinées à contrôler la circulation du fluide à basse pression dans l'échangeur interne 9.
Plus précisément, il est prévu une tubulure secondaire 121 d'entrée du fluide à basse pression, parallèle à l'axe A de l'échangeur, destinée à recevoir s le fluide à basse pression provenant de l'évaporateur 13 du circuit de climatisation, et à le faire passer dans l'accumulateur 17 en traversant le fond 160 de l'échangeur. Le fluide à basse pression débarrassé de sa phase liquide ressort de l'accumulateur 17 par un orifice 161a, 161b d'entrée du fluide à basse pression dans le dispositif 140 d'échange de chaleur, ào l'intérieur des enroulements constitués par le premier tube 110 et les seconds tubes 120a, 120b.
Après avoir circulé dans les deux seconds tubes 120a, 120b et y avoir échangé de la chaleur avec le fluide à haute pression circulant dans le premier tube 110, le fluide à basse pression débouche des canaux secondaires dans5 le boîtier 130 où il est recueilli par une tubulure secondaire 122 de sortie munie d'une ouverture 123. Le fluide à basse pression est ensuite entraîné à travers la tubulure secondaire 122 de sortie à l'extérieur de l'échangeur en direction du compresseur 14 du circuit de climatisation.
Dans le mode de réalisation de la figure 2, le fond 160 comprend deux0 plaques 160a, 160b.
La plaque 160a, dite plaque supérieure de fond, comporte des trous 163a, 164a sur lesquels sont brasées respectivement la tubulure secondaire 122 de sortie du fluide à basse pression et la tubulure principale 111 d'entrée du fluide à haute pression. Un autre trou référencé 162a est pratiqué dans las plaque supérieure de fond 160a au travers duquel passe la tubulure secondaire 121 d'entrée du fluide à basse pression. Au niveau de ce trou, deux variantes sont possibles : l'une dans laquelle la tubulure secondaire 121 est brasé sur la plaque 160a au niveau du trou et une autre ou la tubulure secondaire 121 n'est pas reliée mécaniquement à la plaque 160a. Un autre0 trou 161a situé sensiblement au centre des enroulements des tubes participe à l'orifice 160 d'entrée du fluide à basse pression dans le dispositif 140 d'échange de chaleur. La plaque 160b, dite plaque inférieure de fond, comporte un trou 162b pour le passage de la tubulure secondaire 121 d'entrée du fluide à basse pression, un trou 164b pour le logement du bouchon 115 de la tubulure principale 111 d'entrée du fluide à haute pression et un trou 161b constituant avec le trou 161a de la plaque supérieure 160a de fond l'orifice 160 du fluide à basse pression. La tubulure secondaire 122 de sortie du fluide à basse pression vient simplement en appui contre la plaque inférieure 160b de fond.
De même, le couvercle 150 de l'échangeur est constitué de deux plaques référencées 150a, 150b. La plaque 150a, dite plaque inférieure de couvercle, comporte quatre trous 151a, 152a, 153a, 154a sur lesquels sont respectivement brasées la tubulure principale 112 de sortie du fluide à haute pression, la tubulure secondaire 121 d'entrée du fluide à basse pression, la tubulure secondaire 122 de sortie du fluide à basse pression, et la tubulure principale 111 d'entrée du fluide à haute pression.
La plaque 150b, dite plaque supérieure de couvercle, permet de lier les entrées/sorties des fluides à haute et basse pression de l'échangeur interne 9 aux entrées/sorties correspondantes côté utilisateur qui sont localisées sur un bouchon 170 pouvant être fixé sur des plots 151b, 152b de la plaque supérieure 150b de couvercle au moyen de vis traversant des trous 171 , 172 du bouchon 170. En variante, le lien entre le bouchon 170 et la plaque supérieure 150b est effectué par un brasage au niveau des plots 151b et 152b.
On peut voir sur l'exemple de réalisation de la figure 3 que le fluide à haute pression et le fluide à basse pression circulent dans leur tube respectif à contre-courant. Il est cependant possible d'envisager une circulation à co- courant. Il suffit pour cela d'inverser les rôles des tubulures principales 111 , 112 et de faire pénétrer le fluide à haute pression dans le premier tube 110 par la tubulure principale 112 et le récupérer en sortie du premier tube 110 par la tubulure principale 111.
L'accumulateur est une pièce distincte reliée mécaniquement avec le fond 160 de l'ensemble intégré. En variante, c'est l'accumulateur qui délimite le boîtier 130 de l'ensemble intégré, ce boîtier présentant la forme d'une cuve où la partie basse délimite une chambre de réception du fluide soumis à basse pression, cette partie basse se prolongeant au droit de l'échangeur interne pour se terminer par une zone de chevauchement avec le bouchon 170, ce dernier rentrant dans l'accumulateur. On comprend donc que l'ensemble intégré selon l'invention est alors soit disposé et connecté au dessus de l'accumulateur, soit complètement intégré dans l'accumulateur.
La description ci-dessus identifie un premier fluide et un second fluide mais il est apparent que dans une forme préférée de l'invention, ce fluide est identique et circule en boucle fermée dans ce qui constitue le circuit de climatisation selon l'invention.

Claims

REVENDICATIONS
I1 Echangeur de chaleur pour circuit de climatisation, comprenant un premier tube (110) délimitant un parcours pour la circulation d'un fluide, ledit premier tube étant enroulé en spirale autour d'un axe (A), dit axe de l'échangeur, caractérisé en ce que ledit echangeur (9) de chaleur comprend en outre au moins un second tube (120a, 120b) délimitant un parcours pour la circulation du fluide, ledit second tube étant accolé à une face du premier tube (110) et enroulé en spirale avec ledit premier tube (110) autour dudit axe (A).
2. Echangeur de chaleur selon la revendication 1 , dans lequel ledit premier tube (110) comporte une pluralité de canaux principaux parallèles délimitant chacun un parcours de circulation du fluide en spirale autour de l'axe (A) de l'échangeur.
3. Echangeur de chaleur selon la revendication 2, dans lequel lesdits canaux principaux présentent une section sensiblement circulaire. 4. Echangeur de chaleur selon l'une quelconque des revendications 1 à 3, dans lequel ledit second tube (120a, 120b) comporte une pluralité de canaux secondaires parallèles délimitant chacun un parcours de circulation du fluide en spirale autour de l'axe (A) de l'échangeur, le fluide étant identique dans le premier tube (110) et dans le deuxième tube (120a, 120b) et soumis à une pression dans le premier tube (110) supérieure à la pression du fluide dans le deuxième tube (120a, 120b).
5. Echangeur de chaleur selon la revendication 4, dans lequel lesdits canaux secondaires présentent une section sensiblement rectangulaire.
6. Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, comprenant deux seconds tubes (120a, 120b) accolés respectivement à une face du premier tube (110).
7. Echangeur de chaleur selon l'une quelconque des revendications 2 à 6, dans lequel les extrémités desdits canaux principaux s'étendent entre une tubulure principale (111) d'entrée apte à recevoir ledit fluide, et une tubulure principale (112) de sortie apte à délivrer ledit fluide à l'extérieur de l'échangeur.
8. Echangeur de chaleur selon la revendication 7, dans lequel au moins une tubulure principale (111 , 112) a une forme sensiblement cylindrique d'axe parallèle à l'axe (A) de l'échangeur, et présente une ouverture (113, 114) apte à recevoir une extrémité du premier tube (110). 9. Echangeur de chaleur selon l'une quelconque des revendications 1 à 8, dans lequel lesdits premier (110) et second tubes (120a, 120b) sont extrudés. 10. Echangeur de chaleur selon l'une quelconque des revendications 1 à 9, dans lequel lesdits premier (110) et second tubes (120a, 120b) sont accolés par brasage ou collage. H1 Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications 1 à 10 en tant qu'échangeur interne (9) d'un circuit (10) de climatisation, caractérisée en ce que ledit fluide est un fluide à haute pression quand il parcours le premier tube (110) et ledit fluide est un fluide à basse pression quand il parcours le second tube (120a, 120b). 12. Utilisation selon la revendication 11 , dans laquelle ledit fluide à haute pression et ledit fluide à basse pression sont constitués par un même fluide réfrigérant.
13. Utilisation selon la revendication 12, dans laquelle ledit fluide réfrigérant est un fluide supercritique. 14. Ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant, caractérisé en ce que ledit ensemble intégré (100) comporte un boîtier (130) dans lequel est logé un echangeur interne (9) selon l'une quelconque des revendications 1 à 10, entre un couvercle (150) et un fond (160), ledit fond étant muni d'un orifice (161a, 161b) d'entrée du fluide à l'intérieur des enroulements constitués par lesdits premier (110) et second tubes (120a, 120b), et en ce que ledit boîtier (130) comprend une tubulure secondaire (122) de sortie du fluide, parallèle à l'axe (A) de l'échangeur et comportant une ouverture (123) de sortie. 15. Ensemble intégré selon la revendication 14, comportant une tubulure secondaire (121) d'entrée dudit fluide, parallèle à l'axe (A) de l'échangeur et dont une extrémité communique avec ledit orifice (161a, 161b) de sortie à travers ledit fond (160).
16. Ensemble intégré selon la revendication 15, comportant un accumulateur (17) raccordé au fond (160) dudit ensemble intégré (9), dans lequel débouche ladite tubulure secondaire (121) d'entrée de manière à communiquer avec ledit orifice (161a, 161b) de sortie. 17. Ensemble intégré selon la revendication 14, dans lequel le boîtier (130) s'étend dans le prolongement de l'échangeur interne (9) après le fond (160) et comporte une chambre de réception du fluide à basse pression.
18. Ensemble intégré selon l'une quelconque des revendications 14 à 16, dans lequel les tubulures principales (111 , 112) et les tubulures secondaires (121 , 122) sont agencées pour réaliser une circulation du fluide dans le premier tube (110) à co-courant avec la circulation du fluide dans le second tube (120a, 120b).
19. Ensemble intégré selon l'une quelconque des revendications 14 à 16, dans lequel les tubulures principales (111 , 112) et les tubulures secondaires (121 , 122) sont agencées pour réaliser une circulation du fluide dans le premier tube (110) à contre-courant avec la circulation du fluide dans le second tube (120a, 120b).
20. Circuit de climatisation fonctionnant avec un fluide réfrigérant, comprenant un compresseur (14), un refroidisseur de gaz (11), un détendeur (12) et un évaporateur (13), caractérisé en ce que ledit circuit (10) de climatisation comporte un élément intégré (100) selon l'une quelconque des revendications 14 à 19, la tubulure principale (111) d'entrée étant reliée au refroidisseur de gaz (11) et la tubulure principale (112) de sortie étant reliée au détendeur (12), tandis qu'une tubulure secondaire (121) d'entrée est reliée à l'évaporateur (13) et la tubulure secondaire (122) de sortie est reliée au compresseur (14).
PCT/EP2009/001932 2008-03-20 2009-03-17 Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur WO2009115284A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011500106A JP5555220B2 (ja) 2008-03-20 2009-03-17 熱交換器および熱交換器を含む統合された空調組立品
US12/933,152 US9920999B2 (en) 2008-03-20 2009-03-17 Heat exchanger and integrated air-conditioning assembly including such exchanger
EP09721889.5A EP2260253B1 (fr) 2008-03-20 2009-03-17 Ensemble intégré de climatisation comprenant un échangeur de chaleur interne
CN200980118592.4A CN102037305B (zh) 2008-03-20 2009-03-17 热交换器和包括这种交换器的集成空调组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801546 2008-03-20
FR0801546A FR2928997B1 (fr) 2008-03-20 2008-03-20 Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur.

Publications (1)

Publication Number Publication Date
WO2009115284A1 true WO2009115284A1 (fr) 2009-09-24

Family

ID=39810239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001932 WO2009115284A1 (fr) 2008-03-20 2009-03-17 Echangeur de chaleur et ensemble integre de climatisation comprenant un tel echangeur

Country Status (6)

Country Link
US (1) US9920999B2 (fr)
EP (1) EP2260253B1 (fr)
JP (1) JP5555220B2 (fr)
CN (1) CN102037305B (fr)
FR (1) FR2928997B1 (fr)
WO (1) WO2009115284A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610241A (zh) * 2015-10-26 2017-05-03 北京肯思得能源科技有限公司 管壳式换热器及其管壳式换热器组
WO2018142090A1 (fr) * 2017-02-06 2018-08-09 Valeo Systemes Thermiques Circuit de gestion thermique et échangeur thermique associé

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712380B (zh) * 2014-01-06 2015-11-04 天津商业大学 能够实现三股流体换热的回热器及制冷系统
US11002488B2 (en) * 2015-11-09 2021-05-11 Franke Technology And Trademark Ltd Heat exchanger
CN111721147B (zh) * 2019-03-22 2022-02-25 中国石油化工股份有限公司 换热单元及换热反应器
DE102022212036A1 (de) 2022-11-14 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verteilermodul für einen Kältemittelkreislauf

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061779A2 (fr) * 1981-03-31 1982-10-06 Feraton Anstalt Echangeur de chaleur
DE3634871A1 (de) * 1985-10-14 1987-05-21 Outokumpu Oy Doppelspiralwaermeaustauscher
EP0529819A2 (fr) * 1991-08-22 1993-03-03 Modine Manufacturing Company Echangeur de chaleur
WO2001057454A1 (fr) * 2000-02-07 2001-08-09 Andrzej Sokulski Appareil frigorifique
US20020083733A1 (en) * 2000-12-29 2002-07-04 Zhang Chao A. Accumulator with internal heat exchanger
JP2007178115A (ja) * 2005-11-30 2007-07-12 Furukawa Electric Co Ltd:The 放熱用伝熱管および放熱器
WO2007136379A1 (fr) * 2006-05-23 2007-11-29 Carrier Corporation Échangeur de chaleur à tube plat en spirale

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2136153A (en) * 1934-04-14 1938-11-08 Rosenblads Patenter Ab Heat exchanger and method of making same
NL43858C (fr) * 1936-02-01
JPS5188866A (fr) * 1975-01-20 1976-08-03
US4100762A (en) * 1976-11-02 1978-07-18 Sundstrand Corporation Integrated controls assembly
US4655174A (en) * 1979-04-26 1987-04-07 Fillios Jean P R Hot liquid generator with condensation and installation incorporating this generator
JPH0791867A (ja) * 1993-09-20 1995-04-07 Matsushita Seiko Co Ltd 熱交換器
JP3397021B2 (ja) 1995-10-11 2003-04-14 株式会社デンソー 熱交換器
DE19635454B4 (de) 1996-08-31 2010-06-17 Behr Gmbh & Co. Kg Sammler-Wärmeübertrager-Baueinheit und damit ausgerüstete Klimaanlage
JP2000346584A (ja) * 1999-06-02 2000-12-15 Denso Corp 熱交換器
US20020092646A1 (en) * 2000-01-07 2002-07-18 Carsten Kuhn Spiral heat exchanger
CA2297598C (fr) * 2000-01-28 2003-12-23 Ki-Sun Jason Ryu Accumulateur de systeme de conditionnement d'air
JP2002107069A (ja) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd 熱交換器及びそれを用いたヒートポンプ給湯機
US6607027B2 (en) * 2001-04-05 2003-08-19 Modine Manufacturing Company Spiral fin/tube heat exchanger
JP3945208B2 (ja) * 2001-10-09 2007-07-18 株式会社デンソー 熱交換用チューブ及び熱交換器
US20030121648A1 (en) * 2001-12-28 2003-07-03 Visteon Global Technologies, Inc. Counter-flow heat exchanger with optimal secondary cross-flow
JP2004144343A (ja) * 2002-10-23 2004-05-20 Hitachi Home & Life Solutions Inc 熱交換器
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
CN2584436Y (zh) * 2002-12-13 2003-11-05 上海易初通用机器有限公司 车用空调系统带回热装置的气液分离器
JP3863854B2 (ja) * 2003-02-21 2006-12-27 三洋電機株式会社 分離型ヒートポンプ式給湯装置
JP4196774B2 (ja) * 2003-07-29 2008-12-17 株式会社デンソー 内部熱交換器
US20060196223A1 (en) * 2005-03-07 2006-09-07 Halla Climate Control Canada Inc. Accumulator with oil vanes/indentations
US8003265B2 (en) * 2006-05-11 2011-08-23 Ford Motor Company Gas conditioning device and method
KR100784611B1 (ko) * 2006-08-18 2007-12-11 주식회사 두원공조 냉방장치의 내부열교환기 일체형 기액분리기
FR2913764B1 (fr) 2007-03-12 2009-12-11 Valeo Systemes Thermiques Echangeur de chaleur et ensemble integre incorporant un tel echangeur
EP1978317B1 (fr) * 2007-04-06 2017-09-06 Samsung Electronics Co., Ltd. Dispositif de cycle réfrigérant
JP5188866B2 (ja) * 2008-04-17 2013-04-24 日油技研工業株式会社 滅菌検知インジケータおよびその製造方法
FR2940418B1 (fr) * 2008-12-22 2012-12-07 Valeo Systemes Thermiques Dispositif combine comprenant un echangeur de chaleur interne et un accumulateur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061779A2 (fr) * 1981-03-31 1982-10-06 Feraton Anstalt Echangeur de chaleur
DE3634871A1 (de) * 1985-10-14 1987-05-21 Outokumpu Oy Doppelspiralwaermeaustauscher
EP0529819A2 (fr) * 1991-08-22 1993-03-03 Modine Manufacturing Company Echangeur de chaleur
WO2001057454A1 (fr) * 2000-02-07 2001-08-09 Andrzej Sokulski Appareil frigorifique
US20020083733A1 (en) * 2000-12-29 2002-07-04 Zhang Chao A. Accumulator with internal heat exchanger
JP2007178115A (ja) * 2005-11-30 2007-07-12 Furukawa Electric Co Ltd:The 放熱用伝熱管および放熱器
WO2007136379A1 (fr) * 2006-05-23 2007-11-29 Carrier Corporation Échangeur de chaleur à tube plat en spirale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610241A (zh) * 2015-10-26 2017-05-03 北京肯思得能源科技有限公司 管壳式换热器及其管壳式换热器组
WO2018142090A1 (fr) * 2017-02-06 2018-08-09 Valeo Systemes Thermiques Circuit de gestion thermique et échangeur thermique associé
FR3062714A1 (fr) * 2017-02-06 2018-08-10 Valeo Systemes Thermiques Circuit de gestion thermique et echangeur thermique associe

Also Published As

Publication number Publication date
EP2260253B1 (fr) 2019-07-31
CN102037305A (zh) 2011-04-27
US20110083468A1 (en) 2011-04-14
FR2928997B1 (fr) 2014-06-20
US9920999B2 (en) 2018-03-20
JP2011515644A (ja) 2011-05-19
EP2260253A1 (fr) 2010-12-15
FR2928997A1 (fr) 2009-09-25
CN102037305B (zh) 2015-03-18
JP5555220B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
EP2118608B1 (fr) Echangeur de chaleur et ensemble intégré incorporant un tel échangeur
EP2260253B1 (fr) Ensemble intégré de climatisation comprenant un échangeur de chaleur interne
EP1640676B1 (fr) Dispositif combiné d'échangeur de chaleur interne et d'accumulateur pour un circuit de climatisation
EP2473809A1 (fr) Echangeur thermique
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP2199709B1 (fr) Dispositif combiné comprenant un échangeur de chaleur interne et un accumulateur
FR2906357A1 (fr) Echangeur de chaleur de type liquide/gaz,notamment pour un equipement de climatisation de vehicule automobile utilisant un fluide refrigerant operant a l'etat supercritique tel que co2
WO2018142090A1 (fr) Circuit de gestion thermique et échangeur thermique associé
FR2887971A1 (fr) Echangeur de chaleur a compacite et resistance a la pression ameliorees
FR2939187A1 (fr) Echangeur de chaleur a spires et dispositif de climatisation comprenant un tel echangeur de chaleur
EP3394553B1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2017109344A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR2886392A1 (fr) Echangeur de chaleur a tubes en forme de spirale helicoidale
FR2884309A1 (fr) Tube et echangeur de chaleur associe
EP3394544B1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3045804A1 (fr) Echangeur thermique, notamment pour vehicule automobile
EP3394546B1 (fr) Échangeur thermique, notamment pour véhicule automobile
WO2017109350A1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP3394554A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR2962201A1 (fr) Echangeur de chaleur a tubes d'alimentation et de retour internes
WO2011151543A1 (fr) Échangeur de chaleur
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118592.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009721889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011500106

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933152

Country of ref document: US